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Abstract— Modern vehicles are equipped with multiple cam-
eras which are already used in various practical applications.
Advanced driver assistance systems (ADAS) are of particular
interest because of the safety and comfort features they offer to
the driver. Camera based scene understanding is an important
scientific problem that has to be addressed in order to provide
the information needed for camera based driver assistance
systems. While frontal cameras are widely used, there are
applications where cameras observing lateral space can deliver
better results. Fish eye cameras mounted in the side mirrors are
particularly interesting, because they can observe a big area on
the side of the vehicle and can be used for several applications
for which the traditional front facing cameras are not suitable.

We present a general method for scene understanding using
3D reconstruction of the environment around the vehicle. It is
based on pixel-wise image labeling using a conditional random
field (CRF). Our method is able to create a simple 3D model
of the scene and also to provide semantic labels of the different
objects and areas in the image, like for example cars, sidewalks,
and buildings.

We demonstrate how our method can be used for two
applications that are of high importance for various driver
assistance systems - car detection and free space estimation.
We show that our system is able to perform in real time for
speeds of up to 63 km/h.

I. INTRODUCTION

Intelligent camera systems are becoming increasingly im-
portant for a number of advanced driver assistance systems
(ADAS) in modern vehicles. Today almost all cars on
the market can be equipped with lane departure warning
assistants, collision detection assistants and other safety or
comfort systems that rely on video input from multiple
cameras. Most of those systems are based on a front facing
camera, mounted behind the windshield. Such cameras have
a good overview over the area in front of the car and they are
also usable at night because of the active lighting provided
by the head lights. Furthermore, the package allows for
mounting two cameras creating a stereo pair, which further
improves the quality of the systems. Therefore, front facing
cameras are the main point of research related to driver
assistance systems. However, this type of cameras does also
have several significant disadvantages. They cannot observe
the environment around the vehicle, which is important for
some systems like parking assistants for example. While
human drivers are always able to turn their head while
driving in order to examine the lateral space, this cannot be
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Fig. 1: Example result of our reconstruction algorithm. (a)
the calibrated input camera image, (b) the segmentation of
the image, (c) the reconstructed 3D model with textures

achieved with a fixed front facing camera and for those cases
sideways mounted cameras are needed. There are also cases
when lane detection that is based only on the front camera
may fail, because the road markings are hidden by another
vehicle driving closely in front (as often happens in traffic
jams). Therefore, cameras looking on the side of the car are
becoming increasingly important as a source of information
for various driver assistance systems.

This work presents a general approach of scene under-
standing based on a fish eye camera mounted on the side of
a vehicle. The method is based on segmenting the image in
regions with different semantic meaning, like for example the
street, cars and buildings. Those regions are then used to re-
construct a simple 3D pop-up model of the environment. The
reconstruction can be performed only from the segmentation
of a single image, in contrast to motion stereo approaches,
where at least two overlapping images are needed. The first
part of our work is mostly similar to [1], which shows state-
of-the-art results in image segmentation and is demonstrated
using a front facing camera on a moving vehicle. However,
because of the differences in the viewpoints of the front
facing camera and the sideways facing fish eye camera, we
show that several optimizations can be performed in order
to significantly speed up the segmentation. The second part



of our method is concerned with the construction of a 3D
model of the scene by resolving the projective ambiguity in
the camera image, using the segmented image and several
geometric assumptions that we can derive from our knowl-
edge about the environment. An example is shown on Fig.
1.

We evaluate our image segmentation algorithm against
a dataset of manually labeled images. We also show how
our method can be used for car detection and free space
estimation on the side of the vehicle. We evaluate our results
by dividing the space on the right side of the car in intervals
of a fixed width and we classify them as a free part of the
street or as occupied by a car.

II. RELATED WORK

There are several different approaches for scene under-
standing with a monocular camera mounted on a vehicle.
A lot of methods are focused on creating a 3D map of the
world with motion stereo approaches [?], [?], [2]. Recent
works show good quality of the reconstruction and real-time
performance [?], [?], but most of the systems do not give
information about the types of the objects in the scene.

Some more application specific works focus on explicit
reasoning about the street layout of the scene and the
detection of certain object classes in it [?], [?].

One way to acquire more semantic information about the
scene is to use an object detector, which is able to find
object of a certain category in the image, like for example
cars or people [4], [?], [?]. Most of these methods return a
bounding box around the detected object, while some are
also able to estimate its 3D position and orientation [6],
[7], [10]. Unfortunately, they cannot be used for amorphous
objects that do not have a well defined shape such as
streets and buildings and therefore cannot provide a complete
description of the whole image. Such detectors are already
built-in in most driver assistance systems available on the
market.

Another way for acquiring information for all parts of
the image is to use segmentation methods that divide the
image into regions belonging to different semantic classes.
Especially interesting approach is the semantic pixel-wise
labeling, which classifies each pixel of the image as belong-
ing to a certain class, like for example to a car, street or a
pedestrian. Due to recent advances in the fields of discrete
optimization and probabilistic graphical models, conditional
random fields (CRFs) have become the standard way for
solving such segmentation problems [1], [8], [9], [?].

Especially interesting are works that perform labeling and
segmentation on images from realistic outdoor scenarios.
In [1] the authors combine a static labeling approach with
a shape based car detector and a dynamic model, which
improves the recognition of vehicles. However, the presented
approach requires the extraction of image features at multiple
scales, while in our proposed method only one scale is
required even though similar features are used. The Tex-
tonBoost approach proposed in [8] uses significantly more
complex texton features, but shows results similar to [1]. The

work presented in [11] uses a pixel-wise segmentation as a
basis for the scene interpretation, but they do not perform
explicit higher level reasoning. Instead, additional classifiers
are trained in order to detect only the presence, but not the
exact location of certain objects in the scene.

Notable are also methods for creating rough 3D models
from a single frame. These methods try to infer the general
layout of the scene in order to resolve the projective ambigu-
ity in the image [?], [?], [?]. Those methods, however, rely
mostly on unsupervised segmentation algorithms, which are
not very robust.

III. METHOD

The method that we propose consists of two separate
steps. The first one is to segment the image into regions
corresponding to different semantic classes and the second
step considers the reconstruction of a 3D model of the
environment from multiple frames, given the segmented
images and the odometry data from the car.

A. Image segmentation

In order to segment the camera image into regions, be-
longing to different objects and areas, we employ an image
labeling method. The image is divided into small cells
according to a regular grid. Each image is of size 640 x
480 pixels and we choose the size of the grid to be 40 x 30
in order to get cells of size 16 x 16 pixels. Each cell is then
assigned a class depending on its appearance and the classes
of the surrounding cells, like for example car, street, building,
sidewalk, etc. In this way we get an implicit segmentation
of the image - grouping neighboring cells of the same class
gives us one distinct segment.

1) The model: We introduce one random variable yi for
each cell in the grid which encodes the class assigned to it.
The values of the pixels of each cell are indicated by another
variable xi and the set of possible classes is denoted by L.
We model the probability of a certain assignment of all cells
y, given the whole image x as a pairwise conditional random
field over the regular grid. According to the Hammersley-
Clifford theorem the posterior conditional distribution can
be written as:

p(y|x) =
1

Z(x)

∏
i

ψu(yi, xi, λ)
∏
(i,j)

ψp(yi, yj ,x, θ) (1)

The first product in the model equation iterates over all
cells i and the second product iterates over all pairwise
neighboring cells (i, j) in a 4-connected neighborhood. The
unary and pairwise potential functions are denoted with ψu
and ψp respectively and λ and θ are the model parameter sets.
Because the potential functions are not required to output
values between 0 and 1, a separate normalization factor
is needed in order to formulate the model as probability
distribution. This normalization factor is represented by the
partition function Z(x):



Z(x) =
∑
y′

∏
i

ψu(y′i, xi, λ)
∏
(i,j)

ψp(y′i, y
′
j ,x, θ) (2)

where y′ iterates over all possible assignments of the
classes to the cells. The optimal label assignment of the
camera image can then be retrieved by choosing the labeling
y∗ with the highest probability.

2) Features: The pixel values of the cell are not directly
used by the classifier, but a 50 element feature vector f(xi) is
extracted from them. For the features we use the 2D Walsh-
Hadamard transform, which is a discrete approximation of
the cosine transform, which can be computed very efficiently.
We compute the coefficients of the transform in the dyadic
order as described in [12]. The first 16 coefficients are
extracted from each of the tree channels of the camera image
in the Lab color space and stacked together in order to build
the feature vector. Additionally the grid coordinates of the
cell are appended to the vector in order to include location
context. In the case of a front facing camera as in [1], one
has to perform the Walsh-Hadamard transform at several
different scales in order to account for the big variations in
the appearance of the objects. However, in our case, because
of the viewpoint of the side camera, such big differences are
not present and we can save a significant amount of time by
using only one scale.

3) Potential Functions: The potential functions indicate
how likely it is that a given cell has a certain class. Since
the potential functions have to be non-negative it is very
convenient to represent them in a negative exponential form:

ψu(yi, xi, λ) = e−φu(yi,xi,λ) (3)

ψp(yi, yj ,x, θ) = e−φp(yi,yj ,x,θ) (4)

For the unary potential functions one AdaBoost binary
classifier is trained for each class and we denote the con-
fidence of the classifier that the cell xi has the class c
as Bc(xi). A linear combination of the confidences of all
classifiers is used in order to determine the value of the unary
potential functions:

φu(yi, xi, λ) = λyi

0 +
∑
c∈L

λyi
c Bc(xi) (5)

where λyi
c are the parameters of the linear combination for

each class. The classifiers are trained and the parameters λyi
c

are estimated in an offline learning phase.
The pairwise potentials encourage neighboring cells to

have the same label, unless there is a big difference in the
appearance of the two cells:

φp(yi, yj ,x, θ) = θyi,yj |f(xi)− f(xj)| (6)

Here again the parameters θyi,yj
are estimated from train-

ing data. For the difference in the appearance of the cells
we use the property of the Walsh-Hadamard transform that
similar images have small difference in the coefficients and

Fig. 2: 3D reconstruction of the street consisting of multiple
frames.

therefore we can take the length of the difference vector as
an indication of how different the appearance of the cells is.

4) Parameter estimation: Before the model can be used
to label new images, the parameter sets λ and θ should be
estimated. We prepared a set of 360 manually labeled images,
of which 80% were used as a training dataset in order to
estimate the parameters and 20% for validation. An exact
maximum likelihood estimation requires computation of the
normalization function Z(x) for each image, which should
iterate over 71200 different assignments for a 40 x 30 grid
and 7 classes. Since such computation is clearly intractable,
we adopted a piecewise learning approach as described in
[13] in order to approximate Z(x) locally.

5) Inference: The problem of finding the optimal labels
for a new camera image does not require the computation of
the normalization function, but is highly non-linear. Taking
the negative logarithm of the main model equation, allows
us to reformulate the inference problem as a free energy
minimization problem:

E(y) =
∑
i

φu(yi, xi, λ) +
∑
(i,j)

φp(yi, yj ,x, θ) (7)

In this case a big variety of discrete optimization methods
can be used in order to find an approximate solution. We used
the efficient α-expansion algorithm [14], which is specifically
designed for minimizing energy functions from pairwise
graphical models with multiple classes.

B. 3D environment reconstruction

In order to be able to reason about distances in the real
world, we must make the transition from the 2D image into
the 3D world. Generally such transition from a single image
is impossible, because of the ambiguity in the perspective
projection.

We propose a method, which can reconstruct a relatively
simple model only from a single image, given its segmen-
tation in semantic regions. In order to resolve the projective
ambiguity, we make several assumptions about the layout
of the scene which represent certain geometric constraints
like for example that cars should be standing on the street
and not floating in the air. We also assume that regions of
a certain class always lie in the same plane and that this
plane is either parallel to the ground plane or perpendicular
to the ground plane and parallel to the direction of travel. For
example we assume that cars are always perpendicular and
the sidewalk is always parallel to the street. This assumption



TABLE I: The geometric assumptions about the environment
incorporated into the model

Class Plane orientation Possible underlying classes

STREET horizontal -
CAR vertical STREET

CURB vertical STREET
SIDEWALK horizontal STREET, CURB, GRASS
BUILDING vertical STREET, CURB, SIDEWALK, GRASS

GRASS horizontal STREET, CURB, SIDEWALK
OBJECT vertical STREET, CURB, SIDEWALK, GRASS

may seem very restrictive, because not all parts of the side
of the car lie in the same plane, but it is relatively well
suited for measuring sizes of the objects and the distances
between them. Table I gives a complete description of the
used geometric assumptions.

In order to reconstruct a 3D model of the scene we choose
the origin of the world coordinate system to be on the ground
plane exactly under the camera with the z axis pointing
upwards, the x axis pointing in the direction of travel of
the vehicle and the y axis perpendicular of the traveling
direction pointing away from the car. We calibrated the
extrinsic parameters of the camera with a pattern on the
ground in order to obtain the position of the camera with
respect to the street. In this way we can derive the equation
of the ground plane. From the camera calibration data we can
compute the camera projection matrix P and then for each
2D image point x we can compute the ray on which the real
3D world point X should lie in order to be projected on x.
From the image segmentation we know which points belong
to the ground and from the intersection of the ground plane
and the projection ray we can compute the exact location of
the 3D point X:

X = P†x− πTP†x
πTC

C (8)

where C is the camera center, π is the ground plane vector
in homogeneous coordinates and P† is the Moore-Penrose
pseudoinverse, which has the property P†P = I.

After all points on the ground plane have been recon-
structed, we proceed with the objects standing on the ground.
For example if we have a car region above the street region,
we assume that the car touches the street in the lowest left
image point belonging to the car region. This point belongs
to both the car and the street and therefore we know its exact
3D position. Together with the assumption that cars lie in a
vertical plane parallel to the x axis, we can compute the
equation of this plane. After we have the plane equation, we
can use the same method as for the ground in order to find
the 3D positions of all points belonging to the car. Regions
of other classes are processed analogously, where regions
inconsistent with our geometric assumptions are removed.

In order to acquire a 3D model of a whole sequence of
images, we take an image every 2 meters and we register
the images to one another using the odometry data from the
car, assuming a motion only along the x axis (see Fig. 2).
We should note that the straight motion assumption is not a

principle limitation of our approach, but only requires more
complex vehicle motion model.

IV. RESULTS

We demonstrate and evaluate our method in two separate
steps - image segmentation and 3D reconstruction. The
quality of the segmentation influences the quality of the free
space estimation and car detection in most cases, but the
relationship is not always directly visible as we will show.

A. Image segmentation

In order to evaluate the performance of the image seg-
mentation algorithm we prepared a dataset of 360 calibrated
camera images of resolution of 640 x 480 pixels, taken with
a moving car at speeds of up to 60 km/h (see Fig. 3 for
examples). The dataset was split into a training dataset of
288 images and validation dataset of 72 images. All of them
were manually labeled in order to provide ground truth data.
We used 7 classes in the experiments: STREET, CAR, CURB,
SIDEWALK, BUILDING, GRASS and OBJECT. The image was
divided in a regular grid 40 x 30 cells corresponding to a
cell of size 16 x 16 pixels.

After the offline training of the model parameters with
the training dataset, we evaluate the number of correctly
classified cells over all images in the validation dataset,
achieving a precision of 85.5%. The resulting confusion
matrix can be seen in Table II - here the rows indicate
the true class of the cell and the columns show the class
predicted by our model. While the classes STREET, CAR,
BUILDING and GRASS have relatively good detection rates,
the CURB, SIDEWALK and OBJECT classes do not perform
so well because of several reasons. The errors for the CURB
class are mostly due to the relatively small size of the curb
in comparison to the cell size of 16 pixels. Because of this
almost all cells containing a piece of the curb do also contain
a piece of the street or the sidewalk. The confusion matrix
shows that indeed in most of the cases the curb is mistaken
either for street or for sidewalk. The misclassified instances
of the SIDEWALK class are mainly due to the very similar
appearance of the street and sidewalk surfaces, which can
also be seen in the confusion matrix. The class OBJECT
consists of all objects that cannot be assigned to any other
class and in general has very few instances in the dataset.

The segmentation of one image takes 80 ms on average on
an Intel Core 2 Duo, 2.4 GHz, 4 GB RAM machine without
using SSE instructions optimization.

B. Car detection and free space estimation

In order to demonstrate how our method can be used in
real life scenarios, we developed an example application for
car detection and free space estimation on the side of the
vehicle. In order to evaluate our method, we discretize the
area on the right side of the vehicle in intervals of 0.5 m
along the x axis. In this way we can formulate the task
as a classification problem, where each interval has to be
assigned one of the 3 possible labels: CAR, FREE SPACE or
OCCUPIED SPACE. A CAR is an interval, where more than



TABLE II: Confusion matrix of the image segmentation algorithm

STREET CAR CURB SIDEWALK BUILDING GRASS OBJECT

STREET 94.58% 2.10% 0.12% 3.07% 0.13% 0.00% 0.00%
CAR 1.26% 91.21% 0.32% 1.79% 5.31% 0.01% 0.10%

CURB 35.80% 11.26% 34.83% 12.56% 4.75% 0.71% 0.08%
SIDEWALK 25.60% 8.58% 0.29% 59.88% 5.49% 0.15% 0.00%
BUILDING 0.44% 10.07% 0.26% 7.62% 81.10% 0.09% 0.42%

GRASS 0.09% 0.09% 0.09% 0.47% 14.19% 85.06% 0.00%
OBJECT 0.88% 3.27% 0.76% 7.30% 35.52% 0.00% 52.27%

50% are occupied by a vehicle, a FREE SPACE is a part of
the street where cars are free to drive and OCCUPIED SPACE
is a part of the infrastructure around the street, where driving
is not allowed as for example the sidewalk, grass areas or
buildings. This problem representation gives us a good way
to evaluate the method’s performance and to analyze the
relationship between the errors in the image segmentation
algorithm and the street layout classification algorithm.

We conducted tests by driving a car around the city streets
for about 1 km at speed of up to 60 km/h. The streets for
the test were of several different layout types: small one
way streets with cars parked on the side, streets with no
cars parked on the side, multiple lane streets while driving
in the right most lane or the middle lane. Because the
reconstruction model assumes motion only along the x axis
(but it does not assume a constant speed) we evaluated only
the results were the car is driving straight with a turning angle
of no more than 3 degrees. The classified intervals were then
manually checked and the correct and wrong classifications
were counted. The overall achieved detection rate is 87.3%
and the corresponding confusion matrix is shown in Table
III. As we can see from the confusion matrix, cars were
recognized correctly in almost all cases (99.59%) with false
positives almost only at intervals, where the car starts or ends.
These errors are mainly due to the geometric assumptions
that we make. From the viewpoint of the sideways mounted
camera, almost only the side of the car is observed, which is
lying basically in the same plane. The assumption is violated
only at the corners of the car, where small parts of the front
or the backside are also visible, resulting in a reconstruction
that is slightly wider than the actual object. An example of
the street layout classification algorithm can be seen on Fig.
4.

In this application most of the errors in the image seg-
mentation do not have a direct influence of the layout
classification - for example if a GRASS area is mistaken for
a BUILDING, it is still considered as an occupied area. The
error that influences the application the most is when a part
of the SIDEWALK is wrongly classified as STREET (25.6% in
the image segmentation). One can see the influence of this
error also in the confusion matrix of the layout classification
- 21.23% of the OCCUPIED intervals are recognized as FREE.

The time needed for the creation of the 3D model and the
classification of the intervals is on average 35 ms per frame.
Including the time for the image segmentation the method
requires 115 ms per frame. We should also note, that the

TABLE III: Confusion matrix of the street layout classifica-
tion algorithm

CAR FREE OCCUPIED

CAR 99.59% 0.00% 0.41%
FREE SPACE 7.05% 87.67% 5.28%

OCCUPIED SPACE 8.94% 21.23% 69.83%

proposed application requires only one image on every 2
meters to be processed, which means that the method is able
to process all images in real time for driving speeds of up
to 63 km/h which is enough in most cases in city scenarios.

V. CONCLUSION

We presented a two stage method for creating a simple
3D model of the area on the side of a moving vehicle with a
sideways mounted fish eye camera. The model also contains
semantic information about the type of the objects in the
scene like cars, street, buildings and others. We showed how
this generic method can be used for car detection and free
space estimation. The method is able to perform in real time
while driving with a speed of up to 63 km/h and to detect
cars and free spaces with a detection rate of 87.3%.
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