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Abstract. A joint reconstruction framework for multi-contrast MR im-
ages is presented and evaluated. The evaluation takes place in function
of quality criteria based on reconstruction results and performance in the
automatic segmentation of Multiple Sclerosis (MS) lesions. We show that
joint reconstruction can effectively recover artificially corrupted images
and is robust to noise.

1 Introduction

Multi-contrast MR imaging enables the quantification of metrics that provide in-
formation on tissue microstructure. In the domain of neuroimaging, these metrics
deepen our understanding of the brain in both health and disease, and could po-
tentially assess the early onset of neurological disorders, such as Multiple Scle-
rosis (MS). Quantitative metrics are obtained from different MRI techniques,
generating multiple contrasts and a wide-range of information regarding tissue
microstructure. Obtaining this information, however, comes at the expense of
long acquisition times and low signal to noise ratios (SNR).

One possibility for overcoming the limitation of long scan times is through
accelerated data acquisitions by compressed sensing (CS). In Diffusion Spectrum
Imaging (DSI), acceleration by CS has been successfully demonstrated [1] and
is currently being validated in clinical settings. A different approach is to use
spatial context to increase data quality without further incrementing acquisition
times. One of these methods, presented by Haldar et al. [2], takes advantage
of structural correlations between datasets to perform a statistical Joint Re-
construction. This is achieved by incorporating gradient information from all
contrasts into the regularization term of a maximum likelihood estimation.

In this study we evaluate the performance of Joint Reconstruction under
different noise levels. Furthermore, we investigate the performance of this ap-
proach using a metric that evaluates the segmentation accuracy of MS lesions –
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i.e., the tasks the images were acquired for – rather than focusing on the common
reconstruction error calculated from image intensities.

2 Materials and Methods

2.1 Data acquisition

Five volunteers were scanned with a 3T GE HDx MRI system (GE Medical
Systems, Milwaukee, WI) using an eight channel receive only head RF coil. MRI
datasets were acquired for a HARDI protocol, a mcDESPOT [3] protocol, and
a high resolution T1 weighted anatomical scan (FSPGR). The HARDI protocol
consisted of 60 gradient orientations around a concentric sphere with b = 1200
s/mm2 and 6 baseline images at b=0. HARDI datasets were corrected for motion
using FSL’s FLIRT and FNIRT [4] and both HARDI and mcDESPOT were
rigidly registered to the T1 anatomical scan with FLIRT [3].

Seven MS patients were scanned with a CS-DSI acquisition protocol using a
GE MR750 scanner (GE Medical Systems, Milwaukee, WI). The CS-DSI proto-
col comprised of 514 volumes acquired on a Cartesian grid with maximal b-value
= 3000 s/mm2. Additionally, high resolution T1, T2, and FLAIR contrasts were
acquired. DSI volumes were co-registered to the first b=0 image, corrected for
motion using FLIRT and FNIRT, and a brain mask was obtained using BET
[4]. T1, T2 and FLAIR images were down-sampled to the same resolution as
the DWIs and all of the volumes were once again co-registered with each other.
Finally, for every patient, 11 slices were selected and lesions were manually la-
belled using a basic region growing algorithm on thresholding FLAIR intensity
values.

2.2 Multi-constrast joint reconstruction

In a first experiment we want to evaluate whether Joint Reconstruction can effec-
tively remove noise and maintain data quality in datasets of our multi-contrast
sequence. To this end, we studied the reconstruction error under different noise
level and optimized the necessary regularization parameters.

After data acquisition and pre-processing, volunteer datasets were artificially
corrupted with homogeneous Rician noise and reconstructed using Joint Re-
construction. Then, or a given set of M images, the reconstructed data x̂ was
obtained from the corrupted data y using:

{
x̂1, x̂2, . . . , x̂M

}
= arg min

{x1,x2,...,xM}

M∑
m=1

µ2
m ‖Fmxm − ym‖22 + Φ

(
x1,x2, . . . ,xM

)
,

(1)
where F is the Fourier encoding operator, µ is a parameter that adjusts data
consistency, and Φ (·) is a regularization term. As in [2], we define the regular-
ization term as the finite differences over all images. We have to optimize µ and
Φ as a function of data quality.
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2.3 Lesion segmentation using random forests and multi-contrast
image features

In a second experiment we evaluate the performance of a Joint Reconstruction
for our sequence using not the reconstruction performance of the images, but the
DICE scores of an automatic lesion segmentation algorithm. Here, we compare
the DICE scores of the ground truth patient datasets with corrupted and jointly
reconstructed versions of the datasets.

Random forests have already been implemented to segment MS lesions in
multi-contrast MR images, achieving performance comparable to other state of
the art segmentation methods [5]. We also propose the use of discriminative
classifiers within a random framework to classify voxels, but, given the nature
of our patient data, replace context rich features with scalar diffusion features
calculated from the CS-DSI protocol.

The feature vector consists of a total of 27 features: three structural MRI
intensity channels (T1, T2, and FLAIR), eight diffusion features and 16 kurtosis
features. Diffusion features were estimated from the Eigenvalue decomposition
of the diffusion tensor D ∈ R3x3, while kurtosis features were estimated from
projections of the fourth order kurtosis tensor W ∈ R3x3x3x3 into spherical and
elliptical coordinates. Both tensors were calculated by fitting the data to the
diffusional kurtosis model defined in [6] and to a version of the model with a
coordinate system rotated into the main directions of diffusion.

The classification task with random forests was accomplished using Matlab’s
(The Mathworks, Inc) Statistics Toolbox. For this work, a total of 30 trees were
grown from four randomly selected datasets and the trained forest was fit to
the other three patients. Every tree received a randomly subsampled dataset of
voxels and lesion voxels where weighted to proportional to non-lesion voxels.

3 Results

3.1 Experiment 1: Optimization of Joint Reconstruction parameters

In the first experiment we determine regularization parameters of the Joint Re-
construction algorithm that are optimal for our imaging sequence. We use the
high resolution volunteer data set.

Volunteer datasets were artificially corrupted with homogeneous Rician noise
and reconstructed with different parameter settings. The three regularization
parameters, which control for data consistency, regularization, and sensitivity
of edge detection, were optimized in function of the remaining noise fraction
(RNF) of the reconstructed images, and the root mean square error (RMSE)
and structural similarity index (SSIM) [7] of these images to the original raw
data.

Table 1 shows exemplary results for a given parameter set with optimized
regularization parameters, and Fig. 1 provides a visual comparison of each of
the reconstructed contrasts. In this example, Joint Reconstruction was able to
remove more than 75% of the artificially added Rician noise, leading to RNF
computations between 17.7 and 24.7%.
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Table 1. Quality metrics estimated
for different jointly reconstructed
datasets. Every dataset was individu-
ally corrupted with σ = 4% homoge-
neous Rician noise and jointly recon-
structed using Eq. 1.

Protocol

Quality criteria T1 MCDESPOT DWI

σx̂ [%] 0.992 0.981 0.981

RNF 0.177 0.238 0.247

RMSE 0.090 0.050 0.042

SSIM 0.711 0.683 0.772

3.2 Experiment 2: Evaluation of MS lesion segmentation accuracy

The second experiment evaluated whether Joint Reconstruction can effectively
remove noise without losing critical information, such as the borders between
lesions and non-lesions. We evaluate the scores on the patient data set.

For five different noise levels, the following was done: homogeneous Rician
noise was added to all of the images to corrupt them, images were subsequently
reconstructed using Joint Reconstruction, two different kurtosis and diffusion
models were fit to the corrupted and reconstructed datasets, and lesion segmen-
tation was performed. The experiment was repeated over 10 iterations and a
mean DICE score for every noise level was obtained. Fig. 2 shows the segmenta-
tion results of an exemplary dataset and Fig. 3 displays the general performance
and robustness to noise.

As seen in Figs. 2 and 3, Joint Reconstruction has a significant impact on
segmentation results. At low noise levels, jointly reconstructed datasets yield
lower DICE scores than raw data and even noisy datasets. This is most likely do
to the fact that Joint Reconstruction has a smoothing effect and that, for certain
parameter settings, small edge structures are ignored and blurred out. These
small edge structures include the boundary between lesions and non-lesions,
especially since this boundary is not completely clear or the same in the multiple

Fig. 1. Reconstructed datasets
from a noisy input. Rows show,
from top to bottom, three dif-
ferent acquisition protocols: T1,
SGPR, and DWI. Columns,
from left to right, display: raw
data, data corrupted with σ =
4% homogeneous Rician noise,
reconstructed data, and abso-
lute difference between the raw
data in the first column and the
reconstructed data in the third
column multiplied times three
for better visualization.

Raw data Corrupted Reconstructed 3*Difference

T1

SPGR

DWI
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Fig. 2. Segmentation performance with respect to noise. Each row shows a different
contrast, indicated in white letters, and the labeled lesions for ground truth (top row)
plus predictions on raw data, corrupted data and reconstructed data (bottom three
rows). Note that fractional anisotropy (FA) and radial diffusivity (RD) maps weren’t
directly corrupted, but estimated from corrupted data. RD is shown divided by two
for better visualization.

contrasts. As noise levels increase, DICE scores of corrupted datasets decrease
while reconstructed datasets maintain similar values.

4 Discussion

In this work, Joint Reconstruction was evaluated for multi-contrast MR images
according to multiple criteria and the role of the method on lesion segmentation
was further studied. From this analysis, it was established that Joint Recon-
struction has a significant impact on lesion segmentation, especially at low noise
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Fig. 3. DICE scores for corrupted and
reconstructed datasets as a function of
noise levels. Plots show mean ± stan-
dard deviation of 10 iterations and the
black line indicates the average DICE
score obtained from raw data.
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levels, where over-smoothing can lead to decreased performance of the segmen-
tation algorithm. On the other hand, Joint Reconstruction proved to be robust
to noise, and at higher noise levels, was able to remove noise while still capturing
the differences between lesions and non-lesions.

Parameter settings play a crucial role on the Joint Reconstruction frame-
work. Optimizing parameters with respect to the reconstruction errors may not
lead to the parameter set that is optimal for lesion segmentation. Furthermore,
data quality of each particular dataset also affects the optimal parameter set.
Consequently, future work will focus on developing novel, disease-specific and
data-adaptive metrics that effectively discriminate between normal state and
disease and that can be used to optimize the entire imaging pipeline from data
acquisition to analysis.
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