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To enable image guided neurosurgery, the alignment of pre-interventional magnetic resonance imaging
(MRI) and intra-operative ultrasound (US) is commonly required. We present two automatic image reg-
istration algorithms using the similarity measure Linear Correlation of Linear Combination (LC?) to align
either freehand US slices or US volumes with MRI images. Both approaches allow an automatic and
robust registration, while the three dimensional method yields a significantly improved percentage of
optimally aligned registrations for randomly chosen clinically relevant initializations. This study presents
a detailed description of the methodology and an extensive evaluation showing an accuracy of 2.51 mm,
precision of 0.85 mm and capture range of 15 mm (>95% convergence) using 14 clinical neurosurgical

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Medical image registration is the process of spatially aligning
images in a common coordinate space and aligning related features
which exist in all images. It has been a widely investigated area in
the past few decades, however remains challenging in particular
for multi-modal registration. Often, different modalities comple-
ment each other well, which is relevant to a vast range of clinical
applications for improving diagnosis, treatment planning, inter-
ventions, procedure follow-up, and screening. In a neurosurgical
scenario which mainly motivates this work, MRI provides a good
visualization of the anatomy and tumors, while US is inexpensive
and allows for intra-operative use to detect and correct for brain
shift after opening the skull. However, registering US and MRI
images is a complex and difficult process, largely because repre-
sented information originates from very different physical proper-
ties. MRI intensities correlate with the relaxation times of the 'H
nuclei, while the US intensity values represent the changes in
acoustic impedance, overlaid by a significant speckle noise and
various direction-dependent artifacts.

In this article, we present a new powerful set of methods based
on the previously proposed LC? similarity measure (Wein et al.,
2008), which allows for globally convergent, automatic registration
of MRI and US data with clinically acceptable computation times.
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2. Related work

During MRI and US registration a transformation is searched for
which the alignment of the images is optimal. This requires a mea-
sure to evaluate the current alignment of the images, which is
referred to as cost functions or similarity measure. Ideally, this func-
tion exhibits one distinctive extremum when the images are
aligned optimally, and a nearly monotonous shape to provide
optimal support in finding this extremum. In this section we will
discuss several similarity measures which have been utilized for
MR and US registration.

The MRI and US registration approaches using similarity
measures based on sum of squared distances, Normalized Cross-
Correlation (NCC), Mutual Information (MI) and normalized
Mutual Information (nMI) tend to fail (Huang et al., 2005). This is
caused by the very different nature of the intensity values and by
structures that are not visible in one or the other imaging modality.
For instance, details in MRI may lay in US shadow regions or cer-
tain materials can not be visualized by MRI (e.g. calcifications,
air). Therefore, we focus on similarity measures specific to the
application during MRI and US registration, which are not
organ-specific and do not introduce a significant effort due to
pre-processing, such as for liver vasculature presented by Penney
et al. (2004).

Higher-dimensional Mutual Information («-MI) is theoretically
suited to assess US-MRI alignment based on both intensity and
gradient information (in fact, an arbitrary number of features
may be used). However, current approaches are neither practical
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in terms of implementation effort nor computation time (Rivaz and
Collins, 2012; Heinrich et al., 2013).

De Nigris et al. (2012) presented an interesting approach utiliz-
ing the alignment of high confidence gradient orientations. Ana-
tomical boundaries characterized by the gradient orientations
from the MRI and US images are used, while small regions with a
high confidence for identifying anatomical boundaries were only
selected from one image. However, the lack of the use of intensity
values suggests that this method requires either nearly optimal
data or a close initialization. Also the appearance of dominant gra-
dients in one but not the other image, such as the skull in MRI but
not in US, may lead to a poor alignment.

A different powerful method is the modality independent
neighborhood descriptor (MIND) (Heinrich et al., 2012) and its
extension self-similarity context (SSC) (Heinrich et al., 2013;
Cifor et al.,, 2013), which utilize the differences of pre-defined
neighborhood descriptors. They are based on a self similarity mea-
sure initially presented by Buades et al. (2005), and do not rely on
the assumption of a global intensity relation. However, modality
specific artifacts can not be considered and the computational
effort for pre-processing is high due to the generation of voxel-
wise neighborhood descriptors. Also, such self-similarity
approaches tend to strongly abstract the image data, which might
impact its accuracy as opposed to methods using the original
image information.

Instead of comparing images from different modalities, pseudo-
US images may be generated using segmented structures from MRI
(Comeau et al., 2000; Coupé et al, 2012; King et al., 2010;
Kuklisova-Murgasova et al., 2012). In light of the modality-specific
considerations, the most promising general strategy for robust
US-MRI registration, without relying on application-specific pre-
processing or segmentation, is to compare US to both the MRI
intensity and its gradient, as pioneered by Roche et al. (2001),
where a global polynomial intensity relationship is fitted during
registration. The alternating optimization of the rigid pose and
the polynomial coefficients, as well as the fact that it is a global
mapping, limit the convergence range though (the requirement
for a local intensity mapping is explained in detail in Wein et al.
(2008)). Powerful tools for image registration are similarity mea-
sures which are invariant to local changes, such as local normalized
cross-correlation (invariant wrt. local brightness and contrast).
Wein et al. (2008) introduced the similarity measure Linear Corre-
lation of Linear Combination (LC?), which exhibits local invariance
to how much two channels of information contribute to an ultra-
sound image. The entire method has been specially designed for
US-CT registration, where a strong correlation between X-ray
attenuation coefficients and acoustic impedance is known, which
allows a simulation of ultrasound effects from CT. These incorpo-
rate estimates of the acoustic attenuation, multiple reflections,
and shadowing, which can not directly be estimated from MRI.

In this work, we adapt the LC? formulation to the case of MRI-
US registration in neurosurgery, and evaluate it on a publicly avail-
able database of 14 patients. We had presented initial results of
this method in Wein et al. (2013). Here, we provide a more thor-
ough description and evaluation, and also add two novel alterna-
tive implementations of the LC? similarity, namely a 2D GPU
version and a novel natively three-dimensional approach.

3. Method
3.1. Similarity measure
The similarity measure Linear Correlation of Linear Combina-

tion (LC?) is used to search for a transformation T which aligns
two images I and J. Due to the different nature of the images, a

relationship function fis required to allow a mapping of the inten-
sity values. As a first step towards LC? a general cost function is
defined, which applies the relationship function f to one of the
images:

min " (I(%) — fU(T®))))*, 1

T%(()f(](()))), (1)
where X is a pixel or voxel position in the image domain @. If f is the
identity function it can be seen that (1) represents sum of squared
differences (SSD). In case of LC? the relationship function f is
defined to be a linear combination such as f(J@)) =
> i1 nCigiU(#)), where c; are coefficients, and y an arbitrary position
in image J. The functions g; describe an arbitrary pre-processing of
the transformed image J, for instance the computation of gradients
or simulation of pseudo-ultrasound images. The choice of relation-
ship function and pre-processing strongly depends on the nature of
the underlying images. For mono-modal image registration, one
could assume that a simple linear function, such as
fU)) = () + B, would be sufficient, which basically represents
a windowing function.

In case of a multi-modal image registration the relationship is
more complex. As shown by Wein et al. (2008), the relationship
between X-ray computed tomography (CT) and ultrasound images
can be motivated from a physics standpoint, which results in f
being a linear combination of ultrasound reflection and ultrasound
echogeneity simulated from CT. However, in case of MRI and US
registration such a simulation can not be obtained as the physical
properties that are responsible for the intensity values have little in
common. Therefore, the relationship function f is based on plausi-
ble observations. We assume that the US intensity value u; for
pixel/voxel i is either correlated with the MRI intensity value
p;i=J(T(x;)) or with the MRI image gradient magnitude
g =| Vp;|. The resulting relationship function is therefore
fU®)) = ap; + pg; + 7. This caters to the fact that ultrasound inten-
sity values on one hand may depict different soft tissue properties
(due to the varying tissue inhomogeneities and echogeneity), and
on the other hand represent tissue interfaces or gradients, as illus-
trated in Fig. 1. Of course LC? is not limited to linear combinations
of only two components, but for MRI/US registration we currently
do not see the need for additional components.

The coefficients ¢ = {a, 8,7} of the linear combination in the
relationship function are computed during every similarity mea-
sure evaluation, as shown by Wein et al. (2007, 2008). Under the
assumption that the relationship function f(J(TX)) shall be an opti-
mal fit to the image I(X), its coefficients can be implicitly estimated
based on an ordinary least squares formulation:

¢=(M™M) 'M'U,
pr & 1 Uy
whereM=| : = |, U=]| : [,
Pm 8m 1 Un
where m is the number of pixels/voxels in the domain, for instance
m=|®|.

It is now possible to compute a residual between the US and
MRI images, but this proves to be problematic in regions in which
the images do not overlap or in which the ultrasound image does
not contain any structural information (e.g. shadow regions).
Therefore, the cost function (1) is modified to penalize such regions
by introducing the variance of the ultrasound image, as done by

Roche et al. (1998, 2000, 2001), and is formulated as a similarity
measure:

Yo U® —fUTR))’
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(a) US image

(c) Gradient magnitudes of MRI slice (g;)

(b) Corresponding MRI slice (p;)

(d) Locally estimated coefficients ¢

Fig. 1. The intensity values of the US image need to be expressed by a locally varying relationship function. This is indicated by the red circle, which depicts a high
correspondence between US intensity values as MRI intensity values (a and b), and the yellow ellipse, which marks regions of high correspondance between the US image and
the MRI gradient magnitudes (a and c). The locally estimated coefficients (for neighborhood Q(X, s)) of the linear combination in the relationship function are visualized in (d).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

When plugging simple relationship functions in (3), it can be shown
that other cost functions, such as correlation ratio (#) or Normalized
Cross-Correlation (NCC), can be derived.

3.1.1. Locally normalized LC?

The similarity measure (3) implies an image-wide constant
relationship between US and MRI intensity values and MRI image
gradient magnitudes. This, however, is not true in most cases, as
visualized in Fig. 1. Therefore, we compute (3) for every pixel posi-
tion X € @ using a neighborhood Q(X,s) c @ of size s, and conse-
quently replace the domain on which the coefficients y are
estimated (Eq. 2) with Q(X,s). The size s of the neighborhood
around an image position X defines a patch of (2s + 1)* pixels or
a volume (2s + 1) voxels in 2D or 3D respectively. This results in
local similarity measures

Syeans 1) = FUTE))*

2 v —
LGLTXS) =1 = oG ) Var(5 | 7 € 2.5)) @)

where the weighted average is computed in order to obtain
the image similarity measure. The weights are the local
standard deviation of the image I in the neighborhood

(0 = VVar(y Ty € 2®9))-

3.2. Similarity measure computation

3.2.1. Two-dimensional LC?

This approach is computed on the original tracked freehand
ultrasound slices, for which a 3D transformation is given. The
extraction of the corresponding MRI intensity values and MRI gra-
dient magnitudes from the given 3D volume is efficiently per-
formed on the GPU using its hardware tri-linear interpolation
capability. The accumulation of all the neighborhood intensities
required for Eq. 4 is performed using a sliding-window approach

on the CPU, parallelized over rows and columns of the images on
all threads of the multi-core processor. The computation time is
therefore independent of the chosen LC? neighborhood size. While
this method has been initially used in Wein et al. (2013), we have
investigated an alternative full GPU implementation, where each
shader accumulates the neighborhood information independently.
The latter approach results in a computation dependency with
respect to the neighborhood size of O(s?), and therefore offers
superior performance for small neighborhood sizes.

3.2.2. Three dimensional LC?

In order to investigate advantages of slice versus volume-based
LC? computation, we have also implemented the similarity mea-
sure with three-dimensional neighborhood blocks on the GPU.
Here, the intensity accumulation is implemented in a separable
fashion for every dimension, such that the computation time scales
linearly O(s) with the neighborhood size s. Before the registration,
the 3D freehand ultrasound data is reconstructed into a volume
grid in a similar fashion as in Karamalis et al. (2009), using a quad-
rilateral interpolation for a good trade-off of performance and
image quality.

3.3. Optimization of rigid transformation

An analytic derivation of LC? is difficult due to the least-squares
fitting in (2) which is computed for every position in the US image.
Therefore we use Bound Optimization BY Quadratic Approximation
(BOBYQA) (Powell, 2009), which internally creates own derivative
approximations. This results in fewer evaluations than most other
search methods, and is therefore used throughout this paper. How-
ever, clinical requirements on capture range may ask for other
techniques. In particular, global optimization techniques may be
useful to perform a more excessive search within the specified
bounds.
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3.3.1. Deformable registration

After rigid registration, a free-from deformation (FFD) model
using cubic splines can be fitted, where the deformation is applied
on the MRI data J within the same GPU kernel which extracts MRI
intensity and gradient magnitude. For that purpose, we place a
configuration of 2 x 2 x 4 control points within the bounding box
of the registered ultrasound sweep. Then the same BOBYQA algo-
rithm is used to optimize the displacement vectors for all control
points.

4. Experiments
4.1. Clinical data and experimental setup

To evaluate our method and compare the results to other pub-
lications, we used a publicly available database containing Brain
Images with Tumors for Evaluation from Montreal Neurological
Institute (Mercier et al., 2012), with pre-operative T1-weighted
MRI and pre-reSection 3D freehand US from 14 patients. The pre-
resection ultrasound has been acquired before opening the dura,
and therefore only little deformation has occurred. Initial transfor-
mations and corresponding landmarks for each US-MRI pair are
included (Table 1, lines 1 and 2). Therefore, we can provide ground
truth evaluations, and denote the average Euclidean distance of the
landmarks as Fiducial Registration Error (FRE).

4.1.1. Two dimensional LC?

The MRI volumes were used as provided, while the higher-res-
olution US images were down-sampled such that their pixel sizes
is smaller than twice the size of an MRI voxel. This guarantees that
information provided by MRI voxels is never discarded when the
tri-linear interpolation is used. Furthermore, US slices were
skipped to avoid overlapping planes, resulting in an average dis-
tance between the slices of <1.5 mm or less due to slower scanning
in the areas of interest.

4.1.2. Three dimensional LC?

For the 3D experiments the freehand ultrasound data was first
reconstructed into a cartesian volume grid with an isometric reso-
lution of 0.3 mm, and afterwards further re-sampled as needed. We
found that down-sampling the US volumes by the factor of three
provides a good trade-off between fast computation times, a total

Table 1

1315

load of <2 GB memory on GPU, a high capture range and good accu-
racy. In addition, speckle noise is removed due to the smoothing
effect. The used US volumes yield an isometric resolution of
0.9 mm. The MRI volumes were used as provided.

4.1.3. System specifications

All registration attempts were performed utilizing the parallel
processing capabilities of the Graphics Processing Unit (GPU) of a
workstation with an Intel i7-3770 CPU with 8 threads and a Nvidia
GeForce GTX Titan GPU with 2688 cores and 6 GB memory.

4.2. Numerical analysis of LC? configuration

All convergence analyses were performed by carrying out 100
randomly initialized transformations (+10 mm/° in all 6 parame-
ters) for each choice of a parameter.

4.2.1. Convergence analysis in terms of US slice spacing

Consistently good results are obtained when performing a reg-
istration using the 2D approach with an slice spacing of <5 mm,
where slice spacing refers to the average euclidean distance
between the centers of tracked ultrasound slices. For deformable
registration, we chose <1.5 mm to make sure we are not missing
even smallest structures.

4.2.2. Convergence analysis in terms of neighborhood size

The sensitivity of the 2D method has been investigated using
both CPU and GPU implementation of the similarity measure. For
neighborhood sizes 2-24 the accuracy is similar, while the per-
centage of successful registration attempts peak around 8 and 9,
as depicted in Fig. 2(a) and (b). Furthermore, it can be seen that
the two implementations yield nearly the same results. Therefore,
we used neighborhood s = 9 (hence m = (2 -9 + 1) = 361 pixels)
as a fair trade-off between convergence and accuracy for all further
experiments. Reported results are computed using the CPU
implementation.

The 3D method requires an independent convergence analysis,
as the neighborhood size describes a volume rather than a 2D
patch. The accuracy is nearly constant for neighborhood sizes
2-7, which also exhibits the highest percentage of successful reg-
istrations (Fig. 2c). To balance computation time, which scales lin-
early with the neighborhood size, and the performance, a
neighborhood size s =3 (hence m = (2 -3+ 1)® = 343 voxels) is

Overview of clinical data (Mercier et al., 2012), previous published results (De Nigris et al., 2012; Rivaz and Collins, 2012), and results using our method for rigid and deformable
registration including computation times. The presented registration results using 2D and 3D LC? are based on 100 randomly initialized registration attempts for each patient and

method.
Patient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Mean

Dataset overview and related methods
1 # of Tags 37 35 40 32 31 37 19 23 21 25 25 21 23 23 -
2 Initial FRE (mm) 493 630 938 393 262 230 3.04 375 509 299 152 370 515 377 4.18+5.20
3 US spacing (mm) 024 042 023 020 025 017 024 018 018 022 016 0.18 021 019 022+0.20
4 FRE in (De Nigris et al., 2012) (mm) 489 179 273 168 212 181 251 263 27 195 156 264 347 294 2.53+0.87
5 FRE in (Rivaz and Collins, 2012) (mm) - 205 276 192 271 189 205 289 293 275 128 267 282 234 257+082
Registration results using 2D LC?
6 FRE (mm) 482 173 276 196 214 194 233 287 281 206 218 267 358 248 2.52+0.87
7 SD (mm) 0.01 0.01 0.01 0.1 002 001 005 030 002 0.00 0.03 015 005 004 0.05+0.08
8 Duration (sec) 5.9 8.3 111 57 7.1 8.2 182 86 6.0 234 173 258 8.1 7.0 115+6.8
9 Convergence (%) 54 66 44 60 75 38 51 19 54 76 82 94 53 44 57.9+19.6
10  FRE def. (mm) 495 164 243 191 226 22 252 364 265 209 176 245 371 276 2.64+09
11  Time def. (sec) 158 141 279 92 133 166 563 312 76 675 597 93 106 282 262 +204
Registration Results using 3D LC?
12 FRE (mm) 486 170 255 173 196 1.83 232 268 274 209 181 271 344 245 249+084
13 SD (mm) 001 0.00 0.00 0.01 001 001 002 0.03 001 001 002 003 0.02 001 001+0.01
14  Duration (sec) 261 291 289 130 215 208 287 268 149 258 223 264 124 279 232+0.59
15 Convergence (%) 96 85 88 89 90 80 81 76 80 91 100 94 86 92 87.7+ 6.8
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(a) 2D LC? on CPU (Patient 2)

Neighborhood Size
(b) 2D LC?on GPU (Patient 2)

Neighborhood Size
(c) 3D LC? (Patient 1)

Fig. 2. Relationship between convergence (blue), accuracy (green) and the neighborhood size s for the three different LC?> methods. Differences between the two 2D
implementations (a and b) are caused by different numerical behavior in the implementation (e.g. on the CPU everything is done with double precision, on the GPU only the
final matrix inversion), not by differences in the methodology. The convergence analysis indicates that a neighborhood size of s = 9 (m = 361 pixels) yields a fair trade-off
between convergence, accuracy and computation time. The typical behavior of the 3D approach is shown in (c), indicating s = 3 (m = 343 voxels) being a good choice of the
neighborhood size. Note that patient 2 and 1 show the typical behavior of the 2D and 3D approaches respectively and are therefore plotted here. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

used for all further experiments. Overly large patches result in a
global mapping of MRI intensity and gradient, removing the main
advantage of LC? over other methods (robustness wrt. local
changes of intensity-gradient relationship).

4.2.3. Gradient magnitudes vs. directed gradients

Finally, we have investigated the effect of using the dot product
of the MRI gradient g with the US beam direction, instead of g
directly. This reduces the influence of vertical gradients, similar
to the US simulation presented by Wein et al. (2008). Interestingly,
this results in 10-25% more outliers (the cost function becomes
more non-linear due to the added directional dependance).

4.3. Registration results

The resulting errors for all 14 patient data sets are nearly the
same for registrations using gradient orientation alignment (De
Nigris et al., 2012), 2D LC?, or 3D LC?, as depicted in Table 1, lines
4, 6, 12 respectively. Rivaz and Collins (2012) report slightly higher
errors when applying a costly deformable registration which
requires several hours (line 5). The increased FRE coincides with
our findings when using the faster 2D LC? during deformable reg-
istrations (line 10). This indicates that performing deformable reg-
istration does not provide any significant benefit when applied to
mostly rigid data sets. However, we are convinced that the change
of landmark errors induced by deformable registration or the dif-
ference between the 2D and 3D approach of LC? lay within the
range of the fiducial localization error (FLE) of the data. Examples
of initially aligned and registered images are shown in Fig. 3.

4.4. Accuracy, precision and capture range

Some initial alignments yield significant errors (e.g. patients 2,
3, 9, 13), which are reduced by all algorithms listed in Table 1.
Therefore, an analysis of the capability of our algorithm to reach
the optimum under all conditions is necessary.

Trials with each 100 randomly initialized transformations
(¥10 mm/° in all 6 parameters) were performed for all 14 patients
using the 2D and 3D LC? approach, resulting in a total of 2800 reg-
istration attempts. Comparing the LC? similarity measure with the
final FRE shows in all cases that the best transformation corre-
sponds to the highest similarity and that the misalignments are
cleary separated yielding a significantly lower similarity. This dem-
onstrates that both LC? algorithms allow for global registration in a
realistic clinical setup. Fig. 4 shows the results, including the

percentages of the converged optimizations. The average errors
(accuracy) and standard deviation (SD; precision) are listed in
Table 1.

The capture range describes the range of initial FRE values for
which >95% of the registration approaches are successful. When
using the 2D approach, it can be observed that 95% of the experi-
ments converge within an initial FRE of 9 mm. This capture range
is significantly increased to 15 mm when using the 3D approach.
Both sets of experiments are based on the aforementioned ran-
domly initialized studies using BOBYQA. Fig. 5(a) and (b) depict
the capture range for selected patients, while (c) shows the total
percentage of outliers vs. initial FRE for both algorithms.

Since the gradient orientation alignment (GOA) method (De
Nigris et al., 2012) yields similar FRE values, we implemented it
to the best of our knowledge and re-ran the aforementioned ran-
domized trials with it. We obtain >90% outliers and further inves-
tigation into the cost function properties revealed that only a
minor local optimum is present. A possible explanation is, that
without further heuristics the GOA method would line up strong
gradients from e.g. dura mater or skull; besides, using only gradi-
ents larger than a threshold limits the image content considered.
While we believe these to be general issues, it has to be acknowl-
edged that better results would probably be obtained by the origi-
nal authors, e.g. by changing implementation details such as
resolution, smoothing and interpolation. Precision and capture
range were not reported in their work though, as unfortunately
too often the case.

The randomized experiments with the 2D and 3D LC? versions
have been compared using the Mann-Whitney U-test. Generally,
a p-value of < 0.01 is considered very significant (Nuzzo, 2014).
In fact, the 3D approach shows such a very significant increased
convergence in all but one patients (patient 12 unchanged at
94%). With the exception for patient 12, all computed p-values
are below 6 x 1073, indicating that the chance of the improvement
being coincidentally observed is less than 0.6%.

4.5. Computation time

To compare the performance of the 2D CPU, 2D GPU and 3D
GPU approaches, we have measured the average computation
times. All randomly initialized registrations have been run on the
same hardware. The reported times do not include the file loading,
ultrasound volume reconstruction and down-sampling.

The first, original 2D implementation uses the GPU merely to
perform the MRI slice extraction, while the similarity is computed
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(a) Initial Alignment (b) Rigid Registration (c) Deformable Registration

Fig. 3. Superimposed US on axial MRI slice to show the registration result of patient 6. The FRE improves by 0.11 mm from rigid to deformable registration.
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Fig. 4. Registration experiments with 100 randomly initialized transformations for all patient data sets. The converged results (2D: magenta, 3D: blue) are clearly separated
from the failed registration attempts (outliers: 2D: green, 3D: red). Convergence is defined based on typical patient-specific FRE values as reported in Table 1. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. The capture range describes the relation between outliers and initial FRE. For selected patients this relation is plotted in (a) and (b) for the 2D and 3D LC? approach
respectively. The total capture range of the algorithm for all patients is plotted in (c). It can be seen that the capture range (less than 5% outliers) for 2D LC? is 9 mm, while it is
increased to 15 mm for the 3D approach.

using a sliding-window approach on the CPU. The average run time which reduces the average run time by only 5%, with quadratic
is 11.6 sec. In the second 2D implementation we have performed dependency on the LC? neighborhood size. Here, the similarity
the similarity evaluation using a GPU based filtering strategy, measure computation does not utilize the full capabilities of the



1318 B. Fuerst et al. / Medical Image Analysis 18 (2014) 1312-1319

GPU yet, since only a parallelization within the (small) ultrasound
frames is used.

Finally, we measured the average registration time for the GPU
based 3D approach. Due to the implementation as separable filter,
the performance scales linearly with the neighborhood size. Using
a neighborhood size s = 3 an average run time of 2.32 + 0.59 sec
can be observed.

5. Discussion and conclusion
5.1. Choice of method

The LC? computation on the original freehand ultrasound 2D
images yields a number of advantages. First, an offline volume
reconstruction step is avoided, which might reduce the quality of
the original ultrasound image information. Considering the limited
voxel resolution of the MRI data this, however, does not pose a
problem since we need to further down-sample the ultrasound
data anyway. More importantly, a slice-based approach may
immediately start looking for the correct alignment in real-time
once the first frames are obtained. Besides, an optimization of
the calibration transformation or compensation of tracking errors
may be computed on-the-fly, which would otherwise require
re-computation of the 3D ultrasound volume.

The 3D volume-based approach yields a superior capture range,
which can be explained by the fact that the LC? neighborhood
stretches into the third dimension, therefore allowing even more
consistent local matching of the relationship function f. This comes
with the trade-off of higher computing resource requirements.
While our implementation as fully parallelized separable filters
in every dimension on the GPU ensures efficient computation, it
requires a significant memory footprint (<2 GB for US voxel size
0.9 mm, 2-3 GB for US voxel size 0.6 mm).

Finally, a comparison of the same 2D approach on CPU and GPU
depends very much on the actual implementation. In our case, the
CPU method is completely independent of the neighborhood size s,
whereas the GPU version has a squared dependence. The latter has
room for improvement in terms of both a separable computation
and parallelization over the US frames. It is also important to note
that numerically equally stable behavior on the GPU is only
obtained when the actual computation of Eq. (2) is performed with
double floating-point precision. This in turn mandates a certain
choice (and cost) of GPU hardware.

5.2. Performance

As opposed to other proposed methods such as De Nigris et al.
(2012); Heinrich et al. (2013), the LC? method uses the full amount
of available image information from both modalities, by locally
matching ultrasound intensities to both MRI intensity and gradient
magnitude. A direct comparison is unfortunately not possible,
since other studies lack an evaluation of precision and capture
range (which is crucial for developing an automatic registration
in a given clinical context). The accuracy in terms of the point-
based registration error is consistent with other studies, and is
always <1 mm higher than the best possible rigid fit of the point
correspondences themselves. Deformable registration does neither
significantly increase or decrease the errors, however the visual
alignment generally improves (see Fig. 3).

The computation time of the 2D and 3D GPU implementations
allow for 100-500 cost function evaluations per second. Hence glo-
bal registration within a clinically realistic bounding box of the
pose parameters is possible. To our knowledge, this has not been
shown in related work to date.

The LC? similarity measure has a single parameter, namely the
neighborhood size s. We have shown that both the 2D and 3D
variants work well within a fairly large range of s. However, as
common in image registration scenarios, further tunable parame-
ters arise in the pre-processing (e.g. down-sampling, volume
reconstruction) of the image data, as well as the choice and config-
uration of a non-linear optimization algorithm.

5.3. Future work

While our approach adequately solves the problem of image-
based MRI-US registration for correcting brain shift, some further
work is required to address resection follow-up. Missing anatomi-
cal correspondence in the area of a tumor resection site might
result in unstable registration results of our straight-forward
free-form deformation model, when looking at the registration of
pre- and post-resection ultrasound data. In order to provide a clin-
ically meaningful solution in this context, however, a detailed dis-
cussion with physicians will be required in the first place, to
establish how such data before and after the procedure shall be
transformed and compared.

In other clinical application areas, such as oncological diagnosis
in the abdomen, it would be desirable to look into extensions of
our deformation model to incorporate physical constraints of the
complex deformations due to respiratory motion and patient posi-
tioning. The same holds true for potential applications in the case
of prostate MRI-US fusion (Weiss et al., 2010). The incorporation of
bio-mechanical deformation models might be particularly suited
to address such difficult non-linear registration problems.
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