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Abstract
Abstract Autonomous robotic ultrasound has recently
gained considerable interest, especially for collaborative
applications. Existing methods for acquisition trajectory
planning are solely based on geometrical considerations,
such as the pose of the transducer with respect to the patient
surface.
Purpose This work aims at establishing acoustic window
planning to enable autonomous ultrasound acquisitions of
anatomies with restricted acoustic windows, such as the liver
or the heart.
Methods We propose a fully automatic approach for the
planning of acquisition trajectories, which only requires
information about the target region as well as existing tomo-
graphic imaging data, such as X-ray computed tomography.
The framework integrates both geometrical and physics-
based constraints to estimate the best ultrasound acquisition
trajectories with respect to the available acoustic windows.
Weevaluate the developedmethodusingvirtual planning sce-
narios based on real patient data as well as for real robotic
ultrasound acquisitions on a tissue-mimicking phantom.
Results The proposed method yields superior image quality
in comparison with a naive planning approach, while main-
taining the necessary coverage of the target.
Conclusion We demonstrate that by taking image forma-
tion properties into account acquisition planning methods
can outperform naive plannings. Furthermore, we show the
need for such planning techniques, since naive approaches
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are not sufficient as they do not take the expected image qual-
ity into account.

Keywords Planning framework · Automatic acquisitions ·
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Introduction

Sonography is a fundamental imaging modality for chronic
cancerous [11] and non-cancerous [14] liver diseases. Novel
developments in ultrasound (US) research, such as perfusion
imaging [1], further contribute to its importance as a screen-
ing and interventional imaging device. Its main drawback,
high operator variability, could be overcome by a robotic
US imaging approach, that would allow for reproducible and
precise data acquisition [6]. This will enable improved lon-
gitudinal studies and automated interventional US imaging,
providing versatilities similar to other interventional imag-
ing modalities such as cone-beam CT (CBCT), frequently
employed in clinical practice.

Aiming at widespread applications, however, the auto-
matic planning of US trajectories needs to be addressed not
only in 2D, but also in 3D. The latter provides crucial infor-
mation in a number of clinical settings, such as diagnosis of
hepatic diseases [3]. For planning, both theUSprobe position
and its orientation heavily impact the resulting image quality.
Consequently, one has to account for the directional physics
of US imaging with acoustic attenuation, potential shad-
owing, and other imaging artifacts such as reverberations.
Beyond the basic US-related constraints, the probe position
planning needs to consider anatomical constraints such as
the patient surface, and optimize for the resulting (expected)
image quality to avoid adverse objects (e.g., bones in US).
Only this way, an optimal acquisition can be performed for a
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Fig. 1 Schematic workflow of our method. For a defined target point,
pose candidates are selected according to the hard constraints given
by the US probe and acquisition properties. Next, the transmission of

acoustic waves is optimized such that the best possible pose is selected
to cover a defined target point

given target anatomy. While a generalized planning can still
be considered for easily accessible organs and structures such
as the carotid artery, here we focus specifically on automatic
acquisitions for organs with non-trivial acoustic windows,
such as the liver or the heart.

Despite first approaches to US acquisition trajectory plan-
ning [4], a full optimization of 2D- and 3D-US acquisition
trajectories with respect to the resulting image quality was
to our knowledge not considered so far. In this regard, we
introduce a novel planning framework for autonomous 2D-
and 3D-US, and include geometrical, anatomy-based, and
imaging-physics-based constraints to automatically retrieve
the optimal position and orientation for a specific target point
of interest. To optimize for the image quality, we integrate
US attenuation estimates in our planning, which are derived
from existing tomographic data such as CT and MRI. Ulti-
mately, we aim at closing the gap for US trajectory planning,
making autonomous US imaging more versatile.

Related work

In view of prior work covering planning of automatic US
acquisitions, a general US probe path planning is proposed
in [4]. The method allows for the full coverage of a region of
interest, but does not consider the resulting image quality of
the planned acquisition to optimize for appropriate acoustic
windows. More recently, [6] and [15] showed the feasibil-
ity and accuracy of autonomous US acquisitions performed
by a robotic system, introducing concepts for constant force
acquisitions with lightweight robots. The focus of these stud-
ieswas, however, not on planning of theUS trajectories based
on the optimization of acoustic windows, but on their actual
execution. The proposed systems employ US confidence
maps [7–9] to estimate the quality of acquired US images,
which can only be used during the acquisition itself but not
for quality simulation. Thus, they cannot provide a global
optimal planning. For a targeted quality optimization in a
planning stage, US simulation approaches as in [10,12,16]
make use of the physics-based properties of US imaging and
focus on the synthesis of realistic images or images with real-

istic appearance. They do not provide a measure of image
quality to assess the anatomical constraints linked to deter-
mining the best acoustic window for an acquisition.

Acoustic window planning

In this section we introduce amethod to determine optimized
US probe positions for the acquisition of single US images.
We showhowaUS sensormodel can be used to integrate hard
constraints, allowing the automatic planning of acquisitions
for a target point (or structure) with a predefined US probe
(“Sensor model” section). On this basis, we describe how
acoustic transmission estimates can be used to retrieve the
best acousticwindow for a target structure (“Attenuation esti-
mation” section). Finally, the overall probe position planning
is described, which incorporates the aforementioned param-
eters for optimization of the probe position and its orientation
(“Probe position planning” section). An overview of the pro-
posed planning workflow is depicted in Fig. 1.

Sensor model

US imaging imposes certain requirements with respect to
the probe positioning based on the underlying US imaging
physics (longitudinal acousticwaves), the acquisition param-
eters (wavelength, field of view) as well as the transducers
hardware design (piezo element size and array shape). Dur-
ing their training, physicians learn to intuitively regard for
all these parameters to identify reasonable acoustic windows
for certain target structures. To mimic a similar behavior for
automatized acquisition planning, we model a set of con-
straints for US pose optimization and evaluate a set of pose
candidates with respect to the expected image quality. While
3D-US allows for improved structural coverage by acquir-
ing volumetric information, at first we specifically focus on
the foundation of 2D US imaging, and later extend the con-
cept to 3D-imaging with freehand sweeps in (“Planning of
3D-trajectories” section)
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Fig. 2 Constraints forUSprobeplacement, as determinedby the image
plane in axiolateral (a) and elevational (b) directions, as well as by the
need for correct acoustic coupling of the US probe (c)

The task of single-view probe position planning is to find
a corresponding US probe pose TUS to allow for optimal
imaging of a target point Pt defined by the operator. For
automatic acquisitions, we assume that preoperative images
are employed for the planning, in our case X-ray com-
puted tomography (CT). From these images, a target point
or structure is selected, and the probe positioning planned
accordingly. For US imaging, resulting images are defined
by the system settings (e.g., penetration depth dy , frequency)
and the probe geometry. With the discrete patient surface
S extracted from the CT, we select a subset SC of points
s ∈ S for which the target point can be imaged based on
these parameters. This is influenced by the image depth and
the axial orientation of the probe with respect to the corre-
sponding surface normals ns

SC = {
s ∈ S : |Pt − s| < dy ∧ 〈da, ns〉 < α

}
, (1)

with the transducers axial orientation da restricted to the con-
nection to the target point (Pt − s)/|Pt − s|. By doing this,
one ensures that the target is always within the image plane,
given the depth-constraint is fulfilled.

Figure 2 shows intuitively how these constraints are
enforced in order to allow for US probe planning. To main-
tain sufficient acoustic coupling and ensure patient comfort,
we restrict the angle between the target (patient) surface and
the US probe. This limit depends on a number of factors
including the transducers physical geometry and the stiff-
ness of the covering tissue-layers. During our experiments
we used α = cos(30 ◦). These constraints thus guarantee
that the region of interest is inside the image and that the
insonificating pulse can reach the patients skin.

Attenuation estimation

The identified pose candidates allow for the acquisition of
images for a target region of interest, yet they do not regard
for features of the patient anatomy,which could heavily influ-
ence the US image quality. In order to identify a suitable
acoustic window for a target point, one has to ensure that

sound waves reach the target with sufficient wave intensity.
This thus corresponds to finding a linear path to the target
that exhibits low attenuation while traversing the tissue.

Building on the efforts of [16], we propose an attenua-
tion estimation based on CT, which is employed for acoustic
window planning to evaluate possible poses as identified
in (“Sensor model” section) with respect to their expected
image quality. The acoustic transmission coefficient of US
waves through an interface of two tissues with acoustic
impedances Z1 and Z2 can be written as

t (Z1, Z2) = 1 −
(
Z2 − Z1

Z2 + Z1

)2

. (2)

Using the approximately linear relationship between density
ρ and X-ray attenuation coefficient μ in tissues [13,16], this
can be rewritten as

�t (x) = 1 −
( |�μ(x)|

2μ(x)

)2

, (3)

where a constant speed of sound is assumed for simplicity.
US waves can traverse several tissue interfaces, such that
the overall transmission from a base point b along a ray of
direction v is

t (x) = exp

(

−
∫ a

0

( |�μ(b + lv)|
2μ(b + lv)

)2

dl

)

, (4)

with x = b + av, a ∈ R
+. To account for the processing in

commonUS imaging pipelines, a log-compression is applied
to the transmission estimate

t̂(x) = log(1 + νt (x))

log(1 + ν)
, (5)

with ν = 0.5 representing a constant compression factor in
this work, comparable to the findings in [16]. As the respec-
tive US probe geometry and resulting image geometries are
known a-priori (number of elements Nel , scan-line origins
w.r.t. the central element bi and their direction vi ), we can
approximate the US transmission for a pose candidate and
retrieve an average transmission value t for each relevant
surface point s ∈ Sc and transducer orientation R ∈ SO(3)

t(s, R) = 1

Neldy

Nel∑

i=1

dy∫

0

t̂(R(bi + lvi ) + s)dl, (6)

thus computing the mean along all scan-lines. As the average
transmission is mainly influenced by strong reflectors (e.g.,
bone) between the target structure and the respective surface
point, this allows for the identification of surface points with
higher wave intensities (and thus better signal to noise ratio)
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Fig. 3 Mean transmission estimation t for one target point in the liver,
drawn for each surface point

at the target structure. Figure 3 shows the exemplary mean
transmission values estimated for each point on the surface
for a target point inside the liver.

Probe position planning

On the foundation of the hard constraints and the transmis-
sion model, we can retrieve a patient-specific optimal US
pose to cover a target point with maximized acoustic inten-
sity. Anatomical factors such as the ribs will cause strong
reflections (i.e., low transmission) for certain probe orienta-
tions, whereas a change in its position potentially has smaller
effects on the expected transmission.We propose a two-stage
quality maximization, where the best angle is retrieved first,
since the transmission values should be almost convex w.r.t.
the probe angle. The surface position s is then optimized to
retrieve the final US probe pose TUS = (R̂, ŝ).

In our case, the US probe pose is already characterized
by a base point on the patient surface si ∈ S and the axial
orientation da . Therefore, the goal of the first optimization
stage is to find the best transducer orientation RUS for the
acquisition in one degree of freedom. By defining the axial
direction to be da = (Pt − si )/|Pt − si |, we effectively align
the transducer center toward the target point and reduce the
space of eligible orientations to the rotations around da . The
mean transmission t can then be employed as quality metric
in order to maximize the overall transmission for a given
target position

(s, φ) = argmax
(s,φ)∈SC×[0,...,π [

t(s, Rda(φ)), (7)

where Rda(φ) is the rotation around the fixed axis da by the
angle φ. Intuitively, by maximizing the transmission across

one image and different image candidates, those with a low
transmission are rated lower and discarded in the optimiza-
tion.

Planning of 3D-trajectories

Generalizing the proposed method for 3D-trajectories, we
optimize the best acoustic window for the acquisition of all
the Nt target points Pti within a structure. The 3D-trajectories
planned by our method are restricted to one base point s ∈ S,
and only vary with respect to their orientation. By choosing
a point that allows for high transmissions to all target points,
we ensure that all poses are within an acoustic window.

(s, (φi , . . . , φNt ))

= argmax
(s,(φi ,...,φNt ))∈ST ×([0,...,π [)Nt

Nt∏

i=1

t(s, Rda(φi )), (8)

where the set of surface points has to fulfill the hard con-
straints w.r.t. every target point ST = ⋂Nt

i=1 SCi . We follow
the same two-step maximization approach as above by first
selecting the best rotations for each target point and surface
point s ∈ ST , followed by selecting the base point with the
overall best transmission.

Experiments

As acoustic window planning has not been considered so far,
we compare the results of the proposed planning framework
to a naive planning, comparable to the planning approaches
in [4,6]. This consists of choosing the surface point sn nearest
to the target point Pt as base point for the acquisition. The
transducer orientation da is then chosen in the same way
as described in (“Probe position planning” section), while
minimizing the angle between the transducer and the surface
normal nn at sn . By doing so, the transducers lateral axis dl is
(nn×da)/|nn×da |.Whenmultiple views are considered, the
naive approach is to choose the base point andda as for single-
views and the elevational direction de as the rejection of the
input-trajectory direction dT from da , aiming at trajectories
with parallel image planes.

de = dT − da 〈da, dT 〉
|dT − da 〈da, dT 〉 | (9)

We first perform a set of experiments on publicly available
datasets (“Synthetic planning” section), as well as for a torso
(rib) phantom, where scans are performed with a robotic US
system (“Robotic acquisition experiments” section).

The planning was performed on a workstation (Intel i7-
4820K, NVIDIA Titan Black) and the computation of the
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mean transmission was implemented in CUDA. Computing
the best poses for 10 target points took on average 356 sec-
onds.

Synthetic planning

Using a dataset of 20 annotated upper-torso CTs from the
SLIVER07 challenge dataset [5] we performed an evalua-
tion of the proposed single- andmulti-view planningmethod.
The volumes featured different portions of the thorax and
abdomen respectively, but all contained the liver with some
margin. For our evaluation, we chose Ns = 2000 random
points inside the liver segmentations and manually defined
between 4 and 6 plans for each volume to cover the large
vessel trees. This resulted in a total of 100 multi-view plans
for all evaluated datasets.

Stability

We demonstrate the effectiveness of our acoustic window
planning approach qualitatively by independently comput-
ing the best poses for the Ns random points of one case.
Figure 4 shows the resulting pose in combination with a
visualization of the corresponding CT volume. The poses
computed with the naive approach are widely spread over
the thorax and a significant number of image planes inter-
sect with ribs, resulting in a majority of images with strong
reflectors and prominent artifacts in images. The proposed
method results in poses that closely follow the acoustic win-
dows in the intercostal spaces. Inferior to the costal cartilage,
the image planes are oriented tangent to the rib cage, suggest-
ing that the planned poses are suited better for US imaging.

Quality of acoustic window

A quantitative comparison of both planning methods was
performed using the ratio of non-soft-tissue areas rCT and
the ratio of depicted liver rseg, as given by the segmentation,

rCT = 1
n |{x : μ(x) < β1 ∨ μ(x) > β2}| (10)

rseg = 1
n |{x : x ∈ segmentation}| . (11)

Where n is the number of pixels in the image, and β1 =
−100HU, β2 = 150HU separating soft from hard tissue
following [13]. The ratio of non-soft-tissue rCT indicates
the fraction of dense tissues (i.e., bones or air-filled areas)
contained in the image, which impairs the transmission of
US pulses across soft-tissues. Consequently, a lower ratio
exhibits potentially better overall image quality, as a large
rCT potentially also causes US artifacts. Conversely, the ratio
of the target organ rseg depicted in a target image serves as
measure of how much anatomical context is provided in the
resulting US images. A higher rseg provides more context, as
a higher fraction of the target organ is covered by the image
content.

The evaluation was performed on CT slices at the respec-
tive pose with the size of the US image, as shown in Fig. 5.
We used the single- and multi-view plans created using the
segmentations of each of the 20 datasets. Table 1 shows
the quantitative results for both evaluated measures. As the
mean ratio of non-soft-tissues is lower for our method, while
the ratios of depicted target anatomy are roughly equal, this
effectively shows that the poses resulting from our method
are less likely to have shadowing artifacts, while allowing
for a similar coverage of the target image region. In Fig. 5,

Fig. 4 Comparison of single-view poses for the Ns target points for
one subject from the SLIVER07 dataset [5] together with a render of
the underlying CT volume. The orientations of the image axes are visu-

alized with colored lines, green for axial and blue for lateral directions.
a shows the plans created naively. The results of our method are shown
in (b)
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(a) (b)

(c) (d)

Naive

Ours

Fig. 5 Comparison of synthetic poses for one target point. a Shows the CT slice at the proposed pose, b at the one resulting from naive planning.
c, d Set the poses in relation to the surrounding anatomy

Table 1 Acoustic window quality mean and SD for the naive and our planning technique applied to single- and multi-view settings

rct Ours rct Naive r seg Ours r seg Naive

Single-view planning 0.222 ± 0.163 0.294 ± 0.174 0.488 ± 0.171 0.477 ± 0.161

Multi-view planning 0.214 ± 0.175 0.256 ± 0.179 0.470 ± 0.225 0.456 ± 0.214

Columns 1 and 2 Show the ratios of non-soft-tissue values, columns 3 and 4 The ratios of depicted liver

the pose obtained with naive planning cuts through several
ribs, which would result in strong shadows in an US image.
Our method planned a pose that only contains non-optimal
regions at the bottom and is likely to have no shadowing
artifacts in the liver.

Robotic acquisition experiments

The two methods were evaluated on real acquisitions per-
formed by a robotic US system. Intuitively, the manual
execution of planned trajectories is prone to errors and would
lack accuracy even in the case of statically placed phantoms.
Furthermore, the reproducibility of such trajectories would
be limited significantly. Robotic US well tackles these limi-
tations and allows for the autonomous execution of planned
probe trajectories. In this view, the robotic system previously
presented in [6] and [15] represents a good choice to qual-
itatively and quantitatively assess the performance of our
proposed planning technique for US acquisitions.

The system is composed of a robotic arm, KUKA LBR
iiwa R800 (KUKA Roboter GmbH, Augsburg, Germany),
controlled using a custom software module1 and the robot
operating system (ROS) framework. An RGB-D sensor
(Kinect, Microsoft Corporation, Redmond, WA, USA) is
positioned above the examination bed and used to perform
CT to phantom calibration. The US acquisitions are obtained
from an Ultrasonix� Sonix RP US system equipped with
a 4DC7-3/40 curvilinear transducer, using the following
parameters: frequency: 3.3MHz, depth: 140 mm, gain: 50%.
ROS and the respective modules to control the robot ran on a
PC (Intel Core i5, NVIDIA GTX 970) communicating with
the planning system.

Using this system, the acousticwindowplanningwas eval-
uated for single- and multi-view acquisitions on a gelatin–
agar phantom based on [2]. The tissue-mimicking material
is targeted to multimodal imaging. A liver was molded from
a gel made out of 10 weight percent (wt%) gelatin and

1 https://github.com/SalvoVirga/iiwa_stack.
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Fig. 6 Phantom and robotic system used for experiments. a Robotic
arm equipped with US transducer approaching the phantom covered by
a thin latex sheet. b Gelatin-agar phantom, chalk bars resembling ribs

are visible. c Rendering of the phantom, the selected trajectories are
shown in distinct colors
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Fig. 7 US intensities along planned trajectories in phantom for naive and the proposed planning technique, ours in blue, naive in orange. For target
points that were not covered by the acquisition, no value is shown

6wt% agar, diluted in water. For enhanced scattering in US
0.6wt% graphite powder was added. The surrounding tissue-
mimicking gel consisted of 3 and 1.5wt% gelatin and agar,
respectively. Shortly before complete solidificationof the gel,
the liver model and chalk sticks to simulate ribs were added.

Acquisitions were planned in a CT volume of the phan-
tom, and target acquisition trajectories were computed both
with our and the naive planning method. The five target
lines (27.0–53.5mm) defined for the acquisitions with dif-
fering orientations w.r.t. the ribs are shown in Fig. 6c.
After planning, the trajectories were executed by the robotic
setup as in [6]. A constant force of 5N onto the phantom’s
surfacewas applied for all US acquisitions. Theywere recon-
structed into 3D volumes (compounding) and employed for
evaluation.

Figure 7 shows the US intensity profiles measured along
the five defined target lines. Blue plots display the intensi-
ties from acquisitions planned with our method, while the
orange plots show the naively planned ones. Where target
points were not covered by the US acquisition, no values
are shown. Such regions result from inherent inaccuracies
of the surface to surface registration employed in [6], as
well as by tissue deformation. It can be clearly seen that
naively planned volumes exhibit high variations of intensity
along the line within homogeneous tissue, while ours show

a continuously high visibility, only containing speckle vari-
ations.

Slices of two acquisitions are shown in Fig. 8 togetherwith
the target lines inside of the volume, comparing naive plan-
ning to ourmethod.As it can be observed, the naively planned
trajectories cross bones and the resulting images are subject
to strong shadowing artifacts in these locations. In contrast
to this, the plans created with our method allow for imaging
of the selected structures without shadowing throughout the
sweep.

Discussion

On the foundation of our analysis and presented work, the
results of both the synthetic trajectory planning as well as the
phantom acquisitions show the need for trajectory planning
approaches, considering the inner anatomy for optimizing
the image quality. Based on the physics of the US image for-
mation process, the introducedmaximization of the expected
image quality by acoustic transmission allows for the plan-
ning of single- and multi-view acquisitions not affected by
shadowing artifacts, as we have shown. With this work, we
aim at providing the basis for truly autonomous US acqui-
sitions of a variety of anatomies that could not be imaged
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Fig. 8 Phantom US acquisitions (red) for two trajectories using the
CT for planning. Rows 1 and 3 show the naive sweeps, rows 2 and
4 sweep according to our planning, each in different planes (first and

second column). The positioning of the target points is shown as green
line in the rendering and the slices

previously due to restricted acoustic windows. Beyond that,
the proposed method could also be used to train US tech-
nicians, providing trainees with feedback on the transducer
positioning.

While our method provides optimal acquisition plans,
their execution requires an accurate patient registration, as
acoustic windows can be of limited size. For the example
of cardiac US, a planning in the intercostal space needs to
be precise w.r.t. the patient registration, as otherwise images
would be distorted significantly by the ribs. This becomes
even more important, as respiratory motion could potentially
require a continuous update of the patient registration in view
of imaging in-vivo.

With this basis, our futureworkwill include amore precise
patient registration, possibly adding image based registration
refinement as proposed in [6] and incorporating methods to
detect degraded image quality during the acquisition [8].
This would allow the system to exclude affected images
from the 3D compounding as well as the extension of our
method for the planning of longer US trajectories with vary-

ing base points. Excluding degraded images based on their
actual quality can reduce the impact of changes which inher-
ently could not be accounted for in the planning, such as the
presence of bowel gas or lesions resulting from the current
treatment. Those changes could cause significant artifacts
and attenuation.

The observed computation times do not allow for an inter-
active execution, but since the trajectories are meant to be
obtained preoperatively, this is not critical. Nevertheless, we
plan to reduce the computational cost in the future.

Finally, our future work includes the generalization of the
proposed method to use other tomographic modalities such
asMRI as basis for the transmission estimation [12] and ulti-
mately develop it toward an atlas-based approach as in [15].
We also aim at integrating further factors into the optimiza-
tion, such as the volumetric coverage and anatomical context
provided by the trajectory. To this end, a proof-of-concept
study involving human acquisitionswill be necessary to show
the validity of the approach in a clinical setting, where CT
data are a prerequisite for a clinical trial.
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Conclusion

In this work, we presented the first fully automatic trajectory
planning approach for autonomous and collaborative robotic
US acquisitions, which takes the expected image quality
into account. We have demonstrated both the theoretical and
practical advantages of the proposed approach over conven-
tional planning techniques. The method was evaluated using
20 virtual planning scenarios based on real patient data as
well as five real acquisitions scenarios on a realistic tissue-
mimicking phantom. In particular, we demonstrated that the
proposed method achieves a higher acoustic window quality
throughout the acquired sweeps in comparison with a naive
planning approach, while yielding a comparable coverage of
the target anatomy. Conducted phantom experiments further
showed that this advantage can also be observed for robotic
US imaging, as indicated by more constant intensity signals
along the planned trajectory.
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