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Abstract. We introduce a method for MR parameter mapping based
on three concepts: 1) an inversion recovery, variable flip angle acquisition
strategy designed for speed, signal, and contrast; 2) a compressed sens-
ing reconstruction which exploits spatiotemporal correlations through
low rank regularization; and 3) a model-based optimization to simulta-
neously estimate proton density, T1, and T2 values from the acquired
measurements. Compared to MR Fingerprinting, the proposed method
achieves a five-fold acceleration in acquisition time, reconstructs an un-
aliased series of images, and does not rely on dictionary matching for
parameter estimation.

1 Purpose

MR fingerprinting (MRF) [12] has recently gained attention due to its ability to
simultaneously estimate multiple parametric maps within clinically feasible scan
times. MRF is based on three main ingredients: a pseudorandom acquisition, the
reconstruction of aliased measurements, and the matching of these measurements
to a precomputed dictionary. While conceptually appealing, MRF suffers from
multiple methodological shortcomings. The purpose of this work is to present an
alternative method to parameter mapping that addresses these limitations by
optimizing the acquisition, reconstructing unaliased measurements, and fitting
the measurements in a model-based optimization not subject to the discretiza-
tion of the dictionary.

2 Methods

In an MRI experiment the observed signal y(t) can be described by the combi-
nation of a spatial function with a temporal signal evolution:

y(t) =

∫
r

ρ(r)ft(r)e−2πk(t)·rdr; (1)
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Fig. 1. Flip angle trajectories and correlation between observations. a-b, Flip angle
trajectory for MRF and variable flip angles (vFA). c-d, Temporal signal evolution of
three exemplary observations. The legend displays the correlation c between each of
them. e-f, Correlation matrix for all observations and the norm of the matrix; where
the observations are less correlated in vFA.

where ρ(r) is the spatial distribution of the spin density at position r, k(t) is the
k-space trajectory, and ft(r) is the temporal signal, given by the recursion:

ft(r) = ft−1(r)g (θa(t);θb(r)) . (2)

The temporal signal ft(r) at time t is determined by the signal value at the
previous time point ft−1(r) modulated by g (·), a function of two different pa-
rameter sets: the temporally varying acquisition parameters θa(t), e.g. flip angle
α(t) and repetition time TR(t); and the spatially dependent biological param-
eters of interest θb(r), such as T1(r) and T2(r). In MRF, the temporal signals
are denoted fingerprints, where the method aims at creating unique signals for
different spatial locations through pseudorandom variations of the acquisition
parameters θa(t). Alternatively, we chose θa(t) to satisfy three criteria: speed,
signal, and contrast. We increased the speed by minimizing TR(t), and optimized
α(t) for signal and contrast using a training dataset x ∈ CL×T with L obser-
vations and T time points; wherein we experimentally attempted to increase
both the orthogonality between observations, and the norm within observations
[3,4,8].
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Fig. 2. Reconstructed images at different repetition indexes t. While the nuFFT oper-
ation reconstructs a series of aliased images, the proposed CS reconstruction removes
the aliasing, allowing for an easier visualization of the temporal dynamics of the signal.

Whereas the original MRF reconstructs aliased images from the measure-
ments, recent work has shown that the acquired data can also be reconstructed in
an iterative framework [1,2,5,7,13,17,18]. Based on these ideas, we implemented
a compressed sensing (CS) [11] reconstruction that constrains the temporal sig-
nal evolution to a low dimensional subspace [14,17], and regularizes the image
series by promoting local low rank of spatiotemporal image patches [14,15]. Fi-
nally, once we reconstruct an unaliased image series, we propose to replace the
matching to a simulated dictionary with an optimization based on least-squares
curve fitting for the simultaneous estimationof ρ(r), T1(r), and T2(r).

We acquired a single slice from a healthy volunteer based on the FISP im-
plementation of MRF [10] on a GE HDx MRI system (GE Medical Systems,
Milwaukee, WI), with an eight channel receive only head RF coil. After an ini-
tial inversion, a train of T = 1000 pulses with varying flip angles and repetition
times was applied (Tacq = 13.15 s per slice). In addition, we acquired a train of
T = 300 variable flip angles (vFA) with TR = 8 ms (Tacq = 2.42 s per slice).
For both acquisitions, we used a zero-moment compensated variable density spi-
ral designed with 22.5 × 22.5 cm FOV, 256 × 256 matrix size, 1 mm in-plane
resolution, 5 mm slice thickness, and golden angle rotations between every in-
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Fig. 3. Signal evolution of a single observation with dictionary matching and model-
based optimization. a-b, The high levels of aliasing in the acquisitions lead to different
parameter estimates between matching and optimization. c-d, Matching and optimiza-
tion results are similar when the evolution is unaliased, where the optimization is not
constrained to the discretization of the dictionary. The T2 values obtained from CS-vFA
present an underestimation with respect to the T2 in MRF and CS-MRF.

terleave. Each acquisition was reconstructed using the nuFFT operator [6] and
with the proposed CS method, and parameter maps were subsequently estimated
with both dictionary matching and model-based optimization. We simulated the
dictionary for a varying range of T1 and T2 values using the EPG formalism
[9,16].

3 Results

We found that two linear ramps yielded T1 and T2 sensitivity while reducing the
cost (see Fig. 1). Compared to MRF, the proposed strategy reduces the num-
ber of repetitions (Fig. 1a-b), while increasing the orthogonality of the signal
evolutions between training observations (Fig. 1c-d). This acquisition, coupled
with the proposed CS reconstruction, allows for the recovery of a series of un-
aliased images (Fig. 2), which in turn facilitate a model-based optimization for
parameter mapping (Figs. 3,4).

4 Discussion

When the measurements are aliased, the optimization is subject to local minima
due to high noise levels of the temporal signals, resulting in biased parame-
ter estimates. On the other hand, as soon as the image series is unaliased, the
optimization converges, yielding parametric maps that are not subject to the
discretization of the dictionary. vFA maps display an underestimation of T2 val-
ues, indicating that the vFA strategy could still benefit from better T2 encoding
using variable repetition or echo times.
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Fig. 4. Estimated parametric maps with dictionary matching and model-based opti-
mization. Dictionary matching yields consistent results with noisy and unaliased sig-
nals, while the optimization only converges when fitting unaliased signals (rows 2 and 4,
right). When fitting noisy signals, the optimization converges to local minima, leading
to an incorrect estimation of parametric maps (rows 1 and 3, right). On the other hand,
the optimization is not subject to dictionary discretization, allowing for a wider range
of parameters in the solution space. T2 maps in vFA are underestimated in comparison
to MRF.

5 Conclusions

We demonstrated an alternative to MRF based on variable flip angles, a com-
pressed sensing reconstruction, and a model-based optimization. Our proposal
reduces the acquisition time by a factor of five, reconstructs unaliased tempo-
ral signals, and, notably, does not rely on dictionary matching for parameter
estimation.
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