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Abstract. The reconstruction of histology sections into a 3-D volume
receives increased attention due to its various applications in modern
medical image analysis. To guarantee a geometrically coherent recon-
struction, we propose a new way to register histological sections simulta-
neously to previously acquired reference images and to neighboring slices
in the stack. To this end, we formulate two potential functions and as-
sociate them to the same Markov random field through which we can
efficiently find an optimal solution. Due to our simultaneous formulation
and the absence of any segmentation step during the reconstruction we
can dramatically reduce error propagation effects. This is illustrated by
experiments on carefully created synthetic as well as real data sets.

1 Introduction

Today, histology is still the gold standard for assessing anatomical information on
a cellular level. Tissue samples are cut into ultra thin slices, stained, and viewed
under a microscope. While traditional histology involves only a few slices to be
analyzed, there is an increasing need to reassemble consecutive slices into a 3-D
volume. Given such a volume, novel high-resolution in-vivo imaging techniques
(e.g. micro-CT, high-field MRI, or phase contrast X-ray CT) can be validated,
atlases can be created on a micron level, or 3-D micro-structures can be quan-
tified for analysis. However, the geometrically coherent creation of such a 3-D
histological volume is difficult to achieve, since the histological sectioning process
introduces artifacts and distortions like holes, foldings, and tears.

There are currently two major approaches to create 3-D histological volumes:
registration between consecutive sections [12,9,10,4,11] and registration of sec-
tions to external reference images coming from e.g. 3-D in-vivo imaging or 2-D
block-face images acquired during histological sectioning [2,6,5]. A comprehen-
sive overview of recent techniques is given by Cifor et al. [4]. When registering
solely consecutive sections, the reconstructed structures are homogeneous but
the aperture problem leads to drifts in the stack direction. These drifts cancel
out real changes between neighboring sections, in particular for curved anatom-
ical structures. This can be avoided by external reference images, but usually
those images feature a smaller resolution or contrast than their corresponding
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Fig. 1: Sample block-face image (a), its corresponding histology section (b), and
a histology section that was heavily disrupted during cutting (c).

histological sections. Furthermore, the structural homogeneity between consec-
utive sections can hardly be guaranteed when aligning histological to reference
images slice-by-slice.

To benefit from the advantages of both approaches, their sequential utiliza-
tion has been proposed [13,3]. This can result in more homogeneous histological
volumes of higher resolution, but comes at the cost of multiple sequential process-
ing steps and may require a large number of empirically determined parameters.
Moreover, the nature of sequential processing can easily annihilate improvements
of a previous step and again worsen the overall structural homogeneity or con-
tinuity.

Our approach tackles this problem by registering histological sections simul-
taneously to their corresponding reference images and to their neighboring sec-
tions. We explicitly avoid any segmentation step during the registration process
to keep propagated errors low. In order to efficiently solve the simultaneous align-
ment problem, we employ discrete optimization techniques for dense deformable
registration using Markov random fields (MRFs) [7]. In our MRF, unary poten-
tials account for the registration to reference images, and two distinct pairwise
potentials account for the registration to neighboring slices and for regularizing
transformations, respectively. This model allows us to jointly register all sections
to their respective reference while maintaining structural homogeneity. To the
best of our knowledge, this is the first time where histology re-stacking is per-
formed in a single process and solved efficiently by intensity-based registration
using discrete optimization.

2 Method

Given a set of histology images I = {I1, . . . , In} and their corresponding block-
face images J = {J1, . . . ,Jn} (cf. Fig. 1a, b) we seek a set of sufficiently smooth
transformations T = {T1, . . . , Tn}, which align each Ii to Ji and to its adjacent
neighbors Ii−1, Ii+1. This can be modeled by an energy minimization as

T∗ = arg min
T

ER(I,J ,T) + EC(I,T) + ES(T), (1)



where ER(I,J ,T) =
∑n
i=1ER(Ii ◦ Ti,Ji) computes the energy between histol-

ogy images and block-face images, EC(I,T) =
∑n−1
i=0 EC(Ii◦Ti, Ii+1◦Ti+1) com-

putes the energy between consecutive histology slices, and ES(T) =
∑n
i=1ES(Ti)

acts as an independent in-plane regularizer on each transformation Ti.
In the remainder of this section we will first explain the steps taken to pre-

align the given image stacks. Subsequently, we will focus on how to solve the
optimization problem in a discrete framework.

2.1 Rigid Pre-Alignment

To initialize and speed up our discrete optimization framework, we first rigidly
align all pairs of histological sections and their corresponding block-face images.
This can be fully automated by extracting and aligning the 2-D contours of
our sample for each image pair, followed by a rigid registration. As our tissue
sample is embedded in black paraffin as in [3] and hence clearly distinguishable
from its background in both the histological and block-face images, we can use
Otsu’s automatic thresholding method to obtain all 2-D contours. For each pair
of contours we compute their semi-major axes and centers based on moments
and align them to obtain an initial rotation and translation for rigid registration.
To be robust against the variability of intensities and visible structures between
block-face and histological images, our rigid registration uses normalized mutual
information.

2.2 MRF Formulation of the Deformable Stack Registration

We will now explain our MRF model for optimizing Eq. (1). In order to build an
MRF model we first parameterize the transformations T. We use a set of uniform
free-form deformation (FFD) grids, i.e. the displacement field representing each
Ti is parameterized using 2-D FFDs based on cubic B-splines. Please note that we
choose a stack of 2D FFD grids to model the independent transformations that
happen while cutting each slice individually. The MRF is then constructed by
assigning a node to each control point pi of an FFD grid Gi. We create two types
of links between nodes: (a) between neighboring in-plane control points, which
are located in the same FFD grid Gi, and (b) between neighbors in consecutive
FFD grids Gi,Gi+1, see Fig. 2.

We define a labeling l as the assignment of discrete values to nodes. We
associate each label assignment lp to a corresponding displacement dlp of control
point p. For a given labeling l we can then cast ER as a sum of unary terms,
and EC ,ES as sums of pairwise terms, respectively, leading to an overall MRF
energy E(l):

E(l) =

n∑
i=1

∑
p∈Gi

ΘiR(lp)+γ

n−1∑
i=1

∑
p∈Gi,

q∈Gi+1

Θi,i+1
C (lp, lq)+λ

n∑
i=1

∑
p∈Gi

∑
r∈N (p)

ΘiS(lp, lr),

(2)
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Fig. 2: MRF for two section images

where γ and λ are weighting factors to relate the three terms and N (p) denotes
the set of in-plane neighbors of control point p.

We can now compute costs for each term:

ΘiR(lp) =

∫
Ωi

η(x,p)D1(Ii(x + dlp)),Ji(x))dx (3)

Θi,i+1
C (lp, lq) =

∫
Ωi

η(x,p)η(x,q)D2(Ii(x + dlp), Ii+1(x + dlq))dx (4)

ΘiS(lp, lr) =

∫
Ωi

R(dlp ,dlr)dx, (5)

where D1(., .), D2(., .) compute intensity-based dissimilarity measures and R(., .)
computes a regularizing penalty to achieve in-plane smoothness of transforma-
tions. η(x,p) is a weighting factor, which controls the influence of control point
p to pixel x.

Given the discrete energy formulation E, we can perform the simultaneous
deformable registration using two specific dissimilarity measures D1, D2, a regu-
larizer R, and a discrete optimization algorithm. In our particular application, we
use normalized mutual information for D1 and normalized cross correlation for
D2 assuming only linear intensity changes between consecutive slices. We choose
to penalize the squared difference between neighboring displacement vectors, i.e.
R(dlp ,dlr) = ||dlp − dlr ||2. For solving the discrete labeling problem (involving
unary and pairwise terms only) we use the iterative quadratic pseudo-boolean
optimization (QPBO) algorithm [8].



3 Results

We evaluated our method on synthetic data as well as histological sections of a rat
kidney. To demonstrate the effect of our data term, we compare our method to a
sole histology-to-block-face registration utilizing normalized mutual information,
a registration only using consecutive histological sections utilizing normalized
cross correlation, and a sequential, but not simultaneous combination of the
two.

During deformable registration, we set most required parameters to the de-
fault values proposed in [7], i.e. the maximum allowed displacement of each level
of the multi-scale approach is bound to the grid resolution, the sampling rate
from the zero-displacement to the maximum displacement is 5, sparse sampling
is used, and 5 optimization cycles are performed on each pyramid level. We
however use two image and control point resolution levels. Our label set scaling
factor is set to 2/3. We use 12 bins for the histograms needed for the computa-
tion of mutual information. Our weighting factors γ and λ are set to 0.2 and 2,
respectively. These factors are determined experimentally and altering them did
not vastly change the reconstruction results.

3.1 Synthetic Data

Our synthetic ground truth data resembles an ellipsoidal tissue sample embedded
with skew tubular structures of varying diameter. To simulate the histological
cutting process, we arbitrarily tear some of the sections and apply random FFDs
to each section.

For realistic tearing we model each tear by its center, direction (pointing
towards the closest point on the contour of the sectioned sample), and its apex
angle. A tear symmetrically opens the sample within the apex angle and de-
scribes an elliptic sector whose pixels are all nullified. It also linearly affects its
neighboring pixels within a specified influence angle, the further away from the
direction vector, the less influence a pixel gets. The corresponding deformation
field is stored as backward warping and has its maxima along the two vectors
defining the elliptic sector. Deformations are linearly decreasing towards the
direction vector as well as towards the vectors defined by the influence angle.
Figure 3a shows a teared and deformed section.

We model staining and inherent intensity variabilities between block-face and
histological images by inverting all original voxel intensities. We also add Gaus-
sian noise to the ground-truth images (≡block-face images) and to the deformed
inverted images (≡histology sections) to imitate the image acquisition process.
Eventually we store the 2-D ground truth deformation fields for all pairs of
deformed and ground truth images and run our method.

In order to quantitatively evaluate our method, we apply the performance
measures commonly used for optical flow evaluation by the vision community
[1]. In detail, we compute the absolute endpoint error (EE) and the relative
angular error (AE) between the ground truth and resulting deformation fields as
well as the interpolation error (IE) and normalized IE (NE) between the ground
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Fig. 3: Synthetic experimental data showing one section (top) and a cut through
the stack (bottom) of the ground truth data (a, b) and our registration results
in terms of the deformed image (c) and its corresponding endpoint error (d).

truth and deformed images. Table 1 shows the measured errors for all compared
methods, where relative improvements compared to the initial situation (where
sections are assumed to be rigidly aligned) are included. Fig. 3d shows the EE
of our simultaneous approach.

It can be seen that our proposed method achieves the largest relative im-
provement of each error measure. The registration only comprising consecutive
sections performs worst - this is due to a drift of the stack images, which in-
creases errors in the deformation fields (AE, EE) and hence differences between
the ground truth reference and deformed images (IE, NE). Moreover, it should
be noted that a sequential application of histology-to-block-face and consecu-
tive registration can decrease the quality of the alignment: the results are worse
than a registration based on block-face images only, which is again related to
the global drift mentioned above.

3.2 Rat Kidney

The rat kidney sample was cut into 9 µm thin sections (see Fig. 1b for a sample
image). Before each cut we acquired a block-face image (cf. Fig. 1a) using an
Olympus E-620 SLR camera with a 50 mm 1:2 macro objective. About 5% of
our sections were disrupted during cutting, which is usually unavoidable in the
histological sectioning process (cf. Fig. 1c for an example). After staining all
sections with hematoxylin and eosin, we digitized them using a MIRAX MIDI
whole slide scanner by Carl Zeiss. Using a grid spacing of 1 mm, we exemplarily
run our registration algorithm on a stack of 580 sections (including the disrupted
sections) of 1008 x 756 pixels and a pixel spacing of 33.38 µm, which took about
2.5 hours to complete on a workstation with 24 GB memory and 8 cores.

Figure 4 shows a cut in the middle of the volume orthogonal to slicing direc-
tion. Out of all techniques, ours produces the most similar structures compared
to the uncut situation. In the close-ups, it can be observed that our method
(Fig. 4h) performs satisfactory even in the presence of disrupted slices, while
the consecutive (Fig. 4f) and sequential (Fig. 4g) methods fail and histology-to-
block-face registration (Fig. 4e) produces large jitter.



Table 1: Experiments on synthetic data. The values in brackets are the
relative improvements compared to the initial alignment.

error measure

method AE EE IE NE

initial alignment 50.84 1.57 26.06 13.28

histology-to-block-face
registration

36.26
(+28.68%)

1.22
(+22.29%)

17.70
(+32.08%)

9.13
(+31.25%)

consecutive registration
57.41

(-12.92%)
1.91

(-21.66%)
25.76

(+1.15%)
12.35

(+7.00%)

sequential approach
36.56

(+28.09%)
1.23

(+21.66%)
24.97

(+4.18%)
11.72

(+11.75%)

simultaneous approach
34.30

(+32.53%)
1.17

(+25.48%)
16.69

(+35.96%)
8.66

(+34.79%)

(a) block-face (bf) (b) rigid pre-alignment (c) simultaneous

(d) block-face (e) histo-to-bf (f) consecutive (g) sequential (h) simultaneous

Fig. 4: First row: sagittal cuts through the kidney. The first image is generated
from block-face images, middle and right show histology images before and after
simultaneous registration. Second row: exemplary close-up of a vessel structure.

4 Conclusion

In this paper we develop a method for the fully automatic reconstruction of 3-D
histology stacks. Our approach guarantees geometrical coherence by combining
the registration of sections to block-face images with a registration between
neighboring slices. This allows us to undo deformations induced by cutting while
aligning anatomical structures that are not apparent in the block-face images.
Experimental results show that our simultaneous registration algorithm is not
only accurate, but also robust against artifacts produced during the cutting
process. Moreover, its sensitivity to misalignment due to grossly corrupted slices



is almost negligible. Motivated by our excellent results, we intend to extend
our current implementation with adequate streaming techniques to be able to
increase the resolution of input and output data in the future.
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