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Abstract. In this paper we propose a novel non-rigid volume registration based
on discrete labeling and linear programming. The proposed framework reformu-
lates registration as a minimal path extraction in a weighted graph. The space of
solutions is represented using a set of a labels which are assigned to predefined
displacements. The graph topology corresponds to a superimposed regular grid
onto the volume. Links between neighborhood control points introduce smooth-
ness, while links between the graph nodes and the labels (end-nodes) measure
the cost induced to the objective function through the selection of a particular de-
formation for a given control point once projected to the entire volume domain.
Higher order polynomials are used to express the volume deformation from the
ones of the control points. Efficient linear programming that can guarantee the
optimal solution up to (a user-defined) bound is considered to recover the opti-
mal registration parameters. Therefore, the method is gradient free, can encode
various similarity metrics (simple changes on the graph construction), can guar-
antee a globally sub-optimal solution and is computational tractable. Experimen-
tal validation using simulated data with known deformation, as well as manually
segmented data demonstrate the extreme potentials of our approach.

Key words: Discrete Optimization, Deformable Registration, Linear Program-
ming

1 Introduction

Deformable registration is one of the most challenging problems in medical imaging.
The problem consists of recovering a local transformation that aligns two signals that
have a non-linear relationship often unknown. Several methods exist in the literature
where specific metrics are designed to account for this non-linearity and optimize the
transformation that brings together these two signals. This optimization is often sub-
optimal due the non convexity of the designed cost functions. The aim of our approach
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is to overcome both limitations present in all registration methods. Dependency on the
similarity metric selection, as well as to the initial conditions.

Local image alignment is often performed according to geometric or photometric
criteria. Landmark-based methods [1] are a classic example of geometric-driven regis-
tration. In such a setting, a number of anatomical key points [2]/structures (segmented
values) are identified both in the source and the target image and a transformation that
aims to minimize the Euclidean distance between these structures is to be recovered.
The main limitation of these methods related to the selection and extraction of land-
marks, while their main strength is the simplicity of the optimization process.

Iconic registration methods seek for “visual” correspondences between the source
and the target image. Such a problem is tractable when one seeks registration for im-
ages from the same modality due to an explicit photometric correspondence of the im-
age intensities. Sum of squared differences [3], sum of absolute differences [3], cross
correlation [3] or distances on subspaces that involve both appearance and geometry
(intensities, curvature, higher order image moments) [4] have been considered. On the
other hand it becomes more challenging when seeking transformations between differ-
ent modalities where a non-linear transformation often relates them. Non-linear metrics
have often been used [5] like normalized mutual information [6], kulback-leiber diver-
gence [7] and correlation ratio [8] are some of the metrics used to define similarity
between different modalities.

In this paper we propose a novel technique that can either be used for inter or in-
tra modal image registration. Towards satisfying smoothness of the deformation field
and reducing the dimensionality of the problem we represent deformation through Free
Form Deformations. Our method reformulates registration as an MRF optimization
where a set of labels is associated with a set of deformations, and one seeks to at-
tribute a label to each control point such that once the corresponding deformation has
been applied, the similarity metric between the source and the target is maximal for
all voxels. The optimization procedure is independent from the graph construction, and
therefore any similarity metric can be used.

The reminder of this paper is organized as follows; In section 2 we introduce the
proposed registration framework, while in section 3 we discuss the optimization as-
pects. Implementation and experimental validation are part of section 4. The last section
concludes our paper.

2 Deformable Registration in a Discrete Setting

In order to introduce the concept of our approach, we consider (without loss of general-
ity) the 2D image domain. Let us consider a source f : [1,N]× [1,M]→R n and a target
image g. In general, these images are related with a non linear transformation as well
as a non-linear relation between intensities, that is

g(x) = h◦ f (T (x)) (1)

where T is the transformation and h is a non-linear operator explaining the changes of
appearance between them. The most common way to formulate the registration prob-
lem, is through the definition of a distance between the source and the target image that
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is to be minimized in the entire domain Ω, or

E(T ) =
∫∫

Ω

ρ(g(x),h◦ f (T (x))dx (2)

where ρ is a similarity metric used to determine meaningful correspondence. Since in
most of the cases the non-linear transformation relating the two images is not known, the
selection of similarity metric ρ explicitly or implicitly accounts for this non-linearity,
or

E(T ) =
∫∫

Ω

ρh(g(x), f (T (x))dx (3)

2.1 Continuous Domain

Since we are interested in local registration, let us introduce a deformation grid G :
[1,K]× [1,L] (usually K � M and L � N) super-imposed to the image (no particular
assumption is made on the grid resolution). The central idea of our approach is to de-
form the grid (with a 2D displacement vector dp for each control point) such that the
underlying image structures are perfectly aligned. Without loss of generality one can
assume that the transformation of an image pixel x can be expressed using a linear or
non-linear combination of the grid points, or

T (x) = x+D(x) with D(x) = ∑
p∈G

η(|x−p|)dp (4)

where η(·) is the weighting function measuring the contribution of the control point p to
the displacement field D . The position of point p is denoted as p. In such a theoretical
setting without loss of generality we consider Free Form Deformations (FFD) based
on cubic B-splines as a transformation model. FFD are successfully applied in non-
rigid image registration [9, 10]. Deformation of an object is achieved by manipulating
an underlying mesh of uniformly spaced control points. The displacement field for a
two-dimensional FFD based on cubic B-Splines is defined as

D(x) =
3

∑
l=0

3

∑
m=0

Bl(u)Bm(v)di+l, j+m (5)

where i = bx/Kc−1, j = by/Lc−1, u = x/K−bx/Kc, and v = y/L−by/Lc and where
Bl represents the lth basis function of the B-Spline. The three-dimensional version is
defined straightforward.

By defining the registration problem based on such a deformation model we can
now rewrite the criterion earlier introduced,

Edata(T ) = ∑
p∈G

∫∫
Ω

η
−1(|x−p|) ·ρh(g(x), f (T (x)))dx. (6)

where η−1(·) is the inverse projection for the contribution to the objective of the image
pixel x according to the influence of the control point p.

Such a term will guarantee photometric correspondence between the two images.
Hence, this term is also called the data term. The transformation due to the interpolation
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inherits some implicit smoothness properties. However, in order to avoid folding of the
deformation grid, one can consider a smoothness term on the grid domain, or

Esmooth(T ) = ∑
p∈G

φ(|∇G dp|) (7)

with φ being a smoothness penalty function for instance penalizing the first derivatives
of the grid deformation. The complete term associated with the registration problem is
then defined as the sum of the data and smoothness term, or

Etotal = Edata +Esmooth. (8)

The most common way to obtain the transformation parameters is through the use
of a gradient-descent method in an iterative approach. Thus given an initial guess, one
updates the estimate according to the following formula

[
T m = T m−1−δt Etotal

∂T

]
. Such

a process involves the derivative of the similarity metric with respect to the transforma-
tion parameters and therefore it is model and criterion dependent. Slight modifications
on the cost function could lead to a different derivative and require novel numerical
approximation methods.

2.2 Discrete Domain

Let us now consider a discrete set of labels L = {u1, ...,ui} corresponding to a quantized
version of the deformation space Θ = {d1, ...,di}. A label assignment up to a grid node
p is associated with displacing the node by the corresponding vector dup . The image
transformation associated with a certain discrete labeling u becomes

D(x) = ∑
p∈G

η(|x−p|)dup . (9)

One can reformulate the registration as a discrete optimization problem, that is assign
individual labels up to the grid nodes such that

Edata(u) = ∑
p∈G

∫∫
Ω

η
−1(|x−p|)ρh(g(x), f (T (x)))dx ≈ ∑

p∈G
Vp(up) (10)

where Vp(·) represents a local similarity metric. There is a main issue coming along
when using MRF-based optimization methods for our proposed setting. Here, the sin-
gleton potential functions Vp(·) are not independent, thus the defined data term can
only be approximated. Hence, we pre-compute the |L | × |G | data term look-up table
for a given image pair by simple shift operators. The entry for node p and labels up is
determined by

Vp(up) =
∫∫

Ω

η
−1(|x−p|)ρh(g(x), f (x+dup))dx. (11)

The computation of such functions is very fast and straightforward. Any similarity met-
ric can be simply plugged in this formulation without any changes or adaptations. Since
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the metrics are only considered on the image domain and no further analytical differen-
tiation is needed, our approach is extremely flexible. Due to the approximation of the
data term we allow to improve the estimation by successive optimizations resulting in a
series of cost functions, or

Et
data(u) = ∑

p∈G

∫∫
Ω

η
−1(|x−p|)ρh(g(x), f (T t−1(x)+dup))dx. (12)

We should note, that from the optimization point of view we achieve (quasi) optimal
solutions for the discrete labeling in every cycle. However, we can achieve a higher
accuracy by successive cycles using the previous transformation T t−1.

The number of labels and their range play a significant role to the registration pro-
cess. It is clear that setting the number of labels to infinity will converge to the contin-
uous formulation which though it is intractable from computational perspective. How-
ever, the fact that we perform several cycles to improve the accuracy of the deformation
allows us to keep the set of labels quite small.

The next aspect to be addressed, is the definition of the smoothness term in the label
domain. One can express distances between the deformation vectors using difference
between labels if a ranking has been considered within the definition of the label set, or

Esmooth(u) = ∑
p,q∈E

Vpq(up,uq) (13)

where E represents the neighborhood system associated with the deformation grid G .
For the distance Vpq(·, ·) we consider a simple piecewise smoothness truncated term
based on the euclidean geometric distances between the deformations corresponding to
the assigned labels:

Vpq(up,uq) = λpq min(|dup −duq |,T ) (14)

with T being the maximum penalty and λpq being a (spacial varying) weighting to
control the influence of the prior term. Basically, this is a discrete approximation of
the smoothness term defined in equation 7 extended by the piecewise property. Such a
smoothness term together with the data term allows to convert the problem of image
registration into the form of a Markov Random Field (MRF) [11] in a discrete domain,
or

Etotal(u) = ∑
p∈G

Vp(up)+ ∑
p,q∈E

Vpq(up,uq). (15)

3 MRF optimization based on Linear Programming

For optimizing the resulting MRF, we seek to assign a label up ∈ L to each node p∈G ,
so that the MRF energy in (15) is minimized. To this end, a recently proposed method,
called Fast-PD, will be used [12]. This is an optimization technique, which builds upon
principles drawn from the duality theory of linear programming in order to efficiently
derive almost optimal solutions for a very wide class of NP-hard MRFs. When applied
to the image registration task, this technique thus offers a series of important advantages
compared to prior art (see section 3.2).
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Fig. 1: (a) By weak duality, the optimal cost cT x∗ will lie between the costs bT y and cT x of any pair (x,y) of integral-primal
and dual feasible solutions. Therefore, if bT y and cT x are close enough (e.g. their ratio r1 is ≤ f ), so are cT x∗ and cT x (e.g.
their ratio r0 is ≤ f as well), thus proving that x is an f -approximation to x∗. (b) According to the primal-dual schema,
dual and integral-primal feasible solutions make local improvements to each other, until the final costs bT yt , cT xt are close
enough (e.g. their ratio is ≤ f ). We can then apply the primal-dual principle (as in Fig. (a)) and thus conclude that xt is an
f -approximation to x∗.

For more details about the Fast-PD algorithm, the reader is referred to [12, 13].
Here, we will just provide a brief, high level description of the basic driving force
behind that algorithm. This driving force will consist of the primal-dual schema, which
is a well-known technique in the Linear Programming literature.

3.1 The primal-dual schema for MRF optimization

To understand how the primal-dual schema works in general, we will need to consider
the following pair of primal and dual Linear Programs (LPs):

PRIMAL: min cT x DUAL: max bT y
s.t. Ax = b,x ≥ 0 s.t. AT y ≤ c (16)

Here A represents a coefficient matrix, while b,c are coefficient vectors. Also, x, y
represent the vectors of primal and dual variables respectively. We seek an optimal
solution to the primal program, but with the extra constraint of x being integral. Due
to this integrality requirement, this problem is in general NP-hard and so we need to
settle with estimating approximate solutions. A primal-dual f -approximation algorithm
achieves that by use of the following principle (illustrated also in Fig. 1(a)):

Primal-Dual Principle 1 If x and y are integral-primal and dual feasible solutions
having a primal-dual gap less than f , i.e.:

cT x ≤ f ·bT y, (17)

then x is an f -approximation to the optimal integral solution x∗, i.e. cT x∗≤ cT x ≤
f · cT x∗

Based on the above principle, that lies at the heart of any primal-dual technique,
the following iterative schema can be used for deriving an f -approximate solution (this
schema is also illustrated graphically in Fig. 1(b)):

Primal-Dual Schema 1 Keep generating pairs of integral-primal, dual solutions {(xk,yk)}t
k=1,

until the elements xt , yt of the last pair are both feasible and have a primal-dual gap
which is less than f , i.e. condition (17) holds true.

Information Processing in Medical Imaging (IPMI 2007), Kerkrade, Netherlands, July 2007 c©Springer-Verlag



B. Glocker, N. Komodakis, N. Paragios, G. Tziritas, N. Navab 7

In order to apply the above schema to MRF optimization, it suffices that we cast the
MRF optimization problem as an equivalent integer program. To this end, the following
integer programming formulation of (15) has been used as the primal problem:

min ∑
p∈G

∑
l∈L

Vp(l)xp(l)+ ∑
(p,q)∈E

∑
l,l′∈L

Vpq(l, l′)xpq(l, l′) (18)

s.t.∑l xp(l) = 1 ∀ p ∈ G (19)

∑l xpq(l, l′) = xq(l′) ∀ l′ ∈ L , (p,q) ∈ E (20)

∑l′ xpq(l, l′) = xp(l) ∀ l ∈ L , (p,q) ∈ E (21)

xp(·), xpq(·, ·) ∈ {0,1}

Here, in order to linearize the MRF energy, we have replaced the discrete variables up
with the binary variables xp(·) and xpq(·, ·). More specifically, the {0,1}-variable xp(l)
indicates that node p is assigned label l (i.e., up = l), while the {0,1}-variable xpq(l, l′)
indicates that vertices p,q are assigned labels l, l′ respectively (i.e., up = l, uq = l′).
Furthermore, the constraints in (19) simply express the fact that each node must receive
exactly one label, while constraints (20), (21) maintain consistency between variables
xp(·),xq(·) and variables xpq(·, ·), in the sense that if xp(l) = 1 and xq(l′) = 1 holds true,
then these constraints force xpq(l, l′) = 1 to hold true as well (as desired).

The linear programming relaxation of the above integer program is then taken (by
relaxing the binary constraints to xp(·) ≥ 0,xpq(·, ·) ≥ 0), and the dual of the resulting
LP is used as our dual problem. The Fast-PD algorithm is then derived by applying
the primal-dual schema to this pair of primal-dual LPs, while using f =2 dmax

dmin
4 as the

approximation factor in (17).

3.2 Advantages of the primal-dual approach

Fast-PD has many nice properties, which makes it a perfect candidate for our image
registration task. In particular, it offers the following advantages: 1) Generality: Fast-
PD can handle a very wide class of MRFs, since it merely requires Vpq(·, ·)≥ 0. Hence,
by using Fast-PD, our image registration framework can automatically incorporate any
similarity metric, as well as a very wide class of smoothness penalty functions. 2) Op-
timality: Furthermore, Fast-PD can always guarantee that the generated solution will
be an f -approximation to the true optimum (where f=2 dmax

dmin
). 3) Per-instance approx-

imation factors: In fact, besides the above worst-case approximation factor, Fast-PD
can also continuously update a per-instance approximation factor during its execution.
In practice, this factor drops to 1 very quickly, thus allowing the global optimum to be
found up to a user/application bound. 4) Speed: Finally, Fast-PD provides great com-
putational efficiency, since it can reach an almost optimal solution very fast and in an
efficient manner.

4 dmax≡maxa6=b d(a,b), dmin≡mina6=b d(a,b)
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4 Implementation Details & Validation

4.1 Implementation Details

In order to prove our concept, we implemented a non-rigid image registration frame-
work based on discrete optimization. We are using multi-level free-form deformations
[14] together with a pyramidal image representation. The deformations are computed on
each level in a course-to-fine manner. We define the set of labels for the finest pyramid
by setting a minimum and maximum displacement and the number steps. Additionally,
the displacements are scaled for the coarser levels to recover a larger deformations. In
general, before running our algorithm, we rescale the image intensities of the source
and target image to values between 0 and 1. Thus, the weighting of the prior term is less
sensitive. In all experiments, we use an empirically determined λpq = 0.0001 equally
for all grid nodes. In order to demonstrate the flexibility of our framework, we imple-
mented a range of well-known similarity metrics, namely the Sum of Absolute Dif-
ferences (SAD) [3], the Sum of Squared Differences (SSD) [3], the Normalized Cross
Correlation (NCC) [3], the Normalized Mutual Information (NMI) [6], the Correlation
Ratio (CR) [8], and the Sum of Absolute Differences plus image gradient information
(SADG). The SADG metric involves an intensity-based and a geometric-based term.
An additional weighting factor γ is used to control the influence of these two terms. The
SADG metric is defined as

ρ(g(x), f (T (x))) = (1− γ)|g(x)− f (T (x))|+

+γ arccos
(

∇g(x)
|∇g(x)|

· ∇ f (T (x))
|∇ f (T (x))|

)
.

(22)

4.2 Validation Using Known and Unknown Deformations

In order to evaluate our framework we test our method on several data sets. In gen-
eral, the evaluation and thus, validation of non-rigid image registration methods is a
difficult task. Usually, ground truth data for real deformations, especially, in medical
applications is not available. Therefore, we performed several experiments hopefully
illustrating the great potentials of our approach.

Realistic Synthetic Registration. The first two experiments are concerning the nature
of the free choice of similarity metrics inherent in our framework. In order to evaluate
the efficiency of different metrics we test our method on simulated realistic data. The
target image is generated from the 2D MRI source image by randomly displaced de-
formation grid. Additionally, we added uniformly distributed noise up to 15 percent of
the original target intensities. For the multi-modal experiment we use the inverse tar-
get image and squared intensities. The image resolution is 256x256. The registration is
performed using a three-level image and grid pyramid. The range of the set of labels
is from 0.25 to 5 pixels in 5 steps for the finest pyramid level defined on the 8 main
directions (horizontal, vertical, and diagonal) leading to 41 labels in total (including the
zero displacement). We perform 3 optimization cycles per pyramid level. The initial
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Metric AE Mean AE Median AE Std MOD Mean MOD Median MOD Std
SSD 2.290 1.143 2.854 0.242 0.139 0.297
SADG γ = 1.0 1.957 1.077 2.350 0.227 0.136 0.349
SAD 1.220 0.675 1.653 0.123 0.071 0.194
SADG γ = 0.75 1.129 0.709 1.313 0.122 0.082 0.169
SADG γ = 0.25 1.046 0.603 1.307 0.104 0.067 0.142
SADG γ = 0.5 1.036 0.589 1.292 0.111 0.066 0.159
NMI 0.999 0.629 1.060 0.099 0.079 0.080
CR 0.927 0.536 1.116 0.089 0.068 0.092
NCC 0.765 0.402 1.082 0.070 0.047 0.076
CR 2.244 1.039 3.465 0.234 0.110 0.373
NMI 0.846 0.607 0.826 0.086 0.071 0.070

Table 1: Angular error (in degrees) and magnitude of difference error (in pixels) for the realistic synthetic image registration
using different similarity metrics.

grid resolution is 6x6 increased to 11x11 and finally 21x21. One registration takes be-
tween 5-30 seconds depending on the similarity metric. The results are shown in Table
1. For the evaluation, two error metrics are considered, namely the angular error (AE)
[15] and the magnitude of difference (MOD). We only consider the deformation field
within a region of interest which is determined by the image mask shown in Fig. 2(d).

Automatic Cartilage Segmentation. Our third experiment is aiming at the registration
accuracy. The medical application is similar to the one described in [16]. An automatic
segmentation of the cartilage should be performed. Assuming that manual segmenta-
tions are available, one may create statistical models for an atlas-based segmentation
procedure.

In our experiment, 7 data sets (256x256x20), all man- Image OR SD In SD Out HD
1 0.922 0.079 0.632 1.398
2 0.914 0.068 1.280 3.064
3 0.876 0.089 1.626 3.250
4 0.884 0.081 1.469 3.250
5 0.873 0.099 1.434 3.064
6 0.905 0.070 0.641 1.976

Table 2: Results for the cartilage seg-
mentation experiment.

ually segmented by medical experts, are available. The
MRI data was acquired for a follow-up experiment. Due
to the intra-subject property and the limited number of
data sets we simply selected one of it as a template seg-
mentation. By deforming the template to the six other
data sets and warping the corresponding segmentations,
we are able to achieve a fully automatic segmentation in less than 80 seconds. We use a
three-level pyramid, the SAD metric and a set of labels from 0.25 to 5 pixels in 5 steps
in the six main directions (±x, ±y, and ±z) leading to 31 labels in total. We perform 5
optimization cycles per pyramid level. The segmentation results are then compared to
the manual segmentations. With our method we achieve an average overlap ratio (OR)
of 0.90(±0.02), an average surface distance inside (SD In) of 0.08(±0.01)mm, aver-
age surface distance outside (SD Out) of 1.18(±0.44)mm, and an average Haussdorf
distance (HD) of 2.67(±0.79)mm (which is less than the slice thickness of 3mm). (see
also Table 2 and Fig. 3). The comparison of the segmentations is done using the tool5

described in [17].

5 Available on http://www.ia.unc.edu/dev/download/valmet/
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Realistic synthetic data. (a) The source image, and (b) target image of the first (mono-modal) experiment. (c) Target
image of the second (multi-modal) experiment. (d) Image mask used for error evaluation. (e) Checkerboard visualization
before and (f) after registration using NCC for the mono-modal experiment. (g) Checkerboard visualization before and (h)
after registration using NMI for the multi-modal experiment.

Comparison to State-of-the-art. Schnabel et al. [10] propose a non-rigid image regis-
tration method6 based on B-Spline FFD together with a gradient-descent optimization.
In order to obtain meaningful comparable results we try to set the registration param-
eters as similar as possible. Both algorithms are using the same deformation model
and the SSD metric. We use a set of labels from 0.1 to 2 pixels in 5 steps and allow
20 optimization cycles. The test data are two CT volumes showing the heart of a pig.
The image resolution is 128x128x88 with a voxel size of 0.848x0.848x1.25mm. Due
to the heart beat a deformation of the shape is clearly visible. We run both methods
on a deformation grid with 10mm control point spacing. Within the region of interest
enclosing the heart and an average SSD error of 12278 before registration, we achieve
an average SSD error of 3180, where the other method converges to a value of 3402.
Also, by visual perception of the difference images we can achieve better results (see
Fig. 4). Last but not least, the running time of our algorithm is less than 2 minutes in
contrast to a running time of more than 2 hours for the other method (AMD Athlon64
2.21 GHz). We should note, that this experiment was not performed to obtain the best
registration of the two data sets, but rather to compare the two algorithms. With our
standard pyramidal approach we obtain a SSD error of 1233 by same running time of
about 2 minutes.

6 Available on http://wwwhomes.doc.ic.ac.uk/˜dr/software/
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(a) (b) (c) (d)

Fig. 3: Results for the cartilage segmentation of the first image. (a) Checkerboard visualization before and (b) after registra-
tion. (c) Template segmentation. (d) Warped template on top of the target image.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 4: (a) Checkerboard visualization before registration, (b) after registration using the method in [10], and (c) after reg-
istration using our method (d) After registration using our approach with pyramidal settings. Same order for the difference
images in (e)-(h).

5 Discussion

In this paper we have proposed a novel framework to deformable image registration
that bridges the gap between continuous deformations and optimal discrete optimiza-
tion. Our method reformulates registration using a MRF definition, and recovers the op-
timal solution to the designed objective function through efficient linear programming.
Towards capturing important deformations, we propose an incremental estimation of
the deformation component. These objectives are met through a min cut problem de-
fined over a graph with two terminal links. Graph edges introduce smoothness on the
deformation field, while edges with the terminal links encode the image support for a
given deformation hypothesis versus another. Therefore, the method is gradient free,
can encode any similarity metric and can recover the optimal solution up to a bound.

In several applications, building anatomical atlases and models of variations be-
tween training examples is feasible. In such a context, one can consider a partial graph
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where connections, as well as t-links hypotheses are determined according to the density
of expected deformations. Such a direction will introduce prior knowledge in the regis-
tration process and will make the optimization step more efficient. Moreover, the use of
shape and appearance models can be considered to perform segmentation through reg-
istration. Assuming a prior model that involves both geometry and texture, and given a
new volume one can define/recover segmentation through the deformation of the model
to the image that is a natural registration problem which can be optimally addressed
from the proposed framework.
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