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Abstract. High precision ground truth data is a very important factor
for the development and evaluation of computer vision algorithms and
especially for advanced driver assistance systems. Unfortunately, some
types of data, like accurate optical flow and depth as well as pixel-wise
semantic annotations are very difficult to obtain.
In order to address this problem, in this paper we present a new frame-
work for the generation of high quality synthetic camera images, depth
and optical flow maps and pixel-wise semantic annotations. The frame-
work is based on a realistic driving simulator called VDrift [1], which
allows us to create traffic scenarios very similar to those in real life.
We show how we can use the proposed framework to generate an exten-
sive dataset for the task of multi-class image segmentation. We use the
dataset to train a pairwise CRF model and to analyze the effects of using
various combinations of features in different image modalities.

1 Introduction

The availability of high quality datasets is a crucial factor for the development
of new computer vision algorithms. On one hand, learning-based methods need
large amounts of ground truth data during their training phase and on the other
hand, high quality data is crucial for a thorough and fair evaluation and com-
parison of different methods. Innovation in the computer vision and the machine
learning fields has been largely driven by datasets and benchmark evaluations,
which allow us to quantitatively measure the progress in the field.

Some types of data are relatively easy to obtain with high precision e.g. cam-
era images or depth images in indoor scenarios. For such image modalities there
are low-cost sensors available that can generate a lot of data very quickly. Other
ground truth data, like object annotations or multi-class pixel-wise annotations
of images, can be obtained by manual user annotation. Unfortunately, this is a
very time consuming and expensive task. Other types of ground truth data, like
depth images outdoors and optical flow, are also very difficult to obtain. Stereo
cameras or laser scanners can deliver depth information, but suffer either in pre-
cision or deliver very sparse information. For optical flow there is no sensor that
is able to measure it directly and manual annotation is practically impossible.
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a) Camera image b) Depth image c) Optical flow d) Segmentation

Fig. 1. Example images in 3 different modalities and the corresponding pixel-wise
annotations generated with the proposed framework. In the flow image, pixels with
flow of more than 10 px are shown in darker colors. More examples are available in the
supplementary materials.

There are already several large-scale datasets for the evaluation of stereo [18,
10], optical flow [2, 7, 26, 10] and object detection [9, 10]. However, for the task of
outdoor multi-class image segmentation, there is still no extensive dataset that
includes high quality video sequences of outdoor scenes, high precision dense
depth maps and a large set of annotated images. Such datasets are particularly
important in the field of advanced driver assistance systems (ADAS). While
several datasets [4, 8, 16, 15] provide some of this data, they either have only low
quality images or very sparse or imprecise depth maps (see Section 2).

One way to easily obtain large amounts of high precision ground truth data
is to generate it synthetically. While it is very difficult to claim that an algo-
rithm that performs well on a synthetic dataset will also perform well on real
images, synthetic images are often used during the development of new methods
in order to better understand some of their properties. For example [14] use a
synthetic rotating sphere for the evaluation of scene flow and [23, 24] use syn-
thetic traffic sequences rendered with POV-Ray to evaluate stereo and optical
flow algorithms for driver assistance. Furthermore, benchmarks like the popular
Middlebury dataset [2] or the recently introduced Syntel dataset [7, 26] employ
synthetic images for the evaluation of optical flow and [6] use synthetic scenes
for the evaluation of background subtraction algorithms.

In this work we present a new open-source framework for generating syn-
thetic data in multiple image modalities with corresponding pixel-wise seman-
tic annotations with focus on driver assistance applications (see Fig. 1). The
framework is based on the open-source driving simulator VDrift [1], which pro-
vides a very realistic rendering engine and physics simulation. Having full ac-
cess to the source code and the 3D models of the simulator, we are able to
modify it, so that we can generate not only camera images, but also high
precision depth and optical flow maps, pixel-wise semantic annotations and
to record the exact camera pose for every frame. The proposed framework
also allows the user to define specific traffic scenarios that can be of partic-
ular interest for driver assistance applications. The framework is available at
http://campar.in.tum.de/Main/VladimirHaltakov.

Using the proposed framework we show how to generate images in 3 different
image modalities and train a pairwise conditional random field (CRF) model



Framework for generation of synthetic ground truth data. 3

Table 1. Summary of the most important properties of 12 publically available multi-
class segmentation datasets and our proposal.

Dataset Image Video Depth Traffic Annotated
resolution sequences data scenes images

Sowerby [12] 96 × 64 - - yes 104
Corel [12] 180 × 120 - - - 100
MSRC-21 [19] 320 × 213 - - - 591
Stanford Background [11] 320 × 240 - only 3 classes partially 715
CamVid [4], [5] 960 × 720 yes motion stereo yes 700
Dynamic scenes [25] 752 × 480 yes - yes 221
Leuven [15] 316 × 256 yes partially yes 70
City [8] 640 × 480 yes stereo yes 95
NYU Depth V1 [20] 640 × 480 yes Kinect - 2347
NYU Depth V2 [21] 640 × 480 yes Kinect - 1449
CMU RGB-D [16]1 600 × 402 - laser yes 372
KITTI [10] 1384 × 1032 yes stereo, laser yes -
Our framework 2560 × 1600 yes 3D models yes 79052

for multi-class image segmentation, similar to the one of [19]. We show how the
multiple modalities allow us to explore the effects of different feature types.

2 Related Work

Since we are particularly interested in multi-class image segmentation of out-
door scenes (and especially in the context of ADAS), in this section we give an
overview of some of the more important segmentation datasets. Table 1 gives
a brief overview of the existing datasets and we discuss their advantages and
disadvantages in detail below.

Most of the multi-class segmentation datasets, like Sowerby [12], Corel [12],
MSRC-21 [19] and the Stanford Background dataset [11], consist only of separate
camera images with their corresponding semantic annotations. Therefore, they
can only be used in segmentation methods that rely solely on texture informa-
tion. Furthermore, all of the datasets mentioned above provide only relatively
low resolution images (less than 320 × 240 pixels).

Some of the newer datasets, like CamVid [4, 5] and the Dynamic Scenes
Dataset of [25], include video sequences which can be used to compute optical
flow or structure from motion point clouds. However, these methods do not de-
liver high quality depth information. This could be a problem for the evaluation,
because it is difficult to tell which errors are caused by the input data and which
by the model itself. Both datasets do not provide any other ground truth data
apart from the pixel-wise annotations.

1 Although the CMU RGB-D dataset contains images of resolution 3872 × 2592, the
semantic annotations are created with a resolution of 600 × 402.

2 More images can be easily generated with the provided framework.
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The Leuven [15] dataset and the City [8] dataset provide not only video
sequences of road scenes and semantic annotations but also stereo camera images.
While the quality of the depth maps computed with stereo matching algorithms
is in general better than with structure from motion methods, the depth data
can still contain many errors around object boundaries or in the presence of
reflections. Furthermore, the images provided by both datasets have a relatively
small resolution and only less than 100 frames are annotated.

In order to deal with the problem of providing high quality 3D data, sev-
eral works introduce datasets that use an additional high precision depth sensor
along with the camera: the NYU Depth V1 [20], the NYU Depth V2 [21] and
the CMU Driving RGB-D [16] datasets. The first two datasets use the Microsoft
Kinect to record synchronized camera and range images in indoor environments.
Additionally, many of the frames have pixel-wise annotations. However, outdoor
scenarios pose significantly different challenges than indoor scenes and therefore
those datasets cannot be used to develop or evaluate methods that are required
to work in outdoor environments, like in the case of driver assistance systems.
The CMU RGB-D driving dataset of [16] employs a laser scanner instead of the
Kinect, which allows recording of outdoor scenes. However, the images provided
in the dataset are recorded at a relatively low frame rate, which makes the com-
putation of optical flow or the usage of temporal information almost impossible.
Furthermore, the used laser scanner operates in push broom mode and therefore
the depth maps are sparse and do not always overlap with the camera images.

The recent dataset KITTI [10] is also worth mentioning even though it does
not provide pixel-wise semantic annotations. The dataset consists of a large
amount of stereo camera video sequences of traffic scenes synchronized with
the output of a 360 degree laser scanner providing precise, but sparse ground
truth depth and flow data for the lower part of the camera’s field of view. The
authors also provide extensive benchmarks for the evaluation of stereo, optical
flow, object detection and visual odometry methods. Unfortunately, the dataset
contains only bounding box annotations for cars, pedestrians and cyclists and
no pixel-wise semantic labels.

3 Framework

The ground truth data generation framework is based on the open source driving
simulator VDrift [1]. We considered several driving games and simulators and we
chose VDrift because it provides very realistic images, a sophisticated simulation
engine and a lot of different track and car models. In addition, we have full access
to the source code. As we show below, the last point is essential for the generation
of some of the image modalities.

3.1 Image Modalities

Since our main goal is to generate data for different image modalities, we adapted
the rendering pipeline of the simulator to suit our needs. We are able to control
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different rendering settings like lighting and shadow generation and we can access
the 3D structure of the scenes. We are also able to control the camera pose
relative to the car and in this way to simulate cameras mounted at different
positions and orientations. We developed a set of OpenGL shaders that generate
different image types efficiently and we are able to run the simulation in real
time. The rest of the section describes in detail each of the image modalities
that can be generated by our framework. One example frame can be seen on
Fig. 1 and video sequences are provided in the supplementary material.

Camera images For the camera images we use the default rendering pipeline
of the simulator, which is based on OpenGL. It employs several rendering tech-
niques like anisotropic filtering, anti-aliasing, motion blur, ambient occlusion,
shadows and reflections. The textures of the 3D models in the simulator are
also of relatively high quality. This results in very realistic camera images with
resolution of up to 2560 × 1600 pixels.

Depth maps From the 3D models of the scene, we are easily able to generate
depth images by directly accessing the z coordinate (in the camera frame) of
each pixel. Since our implementation is based on an OpenGL shader, we encode
the depth information into all 3 color channels of the output image, which lieads
to a precision of 24 bits per pixel. If the maximum distance is set to 1000 meters
the resolution of the ground truth disparity map is 0.06 mm.

Optical flow maps The generation of ground truth optical flow is more challeng-
ing than that of the depth maps, since the required information is not directly
available. In OpenGL there are two matrices that have an effect on where a 3D
point should be rendered in the image - the model matrix and the projection
matrix. While the camera is moving around the scene, the model matrix of each
object is updated in order to account for the camera motion, while the projection
matrix is usually fixed.

At each frame we provide the optical flow shader with the current model
matrix for each object and the model matrix from the previous frame. With
this information we can compute the 3D movement vector of each point from
the previous frame to the current one. By projecting this 3D vector onto the
image plane of the camera, we get the corresponding optical flow for each 3D
vertex, but we still have to compute the flow value for the points of each triangle
defined by 3 vertices. Interpolating the flow between the vertices in 2D would
lead to wrong flow values for the triangle’s points. Instead, we interpolate the
3D position of each triangle point in the current and in the previous frame and
then compute the correct flow value for each image point.

As for the depth maps, we encode the flow into the 3 color channels of the
output image with a precision of 24 bits per pixel. The flow values in x and y
direction are encoded into separate images, from which the original flow can be
easily reconstructed. This means that in the case of sequences with a maximum
flow value of 100 pixels, the resolutions of the ground truth data is 0.6 × 10−5

pixels.
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Pixel-wise annotations In the case of pixel-wise semantic annotations, each of
the pixels in the image should be assigned a class from a set of predefined
classes L that we are interested in. Here we define the set L that consists of 7
classes: sky, tree, grass, road, markings, building and car. Unfortunately,
VDrift does not support different semantic information for all of the object types
listed above. For example, in the 3D model of the track, trees and buildings are
indistinguishable, because they are simply modeled as 3D meshes. The road
markings do not even have separate 3D structure at all. Therefore, the best way
to distinguish the different object types is by their texture. We assigned a unique
RGB color value to each of the classes above and modified the textures of several
tracks by painting them uniformly with the corresponding colors. Rendering the
scene with those textures results in a scene where each object is painted in the
color specifying its class. In this case, it is very important to switch off all visual
effects like lighting, shadows, reflections, anti-aliasing and mip-mapping in order
to get the right color value for each pixel.

3.2 Scenario Generation

Since VDrift was originally created as a racing simulator, we modified the game
engine in several ways in order to allow for the generation of scenarios that
simulate real traffic conditions. Using the default AI settings, the cars would
drive as fast as possible around the track. Therefore, we modified the replay
system of the simulator so that we are able to manually record the movement
of several cars separately and then combine all the replays into one. In this way
we can create arbitrary scenarios of multiple cars driving like in normal traffic.

We also added the possibility to put stationary vehicles at arbitrary positions
on the map. In this way we can simulate parked cars for more realistic scenes.

4 Evaluation

The ground truth data that we can generate using our framework gives us the
possibility to explore the effects of using different image modalities for multi-
class image segmentation based on a CRF. This is not possible with any of the
existing datasets because they either do not include all 3 image modalities, the
quality of the data is relatively poor or the amount of the training data is limited.
For most of the existing segmentation datasets all of the above are true.

For the experiments we created 25 sequences on 5 different tracks simulat-
ing a car driving on country and city roads. Of those sequences, 12 were used
for training and 13 for testing. The virtual camera was mounted behind the
windshield of the car like a typical camera used for driver assistance systems in
current vehicles. For each frame we generated images in all 3 possible modalities:
camera images, depth maps and optical flow maps and the ground truth pixel-
wise semantic annotations. Running the simulation at 30 frames per second we
generated 7905 images. However, since at this frame rate consecutive images are
very similar, we took only each 5th image, which results in a training dataset of
669 images and an evaluation dataset of 912 images.
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Table 2. Pixel-wise accuracies from the evaluation of the CRF segmentation model
trained on 7 different combinations of features.

M
o
d
e
l

A
c
c
u
ra

c
y

A
v
e
ra

g
e

R
o
a
d

M
a
rk

in
g

B
u
il
d
in
g

G
ra

ss

T
re

e

C
a
r

S
k
y

T 89.0% 70.5% 79.5% 20.0% 61.9% 79.2% 73.6% 88.4% 90.9%
D 80.6% 58.8% 88.4% 0.0% 54.2% 68.0% 25.8% 92.3% 83.1%
F 75.0% 49.3% 82.3% 0.0% 52.8% 19.4% 16.7% 91.7% 82.5%
T+D 91.2% 72.2% 88.1% 10.0% 72.5% 82.0% 70.3% 92.5% 90.2%
D+F 79.8% 57.9% 84.5% 0.0% 55.3% 73.5% 15.1% 92.1% 84.6%
T+F 90.1% 70.9% 84.7% 10.4% 64.0% 79.4% 74.3% 93.1% 90.6%
T+D+F 91.0% 71.2% 88.8% 3.2% 71.3% 82.7% 68.2% 93.2% 90.9%

4.1 CRF Model

For the multi-class image segmentation task we use a pairwise CRF model very
similar to the TextonBoost model of [19]. Each pixel of the image is first classified
with a JointBoost classifier [22] based on various features extracted from the
image and then inference is performed using the α-expansion algorithm [3] on
the pairwise graph. Here, we do not use the color and location unary potentials
of [19], but only the classifier based unary term, while the pairwise potentials
have the form of the contrast sensitive Potts model as in [19]. We also use
different features than the textons of [19] in order to incorporate the texture,
depth and flow information and to evaluate the contribution of the different
image modalities to the performance of the CRF model.

For the texture features we transform the image into Lab color space and
for each color channel we compute the mean and the variance of the first 16
coefficients of the 2D Walsh-Hadamard transform [13] at several scales around
each pixel as in [25]. For our experiments we used windows of 8, 16 and 32
pixels to compute the texture features. The depth features consist of the 3D
coordinates of the corresponding 3D point, the coordinates of the surface normal
at this point and the Fast Point Feature Histogram (FPFH) of [17]. For the
flow features, we use the 2D vector of the flow directly. In order to incorporate
context information, we also include the 2D coordinates of the pixel.

The segmentation is performed on cells of 8 × 8 pixels instead on each pixel,
but the evaluation is done at the pixel level.

4.2 Results

We analyze the importance of different image modalities for the segmentation
performance. We train and evaluate 7 variants of the CRF model described above
by giving it access only to the features of different subsets of image modalities:
texture (T), depth (D), flow (F), texture and depth (T+D), depth and flow
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camera image depth flow ground truth
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Fig. 2. Input images in 3 different modalities, the ground truth annotation and the
output segmentation of all 7 models for one frame from our evaluation dataset. More
result images are provided as a video in the supplementary material.

(D+F), texture and flow (T+F) and all three together (T+D+F). The loca-
tion features are used in every configuration. In Table 2 we report the percentage
of correctly classified pixels over all evaluation images, for each class individually
and the average precision over all classes. In Fig. 2 we show the segmentation
computed by all 7 models on one frame of the evaluation dataset. More segmen-
tation results are provided in the supplementary material.

Using only the texture features (T), the CRF model is already able to achieve
very good results - 89.0% overall accuracy. However, for classes with big vari-
ations in appearance, like building or car (compared to the other configura-
tions), the performance is not that good, which can also be seen on the result
images. Using the depth (D) or the flow features (F) alone leads to relatively
poor results - 80.6% and 75.0% respectively. While the numbers may not seem
too bad, we can see from the resulting images that the segmentation is much
worse than in case of using only the texture features. Traffic scenes often have
similar structure - sky in the upper part of the image, road in the lower part
and combination of buildings, trees and cars in the middle part. This allows the
CRF model to achieve high accuracy rates relatively easy relying on the loca-
tion features, but in order to evaluate the real quality of the segmentation, one
should look into the details. For example, we can see both from the quantitative
analysis and from the result images, that when using only depth or flow, the
model has difficulties distinguishing between flat surfaces like road and grass
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and the road markings cannot be detected at all. The average performance of
those models over all classes is therefore also low.

It is not surprising to see that combining the texture features with either
depth (T+D) or flow (T+F) features results in increased overall segmentation
accuracy - 91.2% and 90.1% respectively. In most of the classes we see significant
improvements, especially for road, building and car. This is the case because
those classes vary a lot in their appearance, but have well defined shapes, which
can be better captured by the depth or flow features.

Combining all 3 feature types (T+D+F) gives overall accuracy of 91.0%
that is only slightly worse (by 0.2%) than when using texture and depth features.
This suggests that the information encoded by the depth and flow features is
relatively similar. This is also confirmed by the model that uses them together
(D+F). When combining those two modalities, no improvement is observed.
However, in the case of more dynamic scenes this could change.

In conclusion we can say that it makes sense to use depth or flow features
along with texture features extracted from the camera images, because they
can improve the recognition of objects that have relatively well defined shapes
like for example cars. When using relatively simple features for the depth and
flow modalities, as in our case, it is not beneficial to include all three image
modalities, but this may change if more sophisticated features are used.

5 Conclusion

In this paper we presented a new framework for the generation of ground truth
data, which is based on the realistic driving simulator VDrift. The framework
can be used to easily generate big amounts of high quality camera images, depth
and optical flow maps and pixel-wise semantic annotations. Furthermore, the
framework allows for the generation of specific driving scenarios that can be of
particular interest for the development of advanced driver assistance systems.

We show how we can generate a dataset for the evaluation of multi-class
segmentation algorithms that contains images in 3 different modalities and how
we can use it to evaluate the performance of different feature types.

The proposed framework can also be used to generate ground truth data
for other applications. One could easily generate images of two cameras and
evaluate stereo matching algorithms given the ground truth depth data or one
could use consecutive frames and the generated flow maps to evaluate optical
flow and structure from motion methods. Other applications of the framework
include the development and evaluation of visual odometry, scene flow and object
detection methods.
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15. Ladický, L., Sturgess, P., Russell, C., Sengupta, S., Bastanlar, Y., Clocksin, W.,
Torr, P.H.: Joint optimisation for object class segmentation and dense stereo re-
construction. In: BMVC (2010)

16. Munoz, D., Bagnell, J.A., Hebert, M.: Co-inference for multi-modal scene analysis.
In: ECCV (2012)

17. Rusu, R., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d reg-
istration. In: ICRA (2009)

18. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. In: IJCV (2002)

19. Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost: Joint appearance,
shape and context modeling for multi-class object recognition and segmentation.
In: ECCV (2006)

20. Silberman, N., Fergus, R.: Indoor scene segmentation using a structured light sen-
sor. In: ICCV - Workshop on 3D Representation and Recognition (2011)

21. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support
inference from rgbd images. In: ECCV (2012)

22. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass
and multiview object detection. In: PAMI (2007)

23. Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and
motion behaviour on synthetic and real-world stereo sequences. In: IVCNZ (2008)

24. Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D.: Stereoscopic
scene flow computation for 3d motion understanding. IJCV (2011)

25. Wojek, C., Schiele, B.: A dynamic conditional random field model for joint labeling
of object and scene classes. In: ECCV (2008)

26. Wulff, J., Butler, D.J., Stanley, G.B., Black, M.J.: Lessons and insights from creat-
ing a synthetic optical flow benchmark. In: ECCV Workshop on Unsolved Problems
in Optical Flow and Stereo Estimation (2012)


