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Pedro A Gómez1,2,4, Miguel Molina-Romero1,2,4, Cagdas Ulas1,2,
Guido Bounincontri3, Jonathan I Sperl2, Derek K Jones4,

Marion I Menzel2, Bjoern H Menze1

1Computer Science, Technische Universität München, Munich, Germany
2GE Global Research, Munich, Germany

3INFN Pisa, Pisa, Italy
4CUBRIC School of Psychology, Cardiff University, Cardiff, UK

Abstract. Magnetic resonance fingerprinting (MRF) quantifies various
properties simultaneously by matching measurements to a dictionary of
precomputed signals. We propose to extend the MRF framework by using
a database to introduce additional parameters and spatial characteristics
to the dictionary. We show that, with an adequate matching technique
which includes an update of selected fingerprints in parameter space,
it is possible to reconstruct parametric maps, synthesize modalities, and
label tissue types at the same time directly from an MRF acquisition. We
compare (1) relaxation maps from a spatiotemporal dictionary against
a temporal MRF dictionary, (2) synthetic diffusion metrics versus those
obtained with a standard diffusion acquisition, and (3) anatomical labels
generated from MRF signals to an established segmentation method,
demonstrating the potential of using MRF for multiparametric brain
mapping.

1 Introduction

Magnetic resonance fingerprinting (MRF) is an emerging technique for the simul-
taneous quantification of multiple tissue properties [7]. It offers absolute measure-
ments of the T1 and T2 relaxation parameters (opposed to traditional weighted
imaging) with an accelerated acquisition, leading to efficient parameter mapping.
MRF is based on matching measurements to a dictionary of precomputed sig-
nals that have been generated for different parameters. Generally, the number of
atoms in the dictionary is dictated by the amount of parameters, and the range
and density of their sampling. As an alternative to continuous sampling of the
parameter space, one could use measured training examples to learn the dictio-
nary, reducing the number of atoms to only feasible parameter combinations [2].
In this work, we propose to use a database of multi-parametric datasets to create
the dictionary, presenting two new features of MRF that can be achieved simul-
taneously with relaxation mapping: modality synthesis and automatic labeling
of the corresponding tissue.
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In this extended application of MRF towards image synthesis and segmenta-
tion, we follow a direction that has recently gained attention in the medical image
processing literature [1,3,5,6,9,10]. The working principle behind these methods
is similar: given a source image and a multi-contrast database of training sub-
jects, it is possible to generate the missing contrast (or label) of the source
by finding similarities within the database and transferring them to create a
new image. The search and synthesis strategy can take several forms: it could
be iterative to incorporate more information [10]; can be optimized for multi-
ple scales and features [1]; may include a linear combination of multiple image
patches [9]; or be configured to learn a nonlinear transform from the target to the
source [5]. There have been several applications of synthetic contrasts, including
inter-modality image registration, super-resolution, and abnormality detection
[3,5,6,9,10]. Furthermore, in addition to the creation of scalar maps in image
synthesis, similar techniques can be used for mapping discrete annotations; for
example, in the segmentation of brain structures [1].

Inspired by these ideas, we present a method for synthesizing modalities and
generating labels from magnetic resonance fingerprints. It relies on the creation of
a spatiotemporal dictionary [2] and its mapping to different parameters. Specifi-
cally, in addition to the physics-based mapping of MRF signals to the T1 and T2
relaxation parameters, we train empirical functions for a mapping of the signals
to diffusion metrics and tissue probabilities. We show that we can achieve higher
efficiency relaxation mapping, and demonstrate how the use of a spatiotemporal
context improves the accuracy of synthetic mapping and labeling.

We see three main contributions to our work. (1) We present a framework
for creating a spatiotemporal MRF dictionary from a multi-parametric database
(Sect. 2.1). (2) We generalize fingerprint matching and incorporate a data-driven
update to account for correlations in parameter space, allowing for the simul-
taneous estimation of M different parameters from any fingerprinting sequence
(Sect. 2.2). (3) Depending on the nature of the m-th parameter, we call it a
mapping, synthesis, or labeling, and show results for all three applications (Sect.
3.1). This is the first attempt - to the best of our knowledge - to simultaneously
map parameters, synthesize diffusion metrics, and estimate anatomical labels
from MR fingerprints.

2 Methods

Let Q = {Qs}Ss=1 represent a database of spatially aligned parametric maps
for S subjects, where each subject Qs ∈ RN×M contains a total of N = Ni ×
Nj ×Nk voxels and M maps. Every map represents an individual property, and
can originate from a different acquisition or modality, or even be categorical.
Our database includes the quantitative relaxation parameters T1 and T2; a non-
diffusion weighted image (S0); the diffusion metrics mean diffusivity (MD), radial
diffusivity (RD), and fractional anisotropy (FA); and probability maps for three
tissue classes: gray matter (GM), white matter (WM), and cerebrospinal fluid
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(CSF). Thus, for every subject Qs = {T1,T2,S0,MD,RD,FA,GM,WM,CSF}.
We use this database to create a spatiotemporal MRF dictionary as follows.

2.1 Building a Spatiotemporal MRF Dictionary

With the relaxation parameters T1 and T2 and knowledge of the sequence vari-
ables, it is possible to follow the extended phase graph (EPG) formalism to
simulate the signal evolution of a fast imaging with steady state precession MRF
(FISP-MRF) pulse sequence [4]. In EPG the effects of a sequence on a spin sys-
tem are represented by operators related to radio-frequency pulses, relaxation,
and dephasing due to gradient moments. Therefore, for every voxel in all sub-
jects, application of the EPG operators leads to a dictionary D ∈ CNS×T with
a total of T temporal points (see Fig 1).
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Fig. 1. FISP-MRF acquisition sequence. a, Repetition times following a Perlin noise
pattern. b, Flip angles of repeating sinusoidal curves. c, k-space trajectory of four
different spiral interleaves, 32 interleaves are required for full k-space coverage.

We further process the dictionary to incorporate spatial information by ex-
panding each voxel with its 3D spatial neighborhood of dimension P = Pi×Pj×
Pk and compressing the temporal dimension into its first V singular vectors [8].
This results in a compressed spatiotemporal dictionary D̃ ∈ CNS×PV . Finally,
we define a search window Wn = Wi ×Wj ×Wk around every voxel n, limiting

the dictionary per voxel to D̃n ∈ CWnS×PV . The choice for a local search window
has a two-fold motivation: it reduces the number of computations by decreasing
the search space and it increases spatial coherence for dictionary matching [10].

Applying subject concatenation, patch extraction, and search window reduc-
tion on the database Q leads to a voxel-wise spatio-parametric matrix R̃n ∈
RWnS×PM . For simplicity, we will use D and R instead of D̃n and R̃n, where
every dictionary entry dc ∈ CPV has its corresponding matrix entry rc ∈ RPM .
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2.2 Dictionary Matching and Parameter Estimation

MRF aims to simultaneously estimate several parametric maps from undersam-
pled data. This is achieved by reconstructing an image series and matching it
to the dictionary. We reconstruct V singular images [8] and extract 3D patches
from them to create the patch-based matrix X ∈ CN×PV . At every voxel xn, we
find the set Mn of the C highest correlated dictionary entries dc, c = 1, .., C,
by:

Mn = {dc ∈ D : ρ(xn, dc) > τC} (1)

with the threshold value τC such that |M| = C and

ρ(x, d) =
〈x, d〉
‖x‖2‖d‖2

. (2)

Making use of the selected entries dc and the corresponding parametric vec-
tors rc, an estimated value q̃n,m at voxel location n in map m is determined by
the weighted average of the correlation between every entry dc and the signals
xp within Ωn, the spatial neighborhood of n:

q̃n,m =

∑
p∈Ωn

∑
c ρ(xp, dc)rc,pm

P
∑
c ρ(xp, dc)

, (3)

where rc,pm indexes the quantitative value of voxel p centered around atom c in

map m. Repeating this procedure for every voxel creates an estimate Q̃ of all of
the parametric maps, including synthetic modalities and anatomical labels.

Data-driven Updates. Ye et al. [10] proposed the use of intermediate results
to increase spatial consistency of the synthetic maps. We take a similar approach,
and define a similarity function relating image space and parameter space:

f(x, d, r, q, α) = (1− α)ρ(x, d) + αρ(q, r) (4)

where α controls the contributions of the correlations in image and parameter
space. The selected atoms are now determined by

Mn = {dc ∈ D, rc ∈ R : f(xn, dc, q̃n, rc, α) > τC}. (5)

In the first iteration α = 0 as we have no information on the map Q̂ for our
subject. In a second iteration we increase α, adding weight to the similarities in
parameter space and compute Eq. 5 again to find a new set of dictionary atoms.
The final version of the maps is given by a modified version of Eq. 3:

q̂n,m =

∑
p∈Ωn

∑
c f(xp, dc, q̃n, rc, α)rc,pm

P
∑
c f(xp, dc, q̃n, rc, α)

. (6)

This procedure is essentially a 3D patch-match over a V -dimensional im-
age space and M -dimensional parameter space, where the matching patches are
combined by their weighted correlation to create a final result.
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Fig. 2. Exemplary results of one test subject with P = 3 × 3 × 3. The upper row
displays the first five singular images; while the second and fourth row show the output
for different parametric maps and the correlation to the reference image, displayed in
the third and fifth row, respectively. Additionally, the last column in rows four and
five shows labels obtained from selecting the tissue class with highest probability and
the dice similarity coefficient (DSC) from the output labels to the reference. The bar
underneath represents, from left to right, background, GM, WM, and CSF; and the
DSC was computed from the GM, WM, and CSF labels. T1 and T2 scale is displayed
in ms; S0 is qualitatively scaled to 255 arbitrary units; MD and RD are in mm2/s; FA,
GM, WM, and CSF are fractional values between zero and one.

2.3 Data Acquisition and Pre-processing

We acquired data from six volunteers with a FISP-MRF pulse sequence [4] on a
3T GE HDx MRI system (GE Medical Systems, Milwaukee, WI) using an eight
channel receive only head RF coil. After an initial inversion, a train of T = 1024
radio-frequency pulses with varying flip angles and repetition times following a
Perlin noise pattern [4] was applied (see Fig. 1). We use one interleave of a zero-
moment compensated variable density spiral trajectory per repetition, requiring
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32 interleaves to sample a 22× 22 cm field of view (FOV) with 1.7 mm isotropic
resolution. We acquired 10 slices per subject with a scan time of 13.47 seconds
per slice, performed a gridding reconstruction onto a 128 × 128 Cartesian grid,
projected the data into SVD space, and truncated it to generate V = 10 singular
images. The choice of V = 10 was motivated by the energy ratio, as this was
the lowest rank approximation which still yielded an energy ratio of 1.0 [8]. The
singular images were matched to a MRF dictionary comprising of T1 values
ranging from 100 to 6,000 ms; and T2 values ranging from 20 ms to 3,000 ms.

In addition, we scanned each volunteer with a diffusion weighted imaging
(DWI) protocol comprising of 30 directions in one shell with b = 1000 s/mm2.
The FOV, resolution, and acquired slices were the same as with MRF-FISP,
resulting in a 15 minute scan. We applied FSL processing to correct for spatial
distortions derived from EPI readouts, skull strip, estimate the diffusion tensor
and its derived metrics MD, RD, and FA; and used the non-diffusion weighted im-
age S0 to compute probability maps of three tissue types (GM, WM, CSF) using
[11]. Finally, we applied registration across all subjects to create the database.

3 Experiments and Results

For every subject, we performed a leave-one-out cross validation, wherein the
dictionary was constructed from five subjects and the remaining subject was
used as a test case. Following the procedure described in Sect. 2.2, we created
a database of nine parametric maps (T1,T2,S0,MD,RD,FA,GM,WM,CSF) and
compared the estimated metrics to the reference by their correlation.

We explored the influence of the window size Wn, the number of entries C,
and the α on the estimated maps. We found correlations increased with diminish-
ing returns as Wn increased, while adding more entries yielded smoother maps.
Correlations were higher after a second iteration of data-driven updates with
α > 0, irrespective of the value of α. Nonetheless, variations of these parameters
didn’t have a significant effect on the overall results. To investigate the impact
of using spatial information, we repeated the experiment for spatial patch sizes
of P = 1 × 1 × 1, 3 × 3 × 3, and 5 × 5 × 5. For these experiments we used
Wn = 11× 11× 11, C = 5, α = 0.5, and two iterations.

3.1 Results

The reference T1 and T2 maps were estimated from a FISP-MRF sequence with
a temporal dictionary, while we used a spatiotemporal dictionary with varying
spatial patches. Estimated T1 and T2 maps were consistent with the reference,
with increasing spatial smoothness for larger spatial patches. This also lead to a
decrease in correlation to the reference, most notably in T2 estimation (see Fig.
3a-b), which could also be attributed noisier T2 estimates. In future experiments
we will rely on standard relaxation mapping for reference comparison.

The synthetic S0 and diffusion metrics MD, RD, and FA show spatial co-
herence, achieving correlation values over 0.90 with respect to a standard DWI
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Fig. 3. Correlation as a function of spatial patches for all subjects. a-b, T1 and T2
parameter mapping. c-f, Synthesis of S0 and diffusion metrics. g-i, Tissue labeling.

acquisition (Fig 2). Similar to [10], we found that FA maps were generally the
least correlated to the reference. This is due to the fact that diffusion encoding
in DWI acts as a proxy for underlying tissue anisotropy, whereas the measured
fingerprints are not diffusion sensitive, failing to exactly recover directionality
present in FA. In fact, the higher the directionality encoded in a given modality,
the lower the correlation to the reference (ρS0 > ρMD > ρRD > ρFA). Fur-
thermore, for all cases in modality synthesis, incorporating spatial information
generated increased consistency and higher correlated results (Fig. 3c-f).

Figure 2 shows the visual similarity between tissue probability maps ob-
tained directly as an output from matching and those computed with [11] and
the labels obtained by selecting the class with the highest probability. As with
modality synthesis, anatomical labels improved when spatial information was
taken into account (Fig. 3g-i). Particularly in CSF, incorporation of spatial in-
formation eliminated false positives, yielding better quality maps. On the other
hand, thresholding of probability maps lead to an overestimation of GM labels,
notably at tissue boundaries. Labeling at tissue boundaries could benefit from
higher resolution scans and a multi-channel reference segmentation.

4 Discussion

This work proposes to replace a simulated temporal MRF dictionary with a
spatiotemporal dictionary that can be learnt from data, increasing the efficiency
of relaxation parameter mapping, and enabling the novel applications of modality
synthesis and anatomical labeling. In terms of methodology, we borrow concepts
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such as the search window and parameter space regularization from the image
segmentation and synthesis literature [1,3,10], but change the input to a V -
dimensional image space and the output to an M -dimensional parameter space,
making it applicable to MRF. Moreover, our framework is valid for any MR
sequence, provided signal evolutions can be computed from the training data.

Results indicate that it is possible to use MRF to simultaneously map T1 and
T2 parameters, synthesize modalities, and classify tissues with high consistency
with respect to established methods. While our method allows us to circum-
vent post-processing for diffusion metric estimation and tissue segmentation, it
is important to note that changes in synthetic diffusion maps can only be prop-
agated from the information available in the database. Therefore, creating the
dictionary from pathology and exploring advanced learning techniques capable
of capturing these changes is the subject of future work.
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