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Abstract

Scene understanding is an important class of computer vision problems that is

an enabler for a wide variety of applications such as advanced driver assistance

systems, autonomous vehicles or mobile assistive robots. Semantic segmentation

is one of the common ways to address this problem. Unlike the more standard

approaches based on a probabilistic graphical model, in this paper we present a

two stage classification framework based on the concept of pixel neighborhoods.

In the first stage, every pixel is classified based on its appearance. The output

of the first classifier in a specific region around every pixel, which we call the

pixel neighborhood, is summarized by a novel voting histogram feature and given

as input to a second classifier. We show how to define the pixel neighborhood by

using the geodesic distance in a way that it is able to capture both local image

context as well as more global object relations.

We perform a quantitative and qualitative evaluation on six well-known and

challenging datasets and show that our model is able to natively handle both

2D and 3D data. We compare our method to several baselines and multiple

closely related methods and show state-of-the-art performance. We also present

a real world application of our method in a system that automatically detects

parking spaces from a moving vehicle in real time.
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1. Introduction

Many assistive systems and applications like mobile robots, advanced driver

assistance systems and autonomous vehicles need to interpret the environment

they operate in. Such systems are usually equipped with one or more cameras as

their main sensor and, therefore, strongly rely on computer vision methods for5

the perception of the environment, which needs to be fast, robust and accurate.

Traditional object detection systems can usually detect objects that have

a well-defined shape like vehicles, traffic signs, people and household objects.

However, for a system to get a complete understanding of the scene it also needs

to recognize other parts of the surrounding environment that do not always have10

clearly defined appearance like roads, sidewalks, buildings, floors and walls.

Semantic segmentation is one of the fundamental computer vision problems

that enables such environment interpretation and understanding from camera

images that provides more context information about the environment than

sparse object detection systems and can be of great benefit for many applications15

that need to operate in complex, uncontrolled environments.

In recent years, depth sensors like stereo cameras and the Microsoft Kinect

have become increasingly accurate and affordable and they are now a standard

part of assistive robots, autonomous vehicles or as part of driver assistance

packages. Therefore, many modern assistive systems have access not only to 2D20

camera images, but also to depth data that offers richer information about the

scene and can be used to greatly improve accuracy and robustness.

Semantic segmentation has been a very active research field in recent years

and different works focus on different aspects of the problem: designing new

and more discriminative features, building stronger and more general classifiers25

or modeling the relations between different parts of the image. In this paper,

we focus on the latter. We build our method around the concept of the pixel

neighborhood, which represents a set of pixels related in some way to the pixel

of interest. We present a two-stage classification framework in which the output

of a unary classifier based on image features is summarized by a novel voting30
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histogram feature and given as input to a second classifier. We show that this

concept allows us to model both local and global context relations.

In this paper, we explore different ways to define neighborhoods and intro-

duce a novel neighborhood type based on the geodesic distance transform. We

also show that this concept can naturally be applied to both 2D and 3D images35

and that the combination of both modalities allows us to deal with problems,

which are difficult to solve by either one separately. We compare our method to

multiple state-of-the art approaches and show similar or increased performance,

while keeping the runtime of our method low.

Our main contributions are the two-stage segmentation framework based40

on local and global geodesic neighborhoods and the voting histogram features

that provide a compact representation of context information. Furthermore,

we show how to combine 2D and 3D data in the unary features and in the

geodesic neighborhood by a novel use of the 2D Walsh-Hadamard transform and

a combined distance measure. Additionally, we show how to use the geodesic45

neighborhood to efficiently perform smoothing of the final segmentation. The

concept of the geodesic neighborhood was initially introduced in [1].

2. Related work

There is a huge amount of work on semantic segmentation, but here we

focus on the methods that have similar goals or use similar approaches. We50

cluster the related works in three main categories: random fields based methods,

classification based methods and methods that explicitly handle 3D scenes.

2.1. Random fields based methods

One of the most popular approaches to multi-class image labeling is to use

a Markov Random Field (MRF) or a Conditional Random Field (CRF) [2]55

as the underlying model and an energy minimization framework for inference.

The interaction between different parts of the image are modeled as potential

functions defined over one, two or more pixels. The relatively simple pairwise
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models already provide good results [3, 4] even though they explicitly model

relations only between two adjacent pixels. Due to the simple form of the60

resulting energy function, such models allow for fast training and inference [5].

Modeling more complex pixel or region interactions requires augmenting the

pairwise models with higher-order potential functions. Although, more difficult

to optimize efficiently, they lead to improved segmentation performance [6, 7].

The Robust Pn model of [7] presents a special type of higher-order potentials65

based on large pixel segments generated by unsupervised segmentation. While

the resulting energy function can be efficiently optimized by graph-cuts based

methods, the parameter estimation in the training phase is difficult in practice

and requires exhaustive search on a validation dataset. Various other works

extend the Robust Pn model to explicitly handle 3D information [8], to include70

information from object detectors [9] or to build region hierarchies [10, 11].

More complex potential functions enable random fields to better model ob-

ject relations and to improve the segmentation performance, but this usually

leads to an increased number of model parameters. This in turn makes pa-

rameter estimation and training more difficult and requires significant approx-75

imations in order to be tractable. Another problem with the standard CRF

and MRF models is that the parameters, e.g. the weighting between the unary

and the pairwise terms, depends strictly on the training dataset for which it is

optimized and is fixed for all other input data. Therefore, the weighting may

differ for the input data and may in general not be suitable. To overcome this80

problem, methods like the decision tree fields [12] and the regression tree fields

[13] make the parameters dependent on the input image and use a trained tree

model to find the best parameters for the given input. While powerful, these

models introduce additional complexity on top of the already complex CRF

models and are usually difficult and computationally expensive to train. An85

alternative approach is the inference machines method [14], which employs a

classifier to learn the messages passed during belief propagation, used as the

inference method for a CRF model. The authors of [15] present an extension

of this idea specialized for 3D point clouds, which is able to learn spatial se-
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mantic context from several source regions defined for each point. The source90

regions cover bigger parts of the space and are in some ways similar to our rays

neighborhood, but they do not adapt to the input structure and are integrated

differently into the model.

Instead of a CRF model, our method relies on a classification framework.

All pixel and region relations are modeled implicitly by the classifier and are95

therefore naturally dependent on the input. Furthermore, the classifier handles

both the training and the inference phase, while CRF models require different

methods during training and evaluation. Overall, our approach is very simple

and fast to train and use and has a low number of meta parameters.

2.2. Classification based methods100

A different approach to the semantic segmentation problem is to use a clas-

sifier or a sequence of classifiers to directly predict the class of each pixel.

The semantic texton forests model [16] employs two random forest classifiers

with the first one applied directly on features computed from the image. Local

rectangular features computed on the output of the first classifier serve as an105

input to the second one enabling it to learn local context relations.

The auto-context method [17] trains a chain of classifiers where each one has

access to both the image features and the predictions of the previous classifier at

fixed positions around each pixel. This allows the classifiers to learn both local

and global context relations, but since the look-up positions in the probability110

map of the previous classifier are fixed for each pixel, the learning method does

not take into account the structure of the scene. By contrast, our proposed

method is able to align well to object boundaries as shown in Section 4.2.

Similar to auto-context, the stacked hierarchical learning method of [18]

employs a series of classifiers based on the concept of stacking [19], but in115

a hierarchical way. The image is segmented at different levels with different

parameters such that on the top level there is only one segment, while on the

bottom level the segments are in the form of superpixels. A classifier is trained

for each level to predict the proportion of the labels in each segment.
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Another approach using the auto-context idea are the Iterative Context120

Forests (ICF) of [20, 21]. They are based on the well-known Random Decision

Forests, but in each level of the decision trees that class probability maps from

the previous level are made available to the classifier in the form of additional

feature maps. This allows the classifier to iteratively learn context by choosing

features operating on the class probability maps. On one side, the ICF method125

is able to express much finer context relations then our model, by comparing

regions at arbitrary positions in the image, while the classifier in our approach

receives only the summarized information from the local neighborhoods and the

rays of the global neighborhood. On the other side, the regions used by our

method have a shape that aligns well to the object boundaries guided by the130

geodesic distance. The voting histogram features computed over those regions

are a much more compact representation that still manages to capture well the

context information for the region, enabling the neighborhood classifier to learn

context relations between the pixels and their neighborhoods.

The entangled forest model [22] separately trains several decision trees as is135

usually done in a random forest classifiers, but at several levels of the tree, the

predictions of the parent nodes are pooled together with the image features. The

GeoF model [23] extends the entangled forests by employing geodesic smoothing

of the predictions of the parent nodes. Even though the authors also employ

the geodesic distance transform, their method differs in several ways from ours.140

While we use the geodesic distance to compute a set of pixels comprising the

neighborhood of each pixel in the image, the GeoF model uses it to smooth big

probabilistic regions and adapt them to the image gradients.

2.3. Models specialized for 3D scenes

Several methods in the literature explicitly make use of 3D information in145

order to improve the segmentation performance. The authors of [24] segment

the image into regions based on stixels [25] computed form dense disparity maps,

which are then classified into one of several semantic classes. An extension of

this model, called Stixmantics [26], introduces a method for enforcing temporal
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Figure 1: The pipeline of our two-stage classification method.

consistency and a CRF model to achieve spatial smoothness. While the stixel150

representation is well suited for road scenes, it can be used only when 3D in-

formation is available and only to recognize classes that stay on the ground

plane and have 3D structure. Therefore, this method cannot be used to detect

objects like traffic signs, traffic lights or lane markings. Furthermore, since the

stixels are a hard constraint on the shape of the segments, if an error occurs155

while computing the stixel regions, it cannot be corrected at a later stage. In

contrast, our method is applicable to all types of objects and also in cases where

only 2D camera images are available. We use the neighborhoods only as soft

constraints and the final decisions are taken on the pixel level.

The authors of [27] model the semantic label and the stereo disparity of160

each pixels jointly in a CRF framework and show that both tasks solved jointly

benefit from each other. Another method [28] models the semantic class and

the depth jointly, only using a mono camera image. The goal is to achieve a

3D normalization of the scene so that the classifier does not need to learn the

appearance of the objects at different scales, but only at a certain canonical165

distance. In this paper, we focus only on the problem of semantic segmentation.

3. Method

The general pipeline of our two-stage classification method is illustrated in

Fig. 1. We first compute simple image features from the input camera image

(and depth map if available) and we use a standard multi-class classifier to get170

the probability distribution of every pixel over the possible classes. This process

if fairly standard for many semantic segmentation methods. Next, we compute

one or more neighborhoods for each pixel. Based on the neighborhoods and

the predictions of the first classifier we compute a new type of features, called
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voting histograms, which serve as the input of the second classifier. The resulting175

segmentation is then geodesically smoothed to get the final segmentation.

3.1. Neighborhood classification framework

Our goal is to model the conditional probability distribution P (y|x) of the

pixel labels y given the input image x. With yi we denote the label variable for

pixel i, which takes values from a predefined set of classes L. Under the assump-

tion that the labels of all pixels are independent of each other the probability

distribution can be written as:

P (y|x) =
∏
i

P (yi|x), (1)

where P (yi|x) is the probability of pixel i taking the label yi. The distribution

for one pixel can be estimated by a standard multi-class classifier trained on

multiple pixel samples and the corresponding ground truth labels. In practice,180

the classifier does not operate on the image pixels x directly, but on some

features extracted from the image. We denote the feature vector computed for

pixel i as fU (xi). Training such classifier is a very common first step in, many

segmentation methods, especially for CRF, which typically use similar classifiers

to define the unary potentials [6, 7, 3, 11, 29]. We use this unary probability185

distribution as an input to our second classification stage.

The assumption that all pixel labels are independent of each other leads

to simple factorization of the conditional probability distribution, but it rarely

holds true in reality. Therefore, the segmentation resulting from the model above

is usually very noisy and contains a lot of errors. To overcome this problem we190

make each label dependent on a set of labels that are related to it in a defined

way. For a pixel i we call the set of pixels related to it pixel neighborhood and

denote it as Ni. The choice of the neighborhood is of critical importance for the

performance of the method. In Section 3.2 we analyze different ways to define

the neighborhood and introduce a novel method based on geodesic distance.195

Under the assumption that each label is independent of the other labels
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given its neighborhood, the conditional probability distribution factorizes as:

PN (y|x) =
∏
i

P (yi|x, Ni). (2)

We again model this probability distribution for pixel i as the output of a

classifier operating on a feature vector fN (Ni, P (yNi
|x))) computed from the

unary probability distribution of the pixels in the neighborhood Ni. For the

computation of this feature vector fN we propose a new compact feature, called

voting histogram, described in detail in Section 3.4.2.200

3.2. Pixel neighborhoods

As described above, the neighborhood Ni of pixel i is defined as a set of pixels

that are related in some defined way to the pixel of interest i. The choice of

the neighborhood is important, because the neighborhood classifier determines

the class of the pixel depending only on the pixels in its neighborhood. In this205

paper, we divide the possible neighborhoods in two variants: local and global

neighborhoods. The local neighborhoods cover an area in the vicinity of the

pixel i, while the global neighborhoods may include pixels throughout the whole

image. Below we show several ways to define local and global neighborhoods

and in Section 4.2 we compare their performance.210

Euclidean neighborhood. The most intuitive way to define a local neighborhood

is just to take all the pixels in a predefined radius around the pixel i. This

neighborhood has the disadvantage that it is independent of the input image

and therefore cannot adapt to the image structure.

Superpixel neighborhood. Segmenting the image in superpixels is another natu-215

ral way to define a local pixel neighborhood. We define the set Ni as all pixels

belonging to the same superpixel as the pixel i. In this case, all the pixels in

one superpixel have the same neighborhood. The fact that all superpixels have

approximately the same size means that they may be too big for some small

objects like signs or poles, while at the same time covering only very small part220

of bigger areas like the street or the sky. To compensate for this we generate
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Figure 2: Unsupervised segmentation with superpixels and mean-shift for different parameters.

the superpixels neighborhood for 3 different value of the size parameter to get

superpixels with different sizes (see Figure 2). For the computation of the su-

perpixels, we use the state-of-the-art SLICO method [30] - a version of SLIC

[30], which automatically adapts the compactness parameter.225

Mean-shift neighborhood. Mean-shift segmentation [31] is another unsupervised

segmentation approach, in which the segments are not constrained to have ap-

proximately the same size. We define the mean-shift neighborhood in a way

similar to the superpixel neighborhood : Ni is the set of all pixels belonging to

the same segment as pixel i. Since it is very unlikely that all segments per-230

fectly align to all object boundaries at the same time, we follow the approach

presented in [7] to generate 3 segmentations with different parameters ranging

from oversegmentation to undersegmentation (see Figure 2).

Geodesic neighborhood. The goal of the geodesic neighborhood is to define a

local neighborhood that covers pixels in the vicinity of the pixel of interest that

only belong to the same object. In this way, if a pixel is wrongly classified in

the first stage, it can get support from other pixels nearby that were classified

correctly. We define the geodesic neighborhood Ni as the set of the n pixels with

the lowest geodesic distance to the pixel i. The geodesic distance is an extension

of the Euclidean distance that also considers the image intensities. Therefore,

two points in the image that have a high gradient between them will have a

bigger distance than two points at the same Euclidean distance, but without

strong edge between them. Formally, the geodesic distance is defined as:

D(i, j) = inf
G∈Pi,j

∫ l

0

√
1 + γ2(∇I ·G′(s))2ds, (3)
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a) Local γ = 0 b) Local γ = 50 c) Local γ = 1000 d) Global γ = 1000

Figure 3: Visualization of the shapes of the presented neighborhoods for selected pixels

(marked in black). The first 3 images show the shape of the local geodesic neighborhood for

different values of γ, while the last image shows the global geodesic neighborhood, consisting

of 8 separate ray neighborhoods.

with Pi,j denoting all possible paths between two pixels i and j, G and G′ a

path of length l and its spatial derivative correspondingly. Here, we denote the235

image as I, but it can be both a texture image or a depth image. The parameter

γ regulates the weight between the Euclidean and the geodesic term such that

for γ = 0 the geodesic distance is equivalent to the Euclidean distance and for

big values of γ the geodesic term dominates. In Figure 3 a), b) and c) we show

how the parameter γ influences the shape of the geodesic neighborhood. We240

see that with the increase of the value of γ, the neighborhoods align better

to the image structure and therefore provide more consistent evidence of the

object that the pixel of interest belongs to. We present an efficient algorithm to

compute the geodesic neighborhoods of all pixels in the image in Section 3.3.

Global geodesic neighborhood. One drawback of all of the neighborhoods de-245

scribed above is that they only cover the area in the vicinity of the pixel of

interest and therefore can only provide local context. In many cases, however,

global context relations can be a very important queue to resolve ambiguities.

Therefore, we introduce another type of neighborhood that is able to provide

global context coming from other parts of the image, which again makes use of250

the geodesic distance to increase the robustness of the method.

The neighborhood is formed by first shooting 8 rays equally spaced at an

angle of 45◦ from the pixel of interest to the borders of the image. Then, we

take the local geodesic neighborhood at each point along the ray and create
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the union of all those neighborhoods separately for each ray. In this way, we255

get a set of 8 different neighborhoods, one for each ray, capturing the context

information in a certain direction. While the shape of the neighborhood follows

the ray, it can adapt to the image structure around it guided by the geodesic

distance. The shape of the global neighborhood is shown on Figure 3 d).

3.3. Computing the geodesic neighborhood260

While equation 3 is the formal definition of the geodesic distance, computing

it in such a way is very inefficient. While there are several methods for fast and

approximate computation of the geodesic distance transform [32, 33, 23] they

are suitable for the computation of the geodesic distance to large image regions.

Since we need to compute the distance from each pixel to the n closest points265

in the image, these methods cannot be applied in our case.

We propose an algorithm for the computation of the geodesic distance based

on the Dijkstra algorithm for finding the shortest path from a point to all other

points in the image. We define a 4-connected graph over the image such that

every pixel is a node in the graph and each pixel is connected to its 4 adjacent

pixels with an edge. In practice, we connect each pixel with 4 pixels that are

several pixels away from it in order to allow the neighborhood to quickly cover

bigger parts of the image. The weight of an edge connecting two pixels i and j

is defined as the geodesic distance between them:

w(i, j) =
√

1 + γ2d(i, j)2, (4)

where d(i, j) is some distance measure depending on the type of image that is

used. For a color image I we define d(i, j) as the distance between the pixels

in the RGB color space drgb(i, j) = ||I(i)− I(j)||2, while for a depth image we

use the metric distance between the 3D points d3D(i, j) = ||P (i) − P (j)||2. If270

both a color image and a depth image are present, the distance measure can

be defined as a combination of both with the help of a parameter α to balance

their contribution dcombined(i, j) = max(αdrgb(i, j), d3D(i, j)). Because the two
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distance measures are in different domains, RGB and metric space respectively,

we choose α = 10 such that edges in both modalities have an equal strength.275

The computation of the geodesic neighborhood itself is done by performing

N iterations of the Dijkstra algorithm on the graph defined above and the

neighborhood consists of the nodes chosen at each iteration. For a more formal

description see Algorithm 1 in Appendix A. The discrete version D∗ of the

geodesic distance computed by our method can be formalized as:

D∗(i, j) = inf
G∈Pi,j

∑
k∈G

w(k, k − 1), (5)

where G denotes a discrete path from the set of all possible paths Pi,j between

i and j, k iterates over the nodes of the path and w(k, k − 1) denotes a weight

of the edge between the node k and its predecessor in the path k − 1.

3.4. Feature vectors

We use different types of features for the two classification stages of our280

method. The features for the unary classifier of the first stage are extracted

directly from the texture image and the depth image (if available), while the

features for the neighborhood classifier in the second stage are computed from

the pixel neighborhood and the class probability maps of the unary classifier.

3.4.1. Unary classification features285

For the unary features two well-known and efficient methods are used: his-

tograms of oriented gradients (HOG) [34] and the 2D Walsh-Hadamard trans-

form [35]. The HOG features are computed only for texture images in a window

of size five around every pixel and divided into 16 directional bins, resulting in

a 16 dimensional feature vector, containing the gradients for each direction.290

The 2D Walsh-Hadamard transform [35] is a discrete approximation of the

cosine transform and is very fast to compute, since it involves only addition and

subtraction operations (see Figure 4). In the case of texture images, we use a

configuration similar to the one proposed by [6]. First, the image is converted

in the Lab color space and then the first 16 coefficients of the Walsh-Hadamard295
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Figure 4: The basis vectors of the 2D Walsh-Hadamard transform of order 8. The black

squares denote the coefficient -1 and the white squares the coefficient 1.

transform are computed in a window around every pixel separately for each

color channel. We use windows of 6 different sizes: 2, 4, 8, 16, 32 and 64 pixels.

In this way, we have 48 features for each scale, except for the window of size

2, where we have 4 instead of 16 coefficients. In the case of a color image, the

feature vector has a size of 252, while in the case of grayscale images, we only300

have one channel and therefore the feature vector has a size of 84.

For depth images, we propose a novel way to use the 2D Walsh-Hadaramd

transform. Computing the 3D coordinates of each pixel in the image results in

structure that can be interpreted as a 3-channel float image (one channel for

each 3D coordinate) and we compute the 2D Walsh-Hadamard transform in the305

same way as for the 3-channel color images described above. In this way, we

get an approximation of the spatial frequencies of the image structure along the

3 coordinate axes in a very efficient way. This approximation works well for

street scenarios, since most objects, like roads and buildings, tend to be aligned

to the same axes. Note, that in this case a 3D Walsh-Hadamard transform is310

not suitable, because we only have information derived from a 2D image and

not a dense 3D volume like in a MRI scan for example.

Finally, we add the 2D coordinates of each pixel and if available the 3D

coordinates as well, feature in order to encode location context. The final feature

vector is constructed by stacking all of the available features.315
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3.4.2. Neighborhood classification features

For the neighborhood classification stage, we introduce a new voting his-

togram feature. The goal is to create a descriptor for the content of each pixel’s

neighborhood, based on the class probability maps from the unary classifier.

First, we compute a normalized histogram of each pixel i over unary classifier

responses of the pixels in its neighborhood Ni:

hi(c) =

∑
j∈Ni

[c = vi]

|Ni|
, (6)

where c ∈ L is a class label and vi = argmax
c

P (yj = c|x) is the most proba-

ble label for the pixel j according to the response of the unary classifier. The

so computed voting histogram can be directly used as a feature vector for the

neighborhood classifier. Furthermore, we can compute multiple different neigh-

borhoods N1
i , N

2
i , . . . , N

k
i for each pixel and stack the histograms h1

i , h
2
i , . . . , h

k
i

for the different neighborhoods into one large feature vector. Additionally, we

also add the responses of the unary classifier for the pixel of interest i. The final

neighborhood feature vector for pixel i becomes:

fN (i,Ni) =


h1
i

...

hi

P (yi|x)

 . (7)

The dimensionality of this feature vector is |L| · (k+ 1). Directly taking the320

unary responses of all pixels in the neighborhoods as features, would result in a

much bigger feature vector of size |L|·
∑k
j=1 |N

j
i |. Taking as an example a typical

configuration from our experiments, consisting of 3 geodesic neighborhoods with

sizes of 10, 50 and 200 for an 11 class problem, results in 2860 features when

taking all pixels and only 44 when using the voting histogram.325

It is important to note that all pixels are considered when building the

histogram. Therefore, the histogram represents a summary of all pixels and

while the information about individual pixels is not available anymore, every

individual pixel still plays its role into building the features and, therefore, in
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practice there is no significant difference between the results of the two variants.330

Using the summarized information, the classifier cannot model relations between

individual pixels, but between regions of different sizes, which are more robust

to individual pixel errors. The histogram feature also has the advantage of being

much smaller, which leads to much faster training and evaluation.

We would like to point out that the neighborhood features depend only on335

unary classifier output, but not on the image itself. While this may be seen as a

limitation of the expressive power of the neighborhood classifier, this formulation

allows us to use compact and efficient features and leads to very short training

and evaluation times as we show in Section 4.5. Furthermore, in our experiments

we do not observe big performance loss, since the unary classifier seems to be340

able to fully exploit the image information. The authors of auto-context [17]

report similar findings in their multi-stage classification framework.

3.5. Geodesic smoothing

The output of the neighborhood classifier already provides very good quan-

titative results, but still every pixel is classified individually. Therefore, in some345

cases there are individual wrong pixels which look like noise (see Figure 5 d)).

Because this is a common problem with most classifier-based methods, many

rely on a post-processing step, like for example by a pairwise CRF, to get smooth

segments. However, such post-processing stages tend to be computationally ex-

pensive and require a lot of parameter tuning or a separate training step.350

We propose an alternative and very efficient approach that is again based on

the geodesic distance. We compute the voting histogram again, but this time

using the output of the neighborhood classifier incited of the unary classifier and

we denote it as ĥi. We use the same definition as in Equation 6, but now vi =

argmax
c

P (yj = c|x, Ni)). This time, however, instead of interpreting the voting355

histogram as a feature vector, we interpret it directly as the final probability

distribution for pixel i, which can then be written as P (yi|x, Ni) = ĥi. This

method has a positive impact on the quantitative and especially the qualitative

results, with smoother regions that align well to the image structure (see Figure
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5 e)). However, note that the size of the neighborhood used for smoothing should360

be small, because otherwise smaller objects may be smoothed over. Refer to

Section 4.4 for detailed evaluation of the size of the smoothing neighborhood.

4. Evaluation

In this section, we present an extensive evaluation of our method based on

six well-known and challenging datasets. First, we analyze how different parts365

of our method deal with different problems in segmenting the image. We then

demonstrate how 3D information can be easily integrated in our framework. We

also present more implementation details and discuss the model parameters in

order to give more insight of how our method works. Finally, we evaluate the

runtime of the method and its individual stages.370

In order to measure the performance of different methods and configurations

we rely on three widely used evaluation measures:

• Global pixel-wise accuracy - the percentage of correctly classifier pixels.

• Average per class accuracy - the average of the pixel-wise accuracies of

each class calculated separately.375

• Average per class intersection over union measure as used in the Pascal

VOC challenge (Pascal accuracy) [36] - a measure that is a combination

of the global and average per class accuracies.

4.1. Datasets

Our evaluation is based on six widely used datasets, three of which stem from380

the automotive domain whereas the other three contain more generic scenes.

Additionally, in Section 6 we present an evaluation on our own dataset for

detection of parking spaces on the side of the road. A systematic overview of

the six public datasets that we use is presented in Table 1.

17



Dataset Scene Camera Depth Image Labeled Classes

type images data resolution images count

CamVid [37, 38] driving color no 320× 240 601 11

MSRC-21 [3] general objects color no 320× 240 591 21

Stanford Background [39] outdoor scenes color no 320× 240 715 8

eTRIMS [40] building facades color no 768× 512 60 8

Daimler Urban [24] driving grayscale stereo 976× 360 500 6

KITTI Segmentation [28] driving color stereo 1240× 376 60 9

Table 1: Overview of the datasets used for evaluation.

CamVid. The CamVid dataset [37, 38] contains sequences of color images recorded385

from a moving car at daytime and at dusk. Most of the sequences, however, are

recorded at a slow frame rate of roughly 1 frame per second. While computing

structure-from-motion information from those sequences is principally possible

[8], here we only rely on single color images. We use the same evaluation pro-

tocol as in [37, 8, 9] by downscaling the images to a resolution of 320× 240 and390

taking the same 367 images for training and 233 for testing. Similar to [37] we

consider only the 11 classes with most instances.

MSRC-21. The MSRC-21 dataset [3] is also a well-known and very challenging

dataset, which contains nature and indoor images of which 276 are used for

training and 256 for testing [3]. We consider the most common 21 classes (the395

classes mountain and horse are commonly ignored) which range from trees,

grass and sky to people, buildings and bicycles.

Stanford Background. The Stanford Background dataset [39] focuses on outdoor

scenes that have some particular objects in the foreground. The commonly used

testing procedure for this dataset [39] is to perform a 5 fold cross validation on400

a split of 572 training and 143 testing images.

eTRIMS. The eTRIMS image database [40] contains images of building facades

divided in 8 semantic classes. Since the dataset contains only 60 images, we use

the same testing procedure as in [20] by performing the evaluation on 10 different

random splits of 40 images for training and 20 for testing.405
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Figure 5: Visualization of the results of the different stages of our method.

Daimler Urban Segmentation. The recent Daimler Urban Segmentation dataset

[24] contains 500 grayscale stereo image pairs with corresponding dense disparity

maps. The images have a resolution of 1024× 440 pixels and are labeled in the

classes: ground, vehicle, pedestrian, building, sky and background.

For evaluation we use the same split of 300 training images and 200 testing410

images as suggested by the authors.

KITTI. The KITTI dataset [41] is a comprehensive benchmark for various com-

puter vision problems related to autonomous driving like stereo and optical flow

computation, object detection, visual odometry and others. Recently, 60 images

from the stereo benchmark have been annotated with pixel-wise semantic labels415

[28] which form another dataset for which high quality depth information can

be computed. The images have a resolution of approximately 1240 × 376 and

are equally split into a training and a testing set.

4.2. Analyzing the method

In this section, we analyze how the different steps of our method deal with420

different segmentation problems and how they contribute to the final perfor-

mance. In Figure 5 we visualize the results at the different method stages on

one example image from the Stanford Background dataset and use it in order

to explain different effects through the section. In parallel, we also present a

full evaluation of the same method steps on the whole CamVid, MSRC-21 and425

Stanford Background datasets in order to measure the same effects quantita-

tively. Those results are summarized in Table 2, while in Figure 11, Figure 15

and Figure 12 we show results for qualitative evaluation.
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4.2.1. Unary classification

The unary classification step of our method uses relatively simple, but very430

fast features, and therefore the segmentation results are quite noisy and with

big error regions. Looking at Figure 5 a) the windscreen of the car is wrongly

classified as water, the bumper of the car as road and there are multiple

wrong patches on the ground as well. While employing more powerful features

would lead to better unary classification performance at the cost of increased435

runtime, in this paper we focus on developing a universal higher-level method

that is able to correct errors by integrating context from multiple image regions.

4.2.2. Local neighborhood

By using local neighborhoods, our method is able to correct many errors

from the unary classifier by using context information from the vicinity of each440

pixel. Looking at Figure 5 c), we see that many of the smaller errors are filtered

and the shape of the car is much better defined. This is also confirmed by

the quantitative evaluation (see Table 2), with all of the local neighborhoods

delivering significantly better results than the unary classifier. Comparing the

different local neighborhoods between each other we see that the local geodesic445

neighborhood achieves the best results. While the difference in some cases may

seem small, the geodesic neighborhood has the important property of aligning

the segmentation borders to the object boundaries that have a strong gradient.

In order to better understand why this is the case, we visualize the voting

histogram features computed over different neighborhood variants in Figure 6.450

Here, we show the normalized values of the histogram bins for the classes tree,

road and object. Note that even though the images can be interpreted as a

probability distribution for each class, these are actually the features that serve

as the input to the neighborhood classifier as described in detail in Section 3.4.2.

We see that there are some significant differences in the histogram features for455

the different neighborhoods and therefore also in the resulting segmented images

shown in the last row of Figure 6. The Euclidean neighborhood simply covers all

pixels in a certain radius and therefore pixels close to object edges get responses
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Figure 6: Comparison between the voting histogram features computed on different local

neighborhoods. The images show the normalized values of the histogram bins for the corre-

sponding classes and the resulting segmentation.

from other pixels on both side of the edge. Therefore, the features in those

regions are blurred, resulting in segmentation borders that do not align well460

to the object edges. The superpixels can better align to the image structure,

but they are either too big to fit to the small details of the car, or too small

to capture enough local context. The mean-shift segmentation does not have

the size constraints of the superpixels and can therefore adopt better to the ob-

jects. However, as with any unsupervised segmentation method, it is extremely465

difficult to create a disjoint image segmentation that captures all object edges.

This problem is somewhat mitigated by creating multiple segmentations with

multiple parameters as described in Section 3.2, but we can see that the results

are still not as good as with the geodesic neighborhood. The main advantage of

the geodesic neighborhood is that it generates a neighborhood with a different470

shape for each individual pixel, which allows it to adapt well to small struc-

ture details, while in the same time being big enough to capture enough local

context.
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Method CamVid MSRC Stanford Background

Global Average Pascal Global Average Pascal Global Average Pascal

Unary 70.6 56.4 35.7 61.4 50.4 33.4 66.6 64.2 46.0

Superpixels 74.5 60.6 39.6 67.2 59.2 40.7 69.5 66.8 48.8

Mean-shift 75.6 61.7 40.5 71.7 63.7 46.0 71.1 68.2 50.4

Euclidean 76.0 62.3 41.2 73.0 67.5 49.1 70.4 68.0 49.5

Geodesic (local) 76.5 63.1 41.9 71.9 66.2 47.8 71.5 68.4 50.5

Geodesic (global) 77.9 64.0 43.6 76.3 70.7 54.5 73.2 70.1 52.4

Auto-context [17] 74.5 61.7 40.5 72.5 67.3 49.4 72.0 69.4 51.5

Robust Pn [7] 77.9 56.0 40.5 73.4 65.0 47.7 71.9 67.9 50.8

Table 2: Quantitative evaluation on CamVid, MSRC-21 and Stanford Background.

4.2.3. Global neighborhood

While the local neighborhoods are able to correct smaller errors, their limited475

range makes it more difficult to handle bigger errors like the bumper of the

car or the “water” patches on the ground in Figure 5 c). Adding the global

neighborhood to the neighborhood classifier feature vector, allows it to learn

higher-level context information that resolves most of these problems.

To explain this, in Figure 7 we visualize the features of the eight rays of480

the global geodesic neighborhood for the classes road and object. The images

can be interpreted in the following way: a high value for a pixel in the image

for the ray pointing to the left for the class object means a high probability

that there is a region of the class object on the left of the chosen pixel. If we

take as example one of the pixels on the ground that were wrongly classified as485

water, it will get very high responses for the class ground from the rays pointed

downwards and sideways, while from the rays pointed up it will get responses

for the classes object, tree and sky. Based on this information of the objects

in the image surrounding the pixel, the classifier is able to learn the respective

context relations and correct most of the errors (see Figure 5 d)).490

From the quantitative evaluation in Table 2 we can see that the usage of

the global geodesic neighborhood gives a significant advantage over the local

variants. It is interesting to note that the increase in performance is much

bigger for the MSRC-21 dataset. Analyzing the images in more detail shows
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Rays for class tree Rays for class object

Figure 7: Visualization of the 8 rays of the global geodesic neighborhood for the classes tree

and object.

that in the Stanford Background and in the CamVid dataset most of the images495

contain instances of all classes together. In this case, the global neighborhood

learns spatial context relations between objects, e.g. cars are on top of the road

and the sky is above the buildings and the cars. In MSRC-21, however, the

images show a variety of different situations that usually contain only 2 or 3 of

the 21 classes. In this case, the global neighborhood is able to also learn the500

co-occurrence between the classes, e.g. cows and trees appear in images with

grass, while birds and airplanes appear in images with sky. Further examples

of this can be seen in Figure 15.

4.2.4. Geodesic smoothing

While the segmentation based on the global neighborhood is already good,505

we can see that there are many small pixel errors everywhere in the image. This

is due to the fact that the neighborhood classifier takes the decisions about

the classes of the pixels independently of each other. By using our geodesic

smoothing method (see Section 3.5) we get smoother segment (see Figure 5 e))

and an improvement in the overall classification performance.510

4.3. Integrating 3D data

Our framework is not limited to handling 2D images, but it can also nat-

urally handle 3D data in all stages: feature computation, neighborhood com-
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Unary Texture 60.6 64.8 50.6 33.6 68.8 41.1 26.1 68.0 48.9

Unary Depth 61.1 64.2 44.2 37.7 71.0 45.2 30.2 25.3 49.1

Unary Combined 66.2 70.6 57.7 46.6 72.6 54.9 38.3 68.9 53.6

Geodesic Texture (global) 70.2 76.4 65.2 62.0 73.8 71.0 53.0 72.2 55.8

Geodesic Depth (global) 70.2 75.5 64.3 60.1 73.2 69.0 51.2 71.3 56.9

Geodesic Combined (global) 71.5 76.2 66.1 61.9 75.5 70.9 52.8 74.2 56.9

Multi-cue segmentation [24] 56.6 58.8 82.8 63.9 53.6 29.0 53.8

Stixmantics [26] 66.7 64.0 87.6 68.9 59.0 57.6 60.2

Depth-enabled ICF [26] 52.7 44.2 86.2 53.5 34.9 35.1 53.9

Table 3: Quantitative evaluation on the Daimler Urban segmentation dataset.

putation and geodesic smoothing. The Daimler Urban dataset and the KITTI

segmentation dataset contain stereo image pairs from which depth data can be515

computed. While the Daimler Urban dataset already comes with precomputed

dense disparity maps of high quality, for the KITTI dataset, we compute the

disparity maps by using the efficient method of [42] which is one of the top

ranked methods on the KITTI stereo benchmark. For performance reasons, we

do not classify each pixel individually, but we use cells of 4 × 4 pixels. Note,520

however, that this is not equivalent to downscaling the images 4 times, because

we still compute the features at full resolution and compare the result to the

ground truth data on the pixel level.

For both datasets, we use the same error measures as for the 2D datasets.

The authors of the Daimler Urban dataset use a somewhat different measure,525

which is based on the average intersection over union, but excludes the class

background. Furthermore, they also report the average only on the two dy-

namic classes vehicle and person. We report the same measures as in [26] in

addition to the others in order to allow for comparison.

4.3.1. Unary classification530

For the unary classification step we evaluate three different unary features

sets (as described in Section 3.4): only texture features, only depth features
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Unary Texture 66.1 60.4 38.8 74.2 66.7 92.1 64.7 59.8 57.0 69.9 7.8 51.8

Unary Depth 51.7 53.5 31.2 79.4 54.3 85.4 30.6 57.5 65.7 49.8 14.2 44.4

Unary Combined 72.4 65.5 45.3 79.3 75.4 92.3 69.6 66.1 71.5 77.9 10.5 47.3

Geodesic Texture (global) 75.2 68.4 48.7 84.8 85.0 93.6 66.8 64.8 79.6 84.9 13.2 42.7

Geodesic Depth (global) 74.0 66.0 46.5 84.1 81.1 88.0 67.8 63.2 74.5 83.3 1.4 50.5

Geodesic Combined (global) 76.1 68.3 49.3 84.2 82.7 93.4 70.9 67.5 78.8 82.5 11.5 43.4

Table 4: Quantitative evaluation on the KITTI segmentation dataset.

or both together. From the quantitative evaluation in Table 3 and Table 4

we can see that for both datasets using each modality separately already gives

meaningful results. This also shows that our novel formulation of the 2D Walsh-535

Hadamard transform in 3D space is meaningful. Combining both modalities in

the classifier results in a noticeable improvement. Therefore, all of the follow-

ing evaluations of the neighborhood classifier are based on the output of the

combined texture and depth unary classifier.

4.3.2. Neighborhood classification540

Having access to the depth data, gives us the possibility to define the geodesic

distance not only on the image gradients but also in the 3D space (see Section

3.3). Therefore, we can compare the performance of the geodesic neighborhood

when defined for different image modalities. From the quantitative evaluation

on both of the datasets we see that the two variants perform similarly well, which545

shows that our method can be naturally adapted to different image modalities

(in fact we are even using the same unary features).

However, looking at the shapes of the neighborhoods in more detail (see

Figure 8) we can see that they can be quite different in some regions. The

geodesic neighborhood defined in the image space can overflow from the dark550

area on the cars to the dark areas on the building because of the lack of con-

trast. While this is not the case for the 3D geodesic neighborhood, because there

is a big difference in the depth between the cars and the building, the geodesic
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Geodesic Texture Geodesic Depth Geodesic Combined

Figure 8: Visualization of the geodesic neighborhood defined in the 2D texture space, the 3D

metric space and combined. The red arrows point to some typical problems of the geodesic

neighborhood when defined in the texture or depth information alone that can be resolved

when both are combined.

neighborhoods can flow out of one object into another one if they are touching.

This can be observed around the tires of the cars touching the street. Com-555

bining both distances in the neighborhood definition as described in Section 3.3

allows us to use the advantages of both modalities, which leads not only to big

qualitative, but also to significant quantitative improvements. This is also the

case for the global geodesic neighborhood, where the rays can better adapt to the

image structure if they use the edge information in both image modalities.560

4.4. Implementation details and parameters evaluation

In this section, we give more details about setting the model parameters.

Our method generalizes well enough so that we can use the same parameters for

the computation of the features and for the classifier training over all datasets.

4.4.1. Classifier parameters565

For both the unary and the neighborhood classifiers, we employ the Joint-

Boost method [43] that can efficiently handle multi-class classification problems.

We use some standard techniques [44, 11] to speed up the training by not taking

the entire image, but sub sampling it on a grid of size 5 instead. Furthermore,
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at each iteration step we test a random 30% of the features by comparing them570

to 100 thresholds that are sampled uniformly over the values of each feature.

In fact, the only difference between the unary and the neighborhood classifiers

is in the number of iterations, which is only for performance reasons. While

for the unary classifier we need 5000 iterations in order to get the maximum

out of the relatively big feature space (see Section 3.4), the neighborhood clas-575

sifier, which operates on our compact voting histogram features, saturates after

1000 iterations. The parameters of the classifiers have influence mainly on the

training time of the method.

4.4.2. Neighborhood computation

Here we evaluate the influence of the geodesic neighborhoods computation580

parameters on the performance of our method. Since the results are comparable

for all datasets, here we show detailed numbers only from the CamVid dataset.

Neighborhood size and geodesic weight. The size of the neighborhood and the

weighting parameter γ are the most important parameters for the segmentation

results, because they influence the size of the region taken into account and its585

shape. In Figure 9 we show an evaluation of our method using the local geodesic

neighborhood for different combination of the values. We see that making the

neighborhood bigger also gives better results, but the effect saturates after a size

of 100. Smaller neighborhoods work better for smaller objects, because they do

not go over the object boundary, but for bigger objects, they do not cover enough590

pixels to capture enough local context. Therefore, a combination of several

neighborhoods is beneficial. In our case, we use three neighborhoods of sizes 10,

50 and 200 (denoted as 3x). Note that the three neighborhoods can be computed

efficiently, by just computing the neighborhood of size 200 and taking the first 10

and 50 pixels for the others. As discussed above, the local geodesic neighborhood595

achieves better results than the local Euclidean neighborhood, which can also be

seen in Figure 9. The effect saturates at high values of γ, where the effect of the

Euclidean distance becomes negligible. For our experiments, we use γ = 5000

in order to maximize the effect of the geodesic term.
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0 50 100 250 500 1000 5000

10 72.5 73.1 73.1 73.4 73.1 73.5 73.5

20 73.3 73.7 73.8 74.0 73.8 74.2 74.1

50 74.2 74.2 74.4 74.4 74.5 74.6 74.5

100 74.6 74.8 74.7 74.9 74.7 74.7 74.7

200 75.0 74.9 74.8 74.8 74.7 74.9 74.8

3x 75.0 75.1 75.3 75.3 75.2 75.3 75.4
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γ
0 50 100 250 500 1000 5000

10 59.3 59.7 59.7 60.0 60.0 59.9 60.0

20 60.0 60.4 60.4 60.7 60.5 60.7 60.7

50 60.7 61.3 61.2 61.3 61.6 61.4 61.5

100 61.2 61.8 62.0 61.9 62.0 62.0 62.0

200 61.7 62.1 62.1 62.3 62.1 62.3 62.3

3x 61.9 62.3 62.4 62.3 62.4 62.4 62.5

ne
ig
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od
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γ
0 50 100 250 500 1000 5000

10 37.8 38.4 38.3 38.6 38.5 38.6 38.7

20 38.6 39.0 39.0 39.3 39.1 39.3 39.3

50 39.4 39.7 39.8 39.9 40.0 40.0 39.9

100 39.9 40.2 40.2 40.3 40.2 40.3 40.3

200 40.4 40.4 40.3 40.4 40.4 40.5 40.5

3x 40.5 40.6 40.7 40.7 40.8 40.8 40.9
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Figure 9: Influence of the two most important parameters controlling the size and the shape

of the geodesic neighborhood on the performance of our method. The neighborhood size 3x

indicates the usage of 3 neighborhoods of size 10, 50 and 200 pixels.

Neighboring pixels grid size. Another parameter that influences the shape of the600

neighborhood is the grid size at which neighboring pixels are sampled by the

Dijkstra algorithm (see Section 3.3 for details). Higher values of the parameter

allow the neighborhoods to cover bigger parts of the image and lead to some

improvement in performance especially for the average accuracy (see Figure 10).

However, this effect quickly saturates for after a grid size of 3.605

Rays count. For the global geodesic neighborhood, the number of rays determines

from which directions information from the image is gathered. As can be see

in Figure 10, more directions give the neighborhood classifier more information

about the scene and lead to higher accuracy. Adding more than 8 rays, however,

does not lead to any further improvement.610

Geodesic smoothing. As discussed in Section 3.5, the size of the neighborhood

used for geodesic smoothing should be small in order to not smooth over smaller

objects. This is confirmed by the results in Figure 10, where the global accu-

racy increases with bigger neighborhood sizes, but for larger values, the average

accuracy starts to decrease. This is due to the fact, that large neighborhoods615

flow out of smaller objects like poles or signs and consequently they tend to be

lost in the image resulting in a drop of the accuracy for the smaller classes and

therefore also the average per class accuracy.
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Figure 10: Evaluation of the parameters for the sampling grid size, the number of rays in the

global geodesic neighborhood and the size of the neighborhood used for geodesic smoothing.

Method stage CamVid Daimler Urban Daimler Urban

1× 1 pixel 4× 4 pixels 8× 8 pixels

Unary features 544 ms 159 ms 90 ms

Unary classifier 1106 ms 53 ms 11 ms

Geodesic Neighborhood 2016 ms 402 ms 52 ms

Voting Histogram Features 137 ms 149 ms 15 ms

Neighborhood classifier 290 ms 187 ms 35 ms

Geodesic Smoothing 13 ms 5 ms 1 ms

Total 4106 ms 955 ms 204 ms

Table 5: Runtime of our method on two of the datasets used in the evaluation.

4.5. Runtime evaluation

A lot of computer vision systems like driver assistant systems, autonomous620

vehicles or mobile robots need to operate and react in the real world. This

means that the runtime of such methods is an important factor to consider.

Furthermore, using specialized hardware like a GPU or a FPGA may not always

be possible. In this section, we evaluate the runtime of our method and show

that we can adjust the trade-off between speed and accuracy.625

In Table 5 we show the runtime of our method for two of the datasets used

for evaluation - one using camera images only (CamVid) and one with both 2D

and 3D data (Daimler Urban). For the Daimler Urban dataset we evaluate two

variants of our method using cells of size 4 × 4 pixels, like in the quantitative

evaluation presented above and 8×8 pixels. All tests are performed on a desktop630

machine equipped with two Intel Xeon X5690 processors with 6 cores each

running at 3.46 GHz. All parts of our method are parallelized using OpenMP,
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but no other specific optimizations, like usage of SSE instructions, have been

performed. All of the code is running on the CPU only and no GPU is used.

We can see that the performance of our method is highly dependent on the635

pixels or cells our method has to classify and compute the features for. While for

the CamVid dataset, we have 76,800 pixels per image, when we use cells of size

4× 4 pixels for the Daimler Urban dataset we need to process only 21,960 cells

and this explains the big difference in the runtime between the two datasets.

Around 40% of the runtime is spent computing the geodesic neighborhoods for640

every pixel. This can be further optimized by taking into account the nodes

found for the neighboring pixels, because adjacent pixels tend to have very

similar neighborhoods. We plan to address this in our future work.

One useful property of our method is that one can easily control the trade-off

between segmentation accuracy and runtime by adjusting the size of the cells.645

We show this on the Daimler Urban dataset by increasing the cell size to 8× 8

pixels and by this effectively making the method more than 4 times faster. As

expected, the accuracy decreases, but not by very much - the faster method

is still able to achieve 65.2% average Pascal accuracy for all classes instead of

66.1% and 59.5% instead of 61.9% for the dynamic classes.650

Since in our method one and the same operation is applied to multiple pixels

simultaneously, the code can be easily speeded up further by running vectorizing

it on a suitable hardware (like a GPU or DSP) or by using SSE instructions.

Another option for optimization would be to adapt the computation of the

geodesic neighborhood for a given pixel to use the results of neighboring pixels655

that have already been computed.

In Section 6 we show how our method is used in a real-time application as

a part of a system for the detection of parking spaces from a driving car.

5. Comparison to other methods

We perform a detailed comparison of our method using the global geodesic660

neighborhood to several closely related state-of-the-art methods. Because most
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Image Ground truth Unary Robust Pn Auto-context Our method

Figure 11: Result images on the CamVid dataset.

Image Ground truth Unary Robust Pn Auto-context Our method

Figure 12: Result images on the Stanford Background dataset.
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Image Ground truth Unary Our method

Figure 13: Result images on the Daimler Urban Segmentation dataset.

Image Ground truth Unary Our method

Figure 14: Result images on the KIITI dataset.

Image Ground truth Unary Robust Pn Auto-context Our method

Figure 15: Result images on the MSRC-21 dataset.
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Image Ground truth Unary ICF [21] ICF [20] Our method

Figure 16: Result images on the eTRIMS image database.

semantic segmentation methods are strongly dependent on the features that are

computed from the images, a meaningful comparison between methods focused

on higher-level reasoning can be done only if the methods use the similar fea-

tures. For the CRF based Robust Pn model [7] and for the classifier based665

auto-context method of [17], we use the same image features and the same

unary classifier as in our method. For the state-of-the-art method of [11] we use

the opposite approach and we adopt the features and the unary classifier from

the implementation that is published online by the authors. The overall accu-

racies with those features are much higher because the authors [11] use more670

sophisticated, but also much slower image features.

Other strongly related methods are the multi-cue segmentation method of

[24] and the Stixmantics method [26], which combine texture and depth data

to create a fast method for real-time semantic segmentation. Both methods are

evaluated on the Daimler Urban dataset, but since the authors do not provide675

access to their code, we cannot use the same features during evaluation.

The Iterative Context Forests (ICF) method [20, 21] is also related to our
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method since it aims on learning context relations. We compare to a version

of ICF that was extended by the authors of [26] to handle depth data and was

also evaluated on the Daimler Urban dataset.680

5.1. Robust Pn model

The Robust Pn model is a powerful higher level CRF model that relies on

multiple segmentations (based on mean-shift) of the input image in order to bet-

ter align the labeled segments to the image gradients. While our idea is similar,

we take a completely different approach for modeling the relationships between685

pixels and segments. While the authors of [7] rely on a CRF to model these

relations, in our model they are encapsulated in the voting histogram features

and learned by the classifier. For our experiments we use the inference imple-

mentation provided by the authors, but using our image features and classifier

for the unary potentials of the CRF.690

The Robust Pn model performs very well with regards to the global accu-

racy on the CamVid dataset, but is outperformed by our method on the other

datasets and for the other evaluation measures. If we look at the result images

in Figure 11, 15 and 12 we can see that this method produces well-defined label

segments that align good to image structures due to the mean-shift segmenta-695

tion, but they may be wrong or smooth over smaller objects and therefore get

worse results on the average per class accuracy and the Pascal accuracy.

5.2. Auto-context

The auto-context method is related to our model, because it uses a chain

of classifiers, but with a different idea behind the higher-level features. While700

we use the adaptive geodesic neighborhoods to summarize the output of the

unary classifier around the pixels of interest and along 8 rays that provide more

global context, auto-context uses fixed points along 8 similar rays to sample

the image features and the responses of the previous classifier. Therefore, the

feature vectors for the classifiers in auto-context are much bigger than those705

in our method and the sampling is not adapted to the image structure, but is
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Method CamVid MSRC

Global Average Pascal Global Average Pascal

Unary from [11] 77.7 60.8 42.4 84.3 77.7 65.7

Geodesic (global) 81.0 61.9 44.8 84.5 79.5 66.4

Associative Hierarchical RF [11] 85.1 59.9 50.4 87.8 77.5 69.7

Table 6: Quantitative evaluation on the CamVid and MSRC-21 datasets based on the unary

potentials from [11].

always done at the same offsets. However, we can easily implement auto-context

as a use-case of our method by using the same sampling structure as in [17] and

regarding each sampling point as a separate neighborhood containing only one

pixel. We perform two iterations of auto-context because we also train two710

classifiers for our method and the analysis in [17] shows that the performance

of auto-context quickly saturates after the second iteration.

From the qualitative results, we can see that the sampling structure of auto-

context is able to capture more context than the local version of our method

on the MSRC-21 dataset. However, our global method is still able to provide715

better results because it can better adapt to the image structure. On the other

datasets, where the global context relations are not that strong even the local

version of the geodesic neighborhood performs better.

5.3. Associative Hierarchical Random Fields

The associative hierarchical random fields of [11] are originally based on the720

Robust Pn model, but extend it by adding more complex higher level reasoning

based on additional classifiers acting on higher level nodes in the graph that are

organized in a hierarchical structure. We use the implementation and parame-

ters provided by the authors to run their method on the CamVid and MSRC-21

dataset. For our method, we substitute the output of our unary classifier with725

the output of the unary classifier of [11].

As we can see from the results presented in Table 6, the unary classifier

already provides very good segmentation due to the powerful image features

used in [11]. Note, however, that those features are much slower to compute.
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While the 2D Walsh-Hadamard features can be computed in 544 ms per image730

for the CamVid data set (see Table 5), the features used in [11] take 1627 ms

per image on the same machine and with a similar level of code optimization.

The results show that the method of [11] delivers better results according,

to the global and intersection-over-union measure, while our method is better

at the average accuracy measure. Overall, even though our results are slightly735

worse than [11], our method runs twice as fast. Both our method and the

method of [11] are optimized to take advantage of parallel processing on multiple

processors and cores, but the parallelization is done on different levels. In our

method multiple pixels or cells are processed in parallel so that the system can

be used in an online setup, while in the publicly available code of [11], multiple740

images are processed in parallel. In order to eliminate the effects of the different

parallelization approaches, we also performed the timing experiments on only

one processor core, with comparable results.

5.4. Stixmantics

The multi-cue segmentation method of [24] and the Stixmantics method [26]745

are evaluated on the Daimler Urban dataset (see Table 3), with both being real-

time systems with the same goal as our paper - combine fast texture and 3D

features for semantic segmentation. Our global geodesic neighborhood method

is able to clearly outperform the method of [24]. In comparison to the Stix-

mantics method, our results are very similar for the evaluation measure of [26].750

The method of [26] performs slightly better for dynamic objects, however, it is

worth noting, that we process each image separately and do not use temporal

information as done in [26], which is especially helpful for dynamic objects.

5.5. Iterative Context Forests

In order to compare to the Iterative Context Forests (ICF) method of [20, 21]755

we run our method on the eTRIMS image database [40] which is also used for

evaluation by the authors of ICF. The authors of [20] make use of the powerful

Geometric Context method of [45] to create a set of base features. In order to

36



Method G
lo

b
a
l

A
v
e
r
a
g
e

P
a
s
c
a
l

B
u
il
d
in

g

C
a
r

D
o
o
r

P
a
v
e
m

e
n
t

R
o
a
d

S
k
y

V
e
g
e
ta

ti
o
n

W
in

d
o
w

Unary 75.6 71.6 51.7 70.3 59.9 64.7 48.5 72.8 97.2 88.6 71.1

Geodesic (global) 79.4 73.5 55.8 75.9 57.5 61.7 52.8 74.5 97.6 89.4 78.5

ICF [21] 70.8 68.6

ICF (best) [20] 77.2 72.2

Table 7: Quantitative evaluation on the eTRIMS image database.

allow for a better comparison we integrate the geometric context features in the

feature vector of the unary classifier, by taking the probability of each of the 8760

geometric classes for each pixel directly as a feature.

The quantitative results of our method are shown in Table 7 and some ex-

ample result images are shown in Figure 16. Our base unary features cannot

compete with the ICF method delivering inferior results. By running our com-

plete pipeline, however, we get clearly better results than those reported in765

[20, 21] showing that our approach is indeed able to capture context relations.

Using the Daimler Urban dataset we can compare to ICF as well. The

original method is extended by [26] to also handle depth data, so that it can

take advantage of the disparity maps in the Daimler Urban dataset. In Table

3 we show the numbers reported in [26]. Even though, the ICF is more flexible770

in learning context relations, our local and global neighborhoods are able to

summarize the context information well enough and again deliver better results.

6. Application

In this section, we present a real world application of the proposed segmen-

tation method for the detection of free parking spaces on the side of the road775

using a side-viewing camera. Fisheye cameras in the vehicle’s mirrors are al-

ready widely used for parking systems on a wide range of production vehicles.

We use a camera in the right mirror to observe the side of the vehicle while

driving in order to detect free parking spaces and parked cars. This information
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can then be used by various advanced driver assistant systems like for example780

automated parking. This system is similar to the one originally presented in

[46], but it uses only camera images and a simple pairwise CRF model, while

here we use our geodesic neighborhood method and both texture and depth data.

6.1. Dataset

For training and evaluation of the system, we recorded a dataset of around785

30 km of driving in small or averagely big streets in the city under different

environment conditions: cloudy weather, sunny weather and rain. All images

are rectified, cropped to the relevant region of interest and scaled down to a

resolution of 320 × 240 (see Figure 17 for example images). We labeled 220 of

the images pixel-wise in 6 semantic classes: road, vehicle, lane marking,790

horizontal background (like sidewalk, grass areas) and vertical back-

ground (like buildings and sky). We use 148 images for training and 72 for

testing. Because the environment on the side of the car in smaller streets is pre-

dominantly static, we can use structure-from-motion to extract 3D information,

which we can use in the segmentation along with the texture camera images.795

Since the camera is calibrated and the images are rectified, we can employ the

stereo fusion method of [47] that uses multiple frames in order to generate robust

disparity maps even in challenging outdoor conditions (see Figure 17).

6.2. Detection of parking spaces and parked vehicles

We segment each camera frame semantically and extract the border of the800

ground plane (the class road). Since we calibrated the camera to the ground

plane, we can now compute the 3D position of each point belonging to the

ground under the assumption that it is flat. This allows us to measure the

distance of each point on the border of the ground plane to the vehicle. Fur-

thermore, from the semantic segmentation we also know the type of object that805

is beyond that border. We split the space next to the car in 20 cm wide sections

that can be one of the following 3 classes:

• Parked car - if the segment is limited by another segment of class vehicle,
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Detected parking spaces Semantic Segmentation Motion stereo disparity map

Figure 17: Parking space detection application build on the proposed semantic segmentation

method.

• Free - if there are at least 2 m to the ground plane border,

• Not free - if there are less than 2 m to the ground plane border.810

Using the vehicle movement data, we can fuse the information from multiple

frames in order to find the number of free parking spaces and the number of

parked cars, assuming that a space is free if it is at least 6 m long.

In order to achieve real-time performance of the system we make several

optimizations to speed up the segmentation method. As for the Daimler Urban815

dataset and the KITTI dataset in the previous section, we do not classify each

pixel, but cells of 8× 8 pixels. Furthermore, we compute the geodesic neighbor-

hood for a smaller number of pixels - 100 instead of 200. With this configuration,

we are able to segment one image in 38 ms, which is enough for the method to

run in real-time in our test vehicle.820
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Method Global Average Pascal Road Lane Car Back. Back.

Marking (hor.) (vert.)

Unary Texture 78.3 73.8 50.3 84.8 92.4 82.8 27.4 81.7

Unary Depth 78.2 56.0 46.2 95.5 1.2 73.7 36.7 73.1

Unary Combined 80.2 75.7 53.2 87.5 90.4 83.7 35.3 81.3

Geodesic Texture (global) 81.7 80.0 56.2 80.7 90.7 90.8 53.6 84.5

Geodesic Depth (global) 79.9 75.9 53.9 79.5 76.2 86.4 53.9 83.7

Geodesic Combined (global) 82.0 80.0 56.5 81.7 90.0 90.7 53.1 84.5

Table 8: Quantitative evaluation on the Parking Space Detection dataset.

6.3. System performance

We evaluate the performance of the system on two levels: segmentation ac-

curacy and application accuracy. For the segmentation accuracy we use the

same measures as for the evaluation of the datasets in Section 4.2. The quanti-

tative results are summarized in Table 8. Here, we can again observe the same825

effects as for the other datasets: combining texture and depth information gives

a significant boost over each of the modalities used separately.

Additional to the segmentation accuracy, we also evaluate the ability of the

system to recognize parking spaces, which is directly related to the performance

of the segmentation method. We compare the output of our detection system to830

a human counting the parking spaces and the parked cars over several sequences

of total length of approximately 2.5 km. The average recall rate for parked cars

is 98.2% at 1.6 false positive detections per 1000 m, while the average detection

rate of the free parking spaces is 83.6% at 0.4 false positives per 1000 m. The

parking space detection system is slightly biased towards detecting cars, because835

the classifier tends to detect unknown objects like trash cans or bus stops as cars.

This problem can be resolved by adding more training images to the dataset.

7. Conclusion

In this paper, we presented a two-stage classification framework for semantic

image segmentation of both 2D and 3D images. We showed how to define local840

and global pixel neighborhoods based on geodesic distance that are able to model
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local and global context relation between image regions. We also introduced

a compact histogram feature, which summarizes context information in those

neighborhoods which allows for fast training and evaluation.

We evaluated our method on six challenging datasets containing both 2D845

and 3D information and gave detailed insights how different part of our model

work. Our method achieves results comparable to the state-of-the-art, while at

the same time being very fast. We demonstrated how our work is used in a

vehicle to detect free parking spaces on the side of the road in real time.

In the future, we aim to further speed up the process of computing the850

geodesic neighborhoods and to design more neighborhoods that can capture

not only spatial but also temporal information.

Appendix A. Geodesic neighborhood computation algorithm

In Algorithm 1 we present a formal description of the algorithm used for the

computation of the geodesic neighborhoods.855
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