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Abstract

This appendix introduces the proofs of Property 1 and
2 related to the discretization scheme; and a new compact
kernel that we use throughout our method.

Notation. Matrix are in upper case bold (e.g. A) and vec-
tor in lower case bold (e.g. a). We consider two cameras: a
source S and a target T . � (a,b) ⊂ R2 is the quad formed
by the two points a ∈ R2 and b ∈ R2. o�(a,b) ∈ R2 is
the center of the quad � (a,b) and c�(a,b) ∈ R2×4 its four
corners. E is the set of Essential Matrices [2]; it is a variety
of dimension N (N ≤ 5) in R9 (the set of 3× 3 matrices).

A. Overlapping properties
As a reminder we redefine the relative rotation R (u) and

translation t (u)

R (u) =

 cos (π − θ − α) 0 sin (π − θ − α)
0 1 0

− sin (π − θ − α) 0 cos (π − θ − α)

 ,
t (u) =

 sin (θ)
0

cos (θ)

 .
(1)

Property 1 Overlapping Property – See supplementary
material for Proof

ψ (u) = 0 ⇔ π + γS + γT < θ+ α < 3π − γS − γT

with γS (resp. γT ) half the field of view of the source cam-
era (resp. target). ψ (u) = 0 means no overlap.
Proof of Property 1 – Overlapping Property
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In order to have no overlap two criteria have to be matched
as the same time rS < lT and rT < lS (see figure 1 for
definition of the variables). These condition lead to theses
conditions:

rS < lT
γS < θ + α− π − γT

π + γS + γT < θ + α
rT < lS

θ + α− π − γT < 2π − γS
θ + α < 3π − γS − γT

π + γS + γT < θ + α < 3π − γS − γT .

Property 2 Transitivity of Overlapping Property – See
supplementary material for Proof

Let � (a,b) ⊂ �0

(
∀u ∈ c�(a,b), ψ (u) = 0

)
⇒ (∀u ∈ � (a,b) , ψ (u) = 0)

Proof of Property 2 Transitivity of Overlapping
Criteria

c1 = [θ1, α1]>, with ψ (c1) = 0,
c2 = [θ2, α2]>, with ψ (c2) = 0,
a = [θa, αa]> ∈ �c1,c2 ,

⇒ θ1 < θa < θ2, α1 < αa < α2

⇒ θ1 + α1 < θa + αa < θ2 + α2

⇒ π + γS + γT < θa + αa < 3π − γS − γT
⇒ ψ (ca) = 0.

B. Compact Kernel
We experimented with different kernels that we modify

to obtain a compact support (Cootes [1] , wendland [3]).
But they performed poorly with our robust cost as can be
seen in figure 4 where we optimized a pose using our ro-
bust cost and matching points. They seldomly converge to
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Figure 1. (left) Exemplary in-plane motion (middle) Top view of the 2-parameter camera setup we consider with u = [θ, α]>. The
translation only depends on the angle θ while the rotation uses both angles θ and α. (right) A quad-tree subdivision to 6 layers of the
essential matrix space E for the camera setup we consider. The empty diagonal comes from the non-overlapping criterion.
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Figure 2. Behavior of our kernel function with varying τ .
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Figure 3. Our kernel with τ = 10 compared to Cootes’ and Wend-
land’s.

the ’true’ solution even if they are, they lack precision. The
missing precision would have a huge impact on the algo-
rithm. Therefore we introduce the following kernel:

ρσ (r) =

{
e
−2σr

(σ−r)2 if |r| < σ
0 otherwise

(2)
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Figure 4. Convergence rate of the robust cost function with differ-
ent type of kernel.

The behavior of our kernel can be pictured in figure 2 and
3. As it can be seen our kernel give precise results therefore
we will be able easily to decide weather we converged in to
the global minimum based on the value at convergence.

References
[1] T. Cootes, C. Twining, and C. Taylor. Diffeomorphic Statisti-

cal Shape Models. In BMVC, 2004.
[2] T. Huang and O. Faugeras. Some properties of the E matrix in

Two-View Motion Estimation. IEEE PAMI, 1989.
[3] H. Wendland. Piecewise Polynomial, Positive Definite and

Compactly Supported Radial Functions of Minimal Degree.
Advances in Computational Mathematics, 1995.


