

Inter and Intra-Modal Deformable Registration: Continuous Deformations Meet Efficient Optimal Linear Programming

Ben Glocker^{1,2}, Nikos Komodakis^{1,3}, Nikos Paragios¹, Georgios Tziritas³, Nassir Navab²

4 July 2007

¹GALEN group | laboratoire de mathématiques appliquées aux systèmes | ecole centrale paris ²computer aided medical procedures & augmented reality | technische universität münchen ³computer science department | university of crete

Outline

- Introduction & Motivation
- Image Registration based on Discrete Labeling
- **Optimization using Linear Programming**
- **Results & Conclusions**

In this presentation everything is intensity-based

Introduction

Source and target image

> $f: \Omega \to \mathcal{R} \qquad \quad \Omega \subset \mathcal{R}^d \quad \text{with} \quad d \in \{2, 3\}$ $q:\Omega o \mathcal{R}$

Image relation

 $q(\mathbf{x}) = h \circ f(\mathcal{T}(\mathbf{x}))$

 $\mathcal{T}: \Omega \to \Omega$ non-linear transformation $h: \mathcal{R} \to \mathcal{R}$ non-linear relation on intensities

Registration as an Optimization Problem

Energy formulation

$$E(\mathcal{T}) = \int_{\Omega} \rho_h(g(\mathbf{x}), f(\mathcal{T}(\mathbf{x}))d\mathbf{x} \to \min!$$

 $\rho_h : \mathcal{R} \times \mathcal{R} \to \mathcal{R} \quad \text{distance measure}$

- The aim of registration is to recover the transformation which involves
 - the definition of a **transformation type**
 - the definition of a distance/similarity measure
 - the definition of an **optimization procedure**

Review of Registration Methods

- Types of transformations
 - Rigid, affine, projective
 - Basis functions, Spline-based
 - Finite Element Models, ...
- Distance/Similarity measures
 - SAD, SSD, NCC, NMI, CR, ...
- Optimization methods
 - Variational
 - Gradient-based
 - Direct search (Simplex, Powell-Brent, Best Neighbor)

Motivation

- What is expected from an optimal registration method?
 - Independent from the choice of the transformation type
 - Independent from the choice of the distance/similarity measure
 - Guarantee of a globally optimal solution
 - Reasonable computational complexity

Our Contributions

- Novel deformable registration framework based on discrete labeling and linear programming
- Our framework bridges the gap between continuous deformations and discrete optimization
- Gradient-free and flexible in the choice of the distance measure
- Guaranteed optimality properties on the solution
- Computational efficient and tractable

Image Registration based on Discrete Labeling

Local Registration

 Deformation grid providing a continuous and dense deformation field

$$\mathcal{T}(\mathbf{x}) = \mathbf{x} + \mathcal{D}(\mathbf{x})$$

with $\mathcal{D}(\mathbf{x}) = \sum_{p \in \mathcal{G}} \eta(|\mathbf{x} - \mathbf{p}|) \mathbf{d}_p$

In our implementation we use

Free Form Deformation

$$\mathcal{D}(\mathbf{x}) = \sum_{l=0}^{3} \sum_{m=0}^{3} B_l(u) B_m(v) \, \mathbf{d}_{i+l,j+m}$$

[Rueckert99, Schnabel01, Rohlfing03, ...]

Energy Formulation

Reformulation of the optimization problem

$$E_{\text{data}}(\mathcal{T}) = \sum_{p \in \mathcal{G}} \int_{\Omega} \eta^{-1}(|\mathbf{x} - \mathbf{p}|) \cdot \rho_h(g(\mathbf{x}), f(\mathcal{T}(\mathbf{x}))) d\mathbf{x}$$

Smoothness term

$$E_{\text{smooth}}(\mathcal{T}) = \sum_{p \in \mathcal{G}} \phi(|\nabla_{\mathcal{G}} \mathbf{d}_p|)$$

Registration task

 $E_{\text{total}} = E_{\text{data}} + E_{\text{smooth}} \rightarrow \text{min!}$

Markov Random Field (MRF) formulation for discrete labelings

$$E_{\text{total}}(u) = \sum_{p \in \mathcal{G}} V_p(u_p) + \sum_{p,q \in \mathcal{E}} V_{pq}(u_p, u_q)$$

Data term = singleton potentials

Smoothness term = pairwise potentials

Discretization of Parameter Space

Set of labels and a discretized deformation space

 $\mathcal{L} = \{u^1, ..., u^i\} \qquad \Theta = \{\mathbf{d}^1, ..., \mathbf{d}^i\}$

Data Term

• MRF singleton potentials: $|\mathcal{L}| \times |\mathcal{G}| \operatorname{cost matrix}$

$$egin{array}{rll} E_{ ext{data}}(u) &=& \displaystyle{\sum_{p \in \mathcal{G}} \int_{\Omega} \eta^{-1}(|\mathbf{x}-\mathbf{p}|)
ho_h(g(\mathbf{x}),f(\mathcal{T}(\mathbf{x}))) d\mathbf{x}} \ &pprox & \displaystyle{\sum_{p \in \mathcal{G}} V_p(u_p)} \end{array}$$

Problem: singleton potentials are not independent!

Approximation of label costs simultaneously for all nodes

camp+ar | department of computer science | technische universität münchen | 11 July 2007

Approximation of label costs simultaneously for all nodes

Nodes

Approximation of label costs simultaneously for all nodes

Single potential look-up table

camp+ar | department of computer science | technische universität münchen | 11 July 2007

Approximation of label costs simultaneously for all nodes

Current label

Labels

Single potential look-up table

Nodes

 $\mathbf{x}=\mathbf{0}$

y=-10

Approximation of label costs simultaneously for all nodes

Current label x=-10y=-10

Single potential look-up table

Approximation of label costs simultaneously for all nodes

Current label

Single potential look-up table

Nodes

x = -10

y=0

Approximation of label costs simultaneously for all nodes

Current label

Labels

Single potential look-up table

Nodes

x = -10

y=10

Approximation of label costs simultaneously for all nodes

Current label

Nodes

 $\mathbf{x}=\mathbf{0}$

y=10

Approximation of label costs simultaneously for all nodes

Current label x=10 y=10

Single potential look-up table

camp+ar | department of computer science | technische universität münchen | 11 July 2007

Smoothness Term

• MRF pairwise potentials: $|\mathcal{L}| \times |\mathcal{L}| \operatorname{cost matrix}$

$$E_{\text{smooth}}(u) = \sum_{p,q \in \mathcal{E}} V_{pq}(u_p, u_q)$$

e.g. truncated absolute difference (piecewise smooth)

$$V_{pq}(u_p, u_q) = \lambda_{pq} \min\left(|\mathbf{d}^{u_p} - \mathbf{d}^{u_q}|, T\right)$$

Note: smoothness function can vary locally

MRF Formulation of Image Registration

$$E_{\text{total}}(u) = \sum_{p \in \mathcal{G}} V_p(u_p) + \sum_{p,q \in \mathcal{E}} V_{pq}(u_p, u_q)$$

Opens the door to MRF optimization techniques

Optimization using Linear Programming

Primal-Dual Schema

- Say we seek an optimal solution x^* to the following integer program (this is our primal problem): $\min \mathbf{c}^T \mathbf{x}$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}(\mathbf{x} \in \mathbb{N})$ (NP-hard problem)
- To find an approximate solution, we first relax the integrality constraints to get a primal & a dual linear program:

primal LP: min
$$\mathbf{c}^T \mathbf{x}$$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}(\mathbf{x} \ge \mathbf{0})$
dual LP: max $\mathbf{b}^T \mathbf{y}$
s.t. $\mathbf{A}^T \mathbf{y} \le \mathbf{c}$

Primal-Dual Schema

 <u>Goal</u>: find integral-primal solution x, feasible dual solution y such that their primal-dual costs are "close enough", e.g.,

Then x is an f^{*}-approximation to optimal solution x^{*}

Primal-Dual Schema

The primal-dual schema works iteratively

Primal-Dual Schema for MRFs

$$\min\left[\sum_{p\in G}\sum_{a\in L}V_p(a)x_{p,a} + \sum_{pq\in E}\sum_{a,b\in L}V_{pq}(a,b)x_{pq,ab}\right]$$

s.t. $\sum_{a\in L}x_{p,a} = 1$ (only one label assigned per vertex)
 $\sum_{a\in L}x_{pq,ab} = x_{q,b}$
 $\sum_{b\in L}x_{pq,ab} = x_{p,a}$ (enforce consistency between
variables $x_{p,a}, x_{q,b}$ and variable $x_{pq,ab}$
 $x_{p,a} \ge 0, x_{pq,ab} \ge 0$

 $\begin{cases} \text{Binary} \\ \text{variables} \end{cases} \begin{cases} x_{p,a} = 1 \iff \text{label a is assigned to node p} \\ x_{pq,ab} = 1 \iff \text{labels a, b are assigned to nodes p, q} \end{cases}$

Primal-Dual Schema for MRFs

During the PD schema for MRFs, it turns out that

- Resulting flows tell us how to update both:
 - the dual variables, as well as
 the primal variables

Fast-PD

- MRF optimization method based on duality theory of Linear Programming (the Primal-Dual schema)
 - Can handle a very wide class of MRFs
 - Can guarantee approximately optimal solutions (worst-case theoretical guarantees)
 - Can provide tight certificates of optimality per-instance (per-instance guarantees)
 - Provides significant speed-up for static and dynamic MRFs

Komodakis, N., Tziritas, G., Paragios, N. **Fast, Approximately Optimal Solutions for Single and Dynamic MRFs.** *Computer Vision and Pattern Recognition 2007*

MRF Hardness

Registration Algorithm

for i=1:no_iterations

- 1: setup_label_sets()
- 2: precompute_single_potential_matrix()
- 3: precompute_pairwise_potential_matrix()
- 4: compute_discrete_labeling()
- 5: update_deformation()

end

Gaussian image pyramids & multi-level deformation grids are used for a hierarchical registration approach

Results & Conclusions

campar.cs.tum.edu

Visual Results

Validation of Distance Measures

Validation of Distance Measures

Metric	AE Mean	AE Median	AE Std	MOD Mean	MOD Median	MOD Std
SSD	2.290	1.143	2.854	0.242	0.139	0.297
SADG $\gamma = 1.0$	1.957	1.077	2.350	0.227	0.136	0.349
SAD	1.220	0.675	1.653	0.123	0.071	0.194
SADG $\gamma = 0.75$	1.129	0.709	1.313	0.122	0.082	0.169
SADG $\gamma = 0.25$	1.046	0.603	1.307	0.104	0.067	0.142
SADG $\gamma = 0.5$	1.036	0.589	1.292	0.111	0.066	0.159
NMI	0.999	0.629	1.060	0.099	0.079	0.080
CR	0.927	0.536	1.116	0.089	0.068	0.092
NCC	0.765	0.402	1.082	0.070	0.047	0.076

Results (MICCAI 2007)

Mean Intensity Image

Variance Intensity Image

Segmentation

$$\rho_{\text{Atlas}}(I_{\mu}, I_{\sigma^2}, I_{\text{new}}) = \frac{1}{|\Omega|} \sum_{\mathbf{x} \in \Omega} \frac{(I_{\mu}(\mathbf{x}) - I_{\text{new}}(\mathbf{x}))^2}{2I_{\sigma^2}(\mathbf{x})}$$

Method	DSC	Sensitivity	Specificity	Interaction	Cartilage
Grau et al.	0.90 (0.01)	90.03 %	99.87 %	5-10 min	Tibia, Femur, Patella
Dam et al.	0.92 (n/a)	93.00 %	99.99 %	Max 10 min	Tibia, Femur
Cheong et al.	0.64 (0.15)	74.00 %	n/a	0	Medial Tibia
Cheomg et al.	0.72 (0.09)	79.00 %	n/a	0	Lateral Tibia
Folkesson et al.	0.80 (0.03)	90.01 %	99.80 %	0	Tibia, Femur
Our Approach	0.83 (0.06)	93.77 %	99.94 %	0	Patella

Conclusions

- What is provided by our registration framework?
 - Independent from the choice of the transformation type?
 Grid-based but independent from weighting function.
 - Independent from the choice of the distance/similarity measure?
 Yes. We are gradient-free.
 - Guarantee of a globally optimal solution?
 Quasi-yes (from an optimization point of view).
 - Reasonable computational complexity?
 Yes (256x256 in 2 seconds, 256x192x64 in 1 minute).

Latest Work & Future Directions

- On-the-fly estimation of locally varying deformation spaces (done!)
- Incorporate global registration & different deformation models
- Introducing domain knowledge such as priors on the deformation space
- Belief propagation networks
- GPU implementation

