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Pedro A Gómez1,2,3, Cagdas Ulas1, Jonathan I Sperl3, Tim Sprenger1,2,3,
Miguel Molina-Romero1,2,3, Marion I Menzel3, Bjoern H Menze1

1Computer Science, Technische Universität München, Munich, Germany
2Biomedical Engineering, Technische Universität München, Munich, Germany

3GE Global Research, Munich, Germany

Abstract. Magnetic resonance fingerprinting (MRF) is a novel tech-
nique that allows for the fast and simultaneous quantification of multi-
ple tissue properties, progressing from qualitative images, such as T1- or
T2-weighted images commonly used in clinical routines, to quantitative
parametric maps. MRF consists of two main elements: accelerated pseu-
dorandom acquisitions that create unique signal evolutions over time and
the voxel-wise matching of these signals to a dictionary simulated using
the Bloch equations. In this study, we propose to increase the perfor-
mance of MRF by not only considering the simulated temporal signal,
but a full spatiotemporal neighborhood for parameter reconstruction.
We achieve this goal by first training a dictionary from a set of spa-
tiotemporal image patches and subsequently coupling the trained dictio-
nary with an iterative projection algorithm consistent with the theory of
compressed sensing (CS). Using data from BrainWeb, we show that the
proposed patch-based reconstruction can accurately recover T1 and T2
maps from highly undersampled k-space measurements, demonstrating
the added benefit of using spatiotemporal dictionaries in MRF.

1 Introduction

Quantitative magnetic resonance imaging (qMRI) techniques measure relevant
biological parameters, providing a profound characterization of the underlying
tissue. In contrast to conventional weighted MRI, where the image signal is
represented by intensity values and different tissues are described relative to
each other, qMRI generates parametric maps of absolute measures that have
a physical interpretation, leading to reduced bias and reproducible diagnostic
information. On the other hand, obtaining quantitative maps is a time consuming
task. It requires the repeated variation of typical MR acquisition parameters,
such as flip angle (FA) or repetition time (TR), and the fitting of the measured
signal to a model in order to estimate the parameters of interest, including
the MR specific longitudinal (T1) and transversal (T2) relaxation times. Long
acquisition times, together with high sensitivity to the imaging device and system
setup, are the main restrictions to clinical applications of qMRI techniques.



A recently proposed qMRI method, magnetic resonance fingerprinting (MRF),
aims to overcome these limitations through accelerated pseudorandom acquisi-
tions [6]. It is based on the idea that pseudorandom variations on acquisition
parameters cause the signal response for different tissue types to be unique.
This unique signal evolution can be matched to a precomputed dictionary cre-
ated from known combinations of the parameters of interest (e.g. T1 and T2).
Therefore, by matching the measured signal to one atom in the dictionary, all of
the parameters used to simulate the corresponding atom can be simultaneously
extracted. Furthermore, since the form of the signal evolution used for pattern
matching is known a priori, MRF is less sensitive to measurement errors, facil-
itating accelerated acquisitions through the undersampling of the measurement
space (k-space). It should be noted that, so far, all matching is done for one-
dimensional temporal signals only.

The notion of reconstructing signals from undersampled measurements comes
from the theory of compressed sensing (CS) [5]. CS has been successfully applied
to accelerate parameter mapping [4] and recently Davies et al. [3] demonstrated a
CS strategy for MRF that does not rely on pattern matching for error suppression
and has exact recovery guarantees, resulting in increased performance for shorter
pulse sequences. The authors further extend their CS model to exploit global
spatial structure by enforcing sparsity in the wavelet domain of the estimated
density maps, slightly improving the performance of their approach.

Spatial information can also be incorporated locally by using image patches.
Patch-based dictionaries have the advantage of being able to efficiently represent
complex local structure in a variety of image processing tasks. Furthermore,
the use of overlapping patches allows for averaging, resulting in the removal
of both noise and incoherent artefacts caused by undersampling. Patch-based
dictionaries have been previously used for the task of MR image reconstruction
[7], where the sparsifying dictionary was learnt directly from the measured data,
resulting in accurate reconstructions for up to six fold undersampling.

In this work, we propose to use a dictionary with both temporal and local
spatial information for parametric map estimation. We create a training set
by using the Bloch equations to simulate the temporal signal response over a
predefined spatial distribution obtained from anatomical images and train a
spatiotemporal dictionary by clustering similar patches. The trained dictionary
is incorporated into a patch-based iterative projection algorithm to estimate T1
and T2 parametric maps. We see two main benefits of our approach:

1. Incorporating spatial data increases the atom length, i.e. the amount of
descriptive information available per voxel, requiring less temporal points
for an accurate reconstruction.

2. Training improves the conditioning of the dictionary by creating atoms dis-
tinct to each other, leading to a better signal matching.

The rest of this paper is structured as follows. In Sect. 2 we describe the
method, in particular the proposed patch-based algorithm for MRF. Section 3
depicts the experiments and demonstrates the application of recovering para-
metric maps from undersampled data, and in Sect. 4 we offer conclusions.



2 Methods

The goal of MRF is to obtain parametric maps θ ∈ RN×Q from a sequence
of undersampled measurements Y ∈ CM×T , where Q is the number of tissue
relaxation parameters (T1 and T2), T is the sequence length, every map θq ∈ RN

has a total of N voxels, every measurement yt ∈ CM is sampled M times,
and M � N . This is achieved in three steps: image reconstruction, template
matching, and parameter extraction.

Image reconstruction is the task of obtaining the image sequence X ∈ CN×T

from the measurements Y. This is generally formulated as a inverse problem:
Y = EX, where E ∈ CM×N is the encoding operator. The reconstructed image
is then matched to a precomputed dictionary D ∈ CT×L of L atoms, to find
the dictionary atom dl ∈ CT that best describes it. This is done at every voxel
location xn ∈ CT by selecting the entry ln that maximizes the modulus of the
atom and the conjugate transpose of the signal:

l̂n = arg max
l

l=1,...,L

|x∗ndl| (1)

where both, dl and xn, were previously normalized to have unitary length. Fi-
nally, the T1 and T2 parameters used to construct the matching entry are as-
signed to the voxel n, creating θn = {T1n, T2n}. Thus, by repeating the match-
ing over all voxels of the image, the parametric T1 and T2 maps are found.

Davies et al. [3] interpret the template matching as a projection of xn onto
the cone of the Bloch response manifold, and propose an iterative projection
algorithm to accurately extract parametric maps. The algorithm, termed Bloch
response recovery via iterated projection (BLIP), iteratively alternates between
a gradient step, a projection step, and a shrinkage step to reconstruct the image
sequence X and estimate the corresponding parameter maps θ.

2.1 Spatiotemporal dictionary design

Given a set of fully sampled 2D spatial parametric maps θ ∈ RN×Q, where
N = Ni × Nj and Q = 2, an image sequence X ∈ CN×T of T temporal points
can be created at each voxel using the Bloch equations to simulate the magne-
tization response of an inversion-recovery balanced steady state free-precession
(IR-bSSFP) sequence with pseudorandomized acquisition parameters (see Fig.
1) [6]. X can be processed to create a spatiotemporal dictionary as follows.

Let Rn ∈ CP×N be the operator that extracts 2D image patches of size
P = Pi × Pj , so that the spatiotemporal image patch x̃n ∈ CP×T at a given
spatial location n is given by

x̃n = RnX. (2)

It is then possible to create the patch-based image matrix X̃ ∈ CPT×N by con-
catenating the vector representation of every spatiotemporal patch of dimension
Pi × Pj × T for each spatial location in X. Repeating the operation on θ cre-

ates the patch-based multiparametric matrix θ̃ ∈ RPQ×N . The spatiotemporal
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Fig. 1. Pseudorandom acquisition sequence and the corresponding signal response. a,
TR values following a Perlin noise pattern. b, Flip angle series of repeating sinusoidal
curves and added random values. c, Signal evolution for different tissue classes: white
matter (WM), grey matter (GM), and cerebrospinal fluid (CSF).

dictionary D̃ ∈ CPT×K is then constructed by using k-means to cluster atoms
in X̃ with similar signal values into K clusters, averaging the corresponding T1
and T2 values in θ̃ to create the clustered patch-based matrix Θ ∈ CPQ×K , and
simulating the signal evolution for each cluster. A new simulation of the signal
evolution ensures that the atoms in D̃ correspond exactly to the entries in Θ.

2.2 Patch-based BLIP reconstruction (P-BLIP)

The BLIP algorithm [3] reconstructs the image sequence X in an iterative fash-
ion. Given an image sequence X(i) at iteration i, the reconstructed sequence
X(i+1) in the next iteration is determined by

X(i+1) = PA(X(i) + µEH(Y −EX(i))), (3)

where PA represents the projection onto the signal modelA, EH is the Hermitian
adjoint of the encoding operator, and µ equals the step size. P-BLIP builds on
this algorithm, incorporating the patch extraction operator in (2) and an update
step to make (3) applicable to a spatiotemporal signal model.

At every iteration the updated sequence X is transformed into the patch-
based matrix X̃ by (2). X̃ is related to the trained dictionary D̃ by

X̃ = D̃W, (4)

where W ∈ RK×N represents the weights. Equation 4 can be readily solved
using greedy algorithms that find sparse solutions to linear systems of equations
by adding a sparsity constraint to the `0-norm of of each column vector wn:



Ŵ = arg min
W

‖X̃− D̃W‖22, s.t. ‖wn‖0 ≤ γ, n = 1, ..., N. (5)

We set the sparsity constraint to γ = 1, equivalent to finding one dictionary
atom, as done in the template matching used in [3, 6].

After estimating the weights, the patch-based image matrix is projected onto
the dictionary by X̂ = D̃Ŵ. At this point, each voxel is overrepresented a total
of P times, requiring an update step to return to the original image sequence X.
This update is achieved by averaging the P temporal signals that contribute to
a given voxel location. Finally, the parametric maps θ are estimated by applying
the weights and patch-wise updates on Θ.

3 Experiments and Results

Image data. Experiments were performed using twenty digital brain phantoms
from BrainWeb [2]. Of these, ten were used to train the spatiotemporal dictio-
nary and ten to test the performance of three different reconstruction algorithms:
the original MRF reconstruction [6], BLIP [3], and the proposed P-BLIP. Exper-
iments were designed to evaluate the performance of each algorithm as a function
of sequence length and acceleration factors, and, for the case of P-BLIP, also as
a function of spatial patch size. Ground truth datasets were generated by select-
ing a slice of crisp datasets labeled with different tissue classes, and resampling
them to a matrix size of 256 × 256 to accelerate computations. Quantitative
maps were then obtained by replacing the tissue labels with their correspond-
ing T1 and T2 values. The values for the three main tissue types grey matter
(GM), white matter (WM), and cerebrospinal fluid (CSF) were equaled to those
reported in [6], while the values for the rest of the classes (fat, bone, muscle,
vessels, dura matter, and connective tissue) were obtained directly from [1].

Modeling the signal evolution. At every voxel, the ground truth quantitative
maps served as a basis to simulate the temporal evolution of the signal based
on the IR-bSSFP pulse sequence with acquisition parameters displayed in Fig.
1, where the TRs follow a Perlin noise pattern, FAs are a series of repeating
sinusoidal curves with added random values, and the radio frequency phase al-
ternates between 0◦and 180◦ on consecutive pulses. Off-resonance frequencies
were not taken into account. This pulse sequence was combined with all possible
combinations of a given range of T1 and T2 values to create a temporal dictio-
nary used in both MRF and BLIP. The selected range was reported in [3], where
T1 spans from 100 ms to 6000 ms and T2 from 20 ms to 1000 ms, both sampled
at varying step sizes. Additionally, the dictionary included the exact T1 and T2
combinations corresponding to the different tissue classes.

Spatiotemporal dictionary. To train the spatiotemporal dictionary used in P-
BLIP, a region of interest that accounted for the entire head area was defined.
The space covered by this region of interest was randomly and equally subsam-
pled and each of the subsampled sets was assigned to a training subject. The



Fig. 2. Exemplary reconstruction results of one dataset with T = 200, R = 10, and
P = 3×3. The upper row shows T1 maps for all algorithms and the ground truth; and
the bottom row the corresponding T2 maps. Most visible in T2 maps, subsampling
artefacts can be effectively removed with P-BLIP.

selected parametric maps of each subject were then used as an input to train
the dictionary as described in Sect. 2.1 with a total of K = 200 clusters.

Subsampling strategy. We use a random EPI subsampling strategy for all ex-
periments: the k-space is fully sampled in the read direction (kx) and uniformly
undersampled in the phase encoding direction (ky) by an acceleration factor R.
The sampling pattern is shifted by a random a number of ky lines at every shot
of the sequence.

Experimental setup. An initial experiment was performed with spatiotemporal
patches of size 3×3×200 and an acceleration factor R = 10 to visually evaluate
the reconstructed maps (see Fig. 2). Subsequently, three experiments assessed
the reconstruction performance with respect to sequence length, acceleration
factor and spatial patch size. The first experiment varied sequence lengths from
100 to 500 in step sizes of 100, the second experiment used acceleration factors
of R = {2, 5, 10, 15, 20}, and the final experiment used spatial patches of sizes
P = {1×1, 3×3, 5×5, 7×7}. The reconstruction error of the first two experiments
was calculated using the signal-to-error ratio (SER) in decibels (dB), defined as

20 log10
‖x‖2
‖x−x̂‖2 ; and the third experiment with the SSIM values [8].

Results. Figure 2 displays the reconstructed parametric maps of an exemplary
dataset. The MRF estimates show the characteristic ghosting artefacts caused
by sub-Nyquist sampling. BLIP removes most of these artefacts from the T1
estimation, though they are still visible in the T2 maps. P-BLIP effectively re-
moves these artefacts from both maps, resulting in reconstructions very close to
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Fig. 3. a,c, Performance as a function of sequence length with R = 10, P = 3 × 3;
and b,d, as a function of acceleration factor with T = 200, P = 3 × 3. P-BLIP is
best in estimating T2 maps and shows better results for shorter sequences and higher
acceleration for T1 maps.

the ground truth. These visual observations can be confirmed with quantitative
results. Figures 3c and 3d show how P-BLIP achieves better T2 estimates in-
dependently of the sequence length or acceleration factor. On the other hand,
T1 maps for P-BLIP remain relatively constant for sequence lengths larger than
100 (Fig. 3a) and all acceleration factors (Fig. 3b), whilst the performance of
MRF and BLIP increases with the sequence length and lower acceleration fac-
tors. The reason for these results is twofold. First, the IR-bSSFP sequence is
mostly T1-weighted, favoring a better T1 matching over T2 matching for all
methods. Second, a trained dictionary containing a longer sequence, but fixed
K, is less flexible, and if if the trained dictionary does not exactly contain the
ground truth values, the quantitative error will be higher.

Table 1 indicates the performance of P-BLIP for different patch sizes in
comparison to the performance of MRF and BLIP. A spatial patch size of P =
1 × 1 implies that the training dataset was created from voxel-wise temporal
evolutions and that the trained dictionary is a clustered version of the temporal
dictionary. It can be seen that clustering a temporal dictionary alone improves

Table 1. Average SSIM values for T1 and T2 map estimation with respect to different
spatial patch sizes, T = 200 and R = 10.

Baseline Proposed: P-BLIP
Method MRF BLIP 1 × 1 3 × 3 5 × 5 7 × 7

T1 0.761 0.814 0.848 0.852 0.691 0.625
T2 0.616 0.591 0.769 0.857 0.667 0.601



the reconstruction with respect to MRF and BLIP, and that the spatiotemporal
dictionary further improves these results for P = 3 × 3. At larger spatial patch
sizes the results begin to decline, indicating that the cluster size of K = 200 is
not enough to capture the entire spatial variability of the parametric maps.

4 Conclusions

This work presents a novel patch-based reconstruction scheme for MRF con-
sistent with the theory of CS. It is based on a spatiotemporal signal model
and relies on the training of the corresponding dictionary from a set of exam-
ples. This patch-based scheme shows improved performance for shorter pulse
sequences and at higher acceleration factors, leading to an increased efficiency
of parameter mapping with MRF.

An important discussion point of our approach is the size of the dictionary in
terms of space, time, and atoms. Larger spatial patches allow, in theory, for the
acquisition of less temporal points, but the amount of atoms in the dictionary
should in turn be large enough to account for large spatial variability. We have
seen from our results that a dictionary size of K = 200 is not enough for spatial
patch sizes larger than 3× 3 for structures in the brain. A potencial solution to
this shortcoming might be to make K dependant on the atom length or arbitrar-
ily large at the cost of computational complexity. This point is currently under
investigation and future work will focus on extending the method to incorporate
3D spatial patches and applying it to real datasets.
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