
3D Magnetic Resonance Fingerprinting with a
Clustered Spatiotemporal Dictionary
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Abstract. We present a method for creating a spatiotemporal dictio-
nary for magnetic resonance fingerprinting (MRF). Our technique is
based on the clustering of multi-parametric spatial kernels from train-
ing data and the posterior simulation of a temporal fingerprint for each
voxel in every cluster. We show that the parametric maps estimated with
a clustered dictionary agree with maps estimated with a full dictionary,
and are also robust to undersampling and shorter sequences, leading to
increased efficiency in parameter mapping with MRF.

1 Purpose

Magnetic resonance fingerprinting (MRF) allows for the simultaneous quantifi-
cation of multiple tissue properties via the matching of acquired signals to a pre-
computed dictionary, created by sampling a wide range of the parameter space
[4]. As the parameters of interest increase, so does the dictionary size, leading
to long reconstruction times. One possibility for overcoming this limitation is to
use a clustered dictionary with both spatial and temporal information [2]. This
work aims at increasing MRF efficiency by using a clustered spatiotemporal dic-
tionary and incorporating it into a MRF pipeline that includes B1 mapping and
a view-sharing (VS) anti-aliasing strategy [1].

2 Methods

We tested our approach using 3D MRF data of a Lister-hooded adult rat brain
adult acquired with a Bruker BioSpec 47/40 system (Bruker Inc., Ettlingen,
Germany) [1]. The sequence was based on SSFP-MRF [3]with Cartesian sam-
pling, T = 1000 shots, and 0.5 mm isotropic resolution. A dictionary D ∈ CL×T

was simulated using extended phase graphs with the following ranges: T1 from
100ms to 3,000ms in 20ms steps; T2 from 20ms to 100ms in 5ms steps and from
100 to 500ms in 10ms steps; and B1 as a flip angle factor from 50% to 150% in
1% steps, resulting in a dictionary of size 840522× 1000. The acquired data was
matched to the dictionary to create a reference dataset.
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Fig. 1. Parameter distribution obtained from selected slices in the left hemisphere
used as a training dataset. The upper triangle displays density plots, the diagonal
histograms, and the lower triangle scatter plots. Note that parameters approach a
Gaussian distribution and are densely scattered within a specific range.

Exploiting symmetry of the brain, the reference dataset was divided along
the medial longitudinal fissure, separating the left and right hemisphere. The
estimated parametric T1, T2 and B1 maps of the left hemisphere (see Fig. 1)
were used to create spatiotemporal dictionaries of different sizes by first cluster-
ing multi-parametric (T1,T2,B1) spatial kernels using k-means and subsequently
simulating the temporal signal of every voxel in each cluster. The right hemi-
sphere of the reference dataset was then matched to dictionaries with spatial
kernel sizes of P = 1× 1× 1 (clustered only), P = 3× 3× 3 and P = 5× 5× 5
(see Fig. 2).

We hypothesize that a dictionary that contains only feasible parameter com-
binations and spatial information should enable acceleration in both space and
time. We test this by samplingless k-space points using a Gaussian mask in the
phase encode directions with different acceleration factors (Figs. 3-4), and by re-
ducing the sequence length (Fig. 4). Undersampled datasets were reconstructed
with the original dictionary template matching (TM) [4]and with our VS ap-
proach, and compared to the reference dataset by their similarity index (SSIM)
[5]. Furthermore, we study the amount of clusters required to accurately capture
the entire spatio-parametric variability in our dataset by evaluating the mean
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Fig. 2. Comparison of the estimated T1, T2 and B1 parametric maps from the fully
sampled dataset with a temporal dictionary D ∈ CL×T and three clustered dictionaries
D̂ 3√

P
∈ CK×TP with K = 300, T = 1000, and P = 1× 1× 1, 3× 3× 3, and 5× 5× 5.

Spatial smoothing obtained with and is achieved by averaging all contributing patches
to a given voxel.

square error (MSE) of the training and testing data for different spatial kernels
(Fig. 5).

3 Results

Figure 1 shows how the estimated parameters approximate a Gaussian distribu-
tion, and are scattered in a restricted range within the parameter space. Hence,
using dictionaries trained from this distribution yields parametric maps that
agree with maps estimated using the full dictionary (see Fig. 2). Figure 3 com-
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Fig. 3. Estimated T2 parametric maps from fully sampled reference data and data
undersampled with an acceleration factor R=5 (20% of k-space) for two different re-
construction methods: template matching (TM) and view-sharing (VS). The clustered
dictionaries D̂ 3√

P
∈ CK×TP consisted of K = 300, T = 1000, and P = 1 × 1 × 1,

3× 3× 3, and 5× 5× 5.

pares the reconstructed maps with 20% sampling of k-space, where D and D̂1

combined with VS are the most similar to the reference dataset. Figure 4 shows
smaller variation of the clustered dictionaries with undersampling, though hav-
ing less similarity to the reference dataset in fully sampled cases. Fig. 5 evidences
how the training error decreases for more clusters in all cases, while the testing
error only decreases continuously for D̂1.

4 Discussion

We use spatiotemporal dictionaries of different spatial kernel sizes with K = 300
clusters (0.036% of the original dictionary size) and obtain comparable paramet-
ric maps (see Fig. 2). Furthermore, Figs. 3-4 show that clustered dictionaries,
especially if they contain spatial information, are more robust to undersampling
and shorter sequences. Conversely, the spatial smoothing achieved with larger
spatial kernels along with the constant testing errors for increasing clusters in
Fig. 5 indicate that the training data does not accurately represent the testing
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Fig. 4. Acceleration in space and time. The left column displays the SSIM for each of
the dictionaries and two reconstruction methods: template matching (TM) and view-
sharing (VS) for different levels of k-space sampling. The right column shows the es-
timated SSIM for increasing sequence length and an acceleration factor R=5 (20% of
k-space).

data for kernel sizes larger than P = 3 × 3 × 3. In fact, the amount of train-
ing observations required and the corresponding size of the dictionary in terms
of space, time, and clusters, leads to two important discussion points: 1) using
clustering enables higher acceleration, at the expense of disregarding parame-
ter combinations that are not present in the training set (e.g. pathology); and
2) adding spatial information increases the dimensionality of the dictionary, re-
quiring approaches that can effectively deal with matching in high dimensional
spaces.

5 Conclusions

We propose a method to create clustered MRF dictionaries and show the added
benefit of combining it with a view-sharing strategy to enable both accelerated
acquisitions by undersampling, and accelerated reconstructions through dictio-
nary compression. Further investigation of data-driven approaches could pave
the way towards tissue and disease specific dictionaries in clinical settings.
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Fig. 5. Training and testing error for different cluster sizes K from the fully sampled
reference dataset. For D̂1 both the training and testing error reduce with an increasing
number of clusters, while testing errors for D̂3 and D̂5 do not change significantly with
increasing clusters.
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2. Gómez, P.A., Ulas, C., Sperl, J.I., Sprenger, T., Molina-Romero, M., Menzel, M.I.,
Menze, B.H.: Learning a spatiotemporal dictionary for magnetic resonance fin-
gerprinting with compressed sensing. MICCAI Patch-MI Workshop 9467, 112–119
(2015)

3. Jiang, Y., Ma, D., Seiberlich, N., Gulani, V., Griswold, M.A.: MR Fingerprinting
Using Fast Imaging with Steady State Precession (FISP) with Spiral Readout. MRM
(2014)

4. Ma, D., Gulani, V., Seiberlich, N., Liu, K., Sunshine, J.L., Duerk, J.L., Griswold,
M.A.: Magnetic resonance fingerprinting. Nature 495, 187–192 (2013)

5. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image Process-
ing 13, 600–612 (2004)


	3D Magnetic Resonance Fingerprinting with a Clustered Spatiotemporal Dictionary

