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ABSTRACT
Smartwatches and other wearables generally have small
screens, thereby complicating touch-based interaction. Selec-
tion from a long list, e.g. to locate a contact or a music track,
is particularly cumbersome due to the limited interaction
space. We present BinarySwipes, an interaction technique
based on binary search which is designed to speed up list
search tasks on space-constrained screens. We evaluate a pro-
totypical implementation of BinarySwipes on a smartwatch.
Results from our evaluation with 21 participants show im-
proved performance over a plain linear search on lists with
100, 200 and 500 entries, but also increased mental load on
the users.

CCS CONCEPTS
• Human-centered computing → Touch screens; Ges-
tural input; Ubiquitous and mobile computing systems and
tools; Empirical studies in ubiquitous and mobile computing.

KEYWORDS
smartwatch; touch screen; wearable; search; list search; touch
interface; small screen

ACM Reference Format:
Johannes Hartmann, Maximilian Schirmer, and Florian Echtler.
2019. BinarySwipes: Fast List Search on Small Touchscreens. In
Mensch und Computer 2019 (MuC ’19), September 8–11, 2019, Ham-
burg, Germany. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3340764.3340774

1 INTRODUCTION
Wearable devices such as smartwatches offer severely lim-
ited screen space, even though smartphone screens have
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Figure 1: Binary search interface running on an Apple
Watch v2.

constantly been increasing in size for the last few years. Con-
sequently, most touch-based interaction techniques such as
pinch-zoom assume that a sizeable amount of screen space is
available, and are therefore difficult to transfer to the limited
screen sizes of such small devices.

One example for such an interaction technique is scrolling
through and searching in a list of items, such as contacts or
song titles. On a smartphone, this is usually solved through a
combination of inertial scrolling, a draggable position indica-
tor on the side, and/or a search field. None of these transfer
well to a small screen: the relevant item is more easily missed
during inertial scrolling, a position indicator is either hard
to hit or occupies too much screen space, and efficient text
entry on small screens is an unsolved problem on its own.

To address this challenge, we introduce BinarySwipes, an
interaction concept that uses the fundamental paradigm of
binary search to improve list search on small touchscreens.
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BinarySwipes does not rely on any physical controls and
only requires a standard touchscreen. We implemented a
prototype of this concept on a smartwatch, and evaluated the
prototype with 21 users in a controlled study. A noteworthy
result from our evaluation is that BinarySwipes improves
raw search performance, but also increased mental load in
comparison to a plain linear list interface.

2 RELATEDWORK
Several existing research projects have already focused on
how to enable efficient interaction with a small touchscreen
in general. For example, Lafreniere et al. [8] looked into
how more complex tap gestures could be used to improve
command selection on smartwatches, with encouraging per-
formance gains reported in their study.. Singh et al. [15]
recently investigated how increased mobility and encum-
brance of users affect performance on such devices. Their
findings suggest that short-contact gestures such as flicks
are best suited for this interaction context.

Regarding list interaction, one of the most commonly used
lists on smartphones and smartwatches is the contact list.
Bentley and Chen [2] analyzed the mobile phone books of
200 users, and found an average size of the contact list of
308 entries (with an astonishing maximum of 3038 contacts).
Obviously, finding an entry in lists of this size would be a
very tedious and time-consuming task on a space-limited
touchscreen interface when using a plain list.

Absolute Positioning
In the context of list selection, Quinn and Cockburn [12]
present Zoofing!, an approach to scrolling that uses flicking
and pressure as possible ways to scroll and "zoom" in lists.
The initial list of items (the paper also lists contact and song
names as examples) is presented completely zoomed out,
i.e. every item in the list is visible. So-called landmarks at
the side of the list denote the start of sections, e.g. the first
letter of a term in an alphabetic list. Putting pressure on the
screen activates the zooming part of the interface, with zoom
level proportional to increasing pressure. If the user eases
the pressure, the zooming stops and eventually returns to a
fully zoomed out state after three seconds without interac-
tion. After the zooming phase, flicking the screen scrolls the
interface with simulated friction. Once the user reaches the
intended list entry, tapping can be used for item selection
(but is active at any given zoom level). The user tests the
researchers performed showed a significant improvement of
item acquisition times as opposed to traditional approaches.

Perrault et al. [10] use a custom smartwatch wristband
with embedded sensors to detect interaction on the band.
Position on the wristband is used to indicate absolute posi-
tion in a list, which their study shows to outperform a plain

scrolling interface. A fundamentally similar approach is fol-
lowed by Ahn et al. [1], who embed touch-sensitive edges
into the rim of a square smartwatch that can then be used
for scrolling, similar to the edges of many laptop touchpads.
Corsten et al. [4] use a force-sensitive touchscreen to aug-
ment value selection (e.g. in a date picker), while Xiao et al.
[17] convert the entire front face of the watch into a physical
button that can be used for navigation. However, a common
drawback of all these approaches is that they require custom
sensor hardware in the form of a sensor-equipped wristband,
touch-sensitive casing, or force sensors, and can therefore
not directly be generalized to other small-screen devices
which only offer a plain touchscreen.

List Segmentation
Rao et al. [13] present a list interaction concept which iter-
atively partitions a list into multiple sublists based on user
input, an approach which can be considered a generalization
of binary search. Similarly, Shani et al. [14] introduce a tech-
nique called Character Pinning. In an interface that displays
a search term, the user can either accept the current word or
indicate that the searched-for word is alphabetically above
or below the current word. In addition, pinning a character
locks the first letter of the word and search continues with
a subset of words which start with the corresponding letter.
This equals the first step of the hybrid search option of our
approach discussed below. Subsequently pinning more char-
acters will further expand the prefix and thereby lower the
amount of possible selections left. The author’s user study
found significant advantages when used on a button-based
interface. We follow a similar approach with respect to the
underlying fundamental concept of binary search, but ex-
tend the interface using range indicators (see below) and
investigate its usability on a space-constrained touchscreen
device.

In a similar way,CircularSelection: Optimizing List Selection
for Smartwatches by Plaumann et al. [11] uses a ring-shaped
array of starting characters around the periphery of a cir-
cular smartwatch in order to pre-select a sublist, which is
then accessed in a regular manner. The authors found signifi-
cantly faster search times with respect to a plain list interface
on lists with 40 and 240 items.

Based on the earlier "effective view navigation" by Furnas
et al. [6], Chittaro et al. [3] present an approach to filtering
long lists by not showing an entire list, but splitting the long
list into multiple smaller ones and then displaying the first
and last entries of the respective list. This essentially changes
the search algorithm from a linear search into a tree search,
as the respective sub-lists can again be split into smaller
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arrays. An interface using the effective view navigation al-
ways offers to either select one of the displayed words or to
dig deeper into the arrays that lie between the words that
are currently displayed. The authors use this approach on
a smartphone-sized device and tests its effectiveness with
two variants, a split into two arrays and a split into six ar-
rays. They compare these two interfaces with a traditional
keyboard and search field approach. While the evaluation
shows that this technique is not yet capable of competing
with regular search via keyboard, they still are convinced
that this technique "could still be useful when no full key-
board [...] can be provided". As one of the use cases they also
name scenarios in which wearable computers are relevant,
which applies to our present work.

Summary
From reviewing related work, we conclude that there are
few techniques for interaction with long lists that are ap-
plicable to a plain, small-scale touchscreen which a generic
smartwatch provides. Navigation concepts which are based
on binary search show promise, but have not yet been mod-
ified to fit this context. We combine this approach with a
suitable input method focused on coarse swipes, resulting in
our BinarySwipes prototype detailed below.

3 BINARYSWIPES PROTOTYPE
Our BinarySwipes prototype (shown in Figure 2a) imple-
ments an interaction concept based on binary search, i.e. the
user is presented with a currently selected "pivot" element
(the center of the currently selected range), and is given the
option of a) navigating to the sub-range lexically prior to
the pivot element, b) navigating to the subrange lexically
subsequent to the pivot element, or c) confirming the cur-
rently selected element and thereby ending the search. At
the start of the search, the entire list contents are the selected
range, and the middle element of the whole array is the pivot
element. To select the lexically prior/subsequent subrange,
the user needs to swipe up/down, while confirmation is per-
formed through a dedicated touch button.

The prototype described here is the second iteration of our
interface. It is based on the results of a preliminary qualitative
user test with 6 participants, which led to the introduction of
the range indicators and the hybrid search mode described
below.

Undo/Reset Buttons
If the user accidentally swipes away from their target word,
the wrong sub-range gets picked as the new focus. This array
does not contain the word the user initially was looking
for, at which point the user-driven algorithm breaks. This
requires the interface to offer an undo button. Furthermore,
the interface has also been given a full reset option. If the

user does not immediately realise that they made a mistake,
resetting the interface can be less daunting than undoing an
unknown number of steps.

Range Arrays and Prediction Indicators
The upper and lower array indicators are a visual clue in-
spired by earlier work from Chittaro and De Marco [3]. With-
out any form of indicators, especially with names, the inter-
face forced the user to think about the alphabet sequence at
every step. To mitigate the implied mental load, the range
indicators were added.
Above and below the current word or letter, the inter-

face now displays the upper and lower range’s boundary
elements. Thereby, one look could possibly suffice to tell in
which direction the searched letter or word is to be found.
In addition, once the user swipes up or down slightly (not
triggering the full swipe yet), the interface will display which
letter/range the swipe will lead to.

Linear and Hybrid Search Variants
For comparison, a "regular" linear list search with swipe-
based inertial scrolling and a side position indicator was
also implemented, using the default list widget on the watch.
Confirmation is performed by simply tapping the correct list
entry. The scale was chosen so that three different names
could be displayed simultaneously, based on e.g. the default
calendar view on the Apple Watch which also shows 3 items
per screen (see Figure 2c).

In addition, we implemented a hybrid search step in which
the user is first supposed to select the starting letter of the
search term using binary search (see Figure 2b). Afterwards,
they are presented with a linear sub-list of the initial items
which exclusively contain words that start with the selected
letter. Consequently, the user can scroll through smaller lists
throughout the entire process, and the mental load might
possibly be lower.

Additional Implementation Aspects
Although our prototypewas implemented on anAppleWatch
which also offers a digital crown for scrolling interactions,
we decided against integrating the crown into our interface.
The rationale for this choice is that the crown, or similar
features such as rotateable bezels, only are available on a
limited subset of wearable devices, whereas a touchscreen
is nearly ubiquitous. Therefore, we focused on interaction
mechanisms that could comfortably be implemented on any
small touchscreen device.

In addition to the central watch implementation, we built
an iPhone application that is used in later tests to reset the
application on the watch, for switching between the different
search modes, and for logging task completion times and
error rates.
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Figure 2: Screenshots from the watch simulator showing the three possible interface modes: (a) shows the binary search, (b)
the hybrid mode and (c) the linear search.

4 EVALUATION
To test the effectiveness of the interface presented above, we
conducted a controlled within-subject user study that tested
the viability of the binary search interface in comparison
to a common linear list interface. In total, we evaluated the
BinarySwipes interfaces with 21 users. Their average age
was 26.1 years (σ = 3.6 years). Eight of the users had a com-
puter science background, while the rest came from various
backgrounds ranging from physical health care to political
sciences. Participants were provided with refreshments, but
did not receive monetary compensation. After answering
a short demographic questionnaire and consenting to the
aggregated and anonymized use of their data, we introduced
them to the smartwatch interface.

We tested three interface conditions:
Condition 1: Linear. As described above, this baseline con-
dition uses the standard list widget available directly from
the watch UI framework, and supports dragging/flicking
interaction to scroll the list.
Condition 2: Binary. This condition uses swipe-controlled
binary search through the full list until the correct entry has
been found and selected via the confirmation button.
Condition 3:Hybrid. This condition combines a binary search
step to select the starting letter of the search word, followed
by a linear search through the respective sublist of words
starting with that letter.

The three conditions were presented in counter-balanced
order. This is especially relevant because a majority of the
test users (15) said they have no prior experience with smart-
watches at all. Therefore, learning effects might not appear
with respect to the interfaces themselves, but rather with
respect to using and wearing a smartwatch in general. Note
that we did not choose a full Latin square randomization

of the three individual conditions in order to avoid more
than one interface context switch (linear vs. binary/hybrid)
per participant. Consequently, the condition orders in our
experiment were LBH, LHB, BHL, and HBL.

Each interface condition was tested with three different
list lengths: 100 (small), 200 (medium) and 500 (large) fic-
tional names. These list lengths were presented in random-
ized order to prevent learning effects. For each list length,
the user was tasked with finding three randomly selected
names, displayed on the controlling smartphone in front of
the participant. For the linear list with 500 entries, we un-
fortunately experienced transient performance issues and
crashes with the Apple Watch 2 which resulted in a notice-
ably smaller data set for this condition. Since the binary and
hybrid interfaces do not have to keep all 500 names active
in a single list widget, the 500-item condition did not cause
any problems for these conditions.

After finishing all three runs through each interface con-
dition, the users were presented with a NASA-TLX ques-
tionnaire to provide qualitative measures on the interface.
Finally, the users were invited to voice any ideas, thoughts
or concerns with the interface that they had.

During each test, we logged the total time required to find
the name in question as well as the number of undo and reset
actions in the binary interface. The number of undo steps
was only tracked in for the binary search conditions because
the linear search does not explicitly support this operation.

Results
For all statistical tests, we use the standard confidence inter-
val of 95% for determining significance.

Each test run resulted in a total of 63 samples per interface
and length of the array, making for a total of 9 x 63 = 567
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Figure 3: Search times for each condition and list size. Brack-
ets indicate significant differences between conditions.

data points. Due to transient performance issues in the linear-
large condition (possibly due to memory exhaustion caused
by the 500-item list), 34 invalid samples had to be removed.
Consequently, results involving this combination have to be
treated cautiously, although we still included these in the
analysis. Each linear search showed a normal distribution
according to the Shaprio-Wilk test (for p = 0.05; w = 0.956
with small, w = 0.985 with medium, and w = 0.939 with large
list). Similarly, the binary search showed normal distribution
(for p = 0.05; w = 0.948 for small, w = 0.950 for medium, and
w = 0.963 for large list), just like the hybrid search (for p =
0.05, w = 0.950 for small, w = 0.964 for medium, and w = 0.972
for large list). Consequently, as all completion time data are
distributed normally (as also confirmed by visual analysis of
density and QQ plots), this enables the use of ANOVA with
post-hoc Tukey HSD test for normally distributed samples
for any comparisons of the data groups.

On average, users took 14.1 seconds (σ = 5.78s) for finding
a name in the regular search with a small array, while the
time increased to 16.6 seconds (σ = 6.61s) for the medium
array, and to 25.5 seconds (σ = 7.90s) with the large array.
The binary search was faster in absolute terms, taking 10.6
seconds on average (σ = 3.09s) on a small array, 14.8 seconds

(σ = 4.51s) on a medium array and 15.6 seconds (σ = 4.32s)
for the large array. The hybrid search took a little longer on
average with a search taking 14.2 seconds (σ = 3.74s) on the
small list, 15.6 seconds (σ = 3.52s) on the medium list and
18.0 seconds (σ = 3.36s) on the longest array. Figure 3 shows
an overview of all time measurements.

ANOVA shows that the results differ significantly for the
small (p < 0.001) and large (p < 0.001) conditions, but not for
the medium condition (p = 0.141). Table 1 shows the p-values
for all valid comparisons, i.e. between same array sizes (as
provided by the post-hoc Tukey HSD test).

In particular, the binary search performed better than the
linear search by 3.52 seconds for the 100-item condition.
This difference is significant based on the ANOVA result (p
< 0.001). For 500 items, the difference of 9.90 seconds is also
again significant at p < 0.001. Interestingly, all three tests
show an absolute time advantage towards the simpler version
of the interface (without hybrid search). The comparison for
the 100-item condition shows a significant difference (p <
0.001), as does the comparison for the 500-item condition (p
= 0.013), suggesting the regular binary approach as a better
choice for these array sizes.

Cond. 1 Cond. 2 p-value Implication
Linear S Binary S < 0.001 Binary S is faster
Linear S Hybrid S 0.998 No significant diff.
Hybrid S Binary S < 0.001 Binary S is faster
Linear L Binary L < 0.001 Binary L is faster∗
Linear L Hybrid L < 0.001 Hybrid L is faster∗
Hybrid L Binary L 0.013 Binary L is faster∗

Table 1: All Tukey post-hoc comparisons for significantly
different conditions (as indicated by ANOVA). Results
marked with ∗ are based on reduced sample size due to tran-
sient performance issues.

We see the following absolute differences between linear
and hybrid search: -0.05 seconds for 100, 1.02 seconds for
200, and 7.47 seconds for 500 items. ANOVA does not show a
significant difference between the two test groups (p = 0.998
for small and p = 0.487 for medium sized arrays). Although
the large condition is significantly different (p < 0.001), this
result needs to be treated cautiously due to the limited sample
size after outlier removal. Nevertheless, this also confirms
the previous impression that the regular binary search is the
better variant of the two binary approaches.

Interpretation
As a conclusion of the raw performance, it can be stated
that the plain binary search outperforms the linear search.
The plain binary search also outperforms the hybrid search
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for two out of three conditions. There is no clear advantage
when comparing the hybrid interface and the linear search
interface.

Regarding error rates, users had to correct their actions in
the binary search interface 26 times in 189 samples, which
equals a 13.76% of samples that had a mistake in them. This
seems like an acceptable value, especially considering that
there were no expert users in the tests. On the hybrid search,
36 undo and reset actions were counted, which equals a
19.05% share of trials that users had to correct.

To assess other aspects beyond raw task-completion times,
we used the NASA-TLX test as final part of the study. Table 2
shows the results of the questionnaires. We focus on the raw
TLX values as discussed by Hart [7], i.e. results are reported
and analyzed separately for each category and not combined
into a single TLX score. Values therefore range from -10 to
10, with lower values being better for all measures except
performance.

TLX Category Linear Binary Hybrid
Mental Demand -7.5 2.15 3.95
Physical Demand -4.9 -1.35 -0.2
Temporal Demand 1.05 -0.45 -0.25
Performance 7.35 5.0 4.15
Effort 2.05 -1.45 3.95
Frustration -0.6 -3.7 -2.45

Table 2: Overview over the average NASA-TLX scores for
each interface. Bold values indicate the best value in the re-
spective category.

Based on another analysis of the normally-distributed data
with ANOVA, we can conclude that significant differences
exist across all 6 measures. Further analysis with Tukey HSD
shows that pairwise significant differences for all three com-
binations exist for Mental Demand and Effort. For Physical
Demand and Performance, the linear condition is signifi-
cantly different from each of the binary/hybrid conditions, al-
though no significance exists between the two binary search
variants. Finally, for Temporal Demand and Frustration, only
the difference between linear and binary search is significant,
both other combinations are not.
A noteworthy result is that linear search was the only

mode which users did not find to be mentally demanding,
even though statistical performance evaluation showed bet-
ter overall results for binary search. This also offers a possible
explanation as to why the hybrid mode could not compete
with the binary search: the interface and its two steps ap-
parently become too demanding with a rating of 3.95. How-
ever, this contradicts our initial assumption that the option

Figure 4: Nasa TLX scores for each condition and category

to choose a first letter and then just browse the respective
name array would actually decrease mental demand.

Also very interesting is the disparity in performance. Users
were not as confident in their performance in the two binary
search options as they were in the linear search. This fact is
somewhat paradox, since all users in the tests have been able
to finish all their search tasks. Apparently, the test interface
still doesn’t provide enough clues as towards when a task
is successfully finished. For real life applications, however,
those clues do not make a lot of sense because the users
would only find a word they specifically wanted to find and
therefore also decide themselves when their task is success-
fully finished.

Another metric that shows results worth mentioning is the
effort. Users found that the interface they had to put into the
most effort was the hybrid search. Since the hybrid search is
the only interface that required two different steps and also,
in a way, two different searches, this makes sense. It is also
remarkable that the binary search heavily outperformed the
linear search as well as the hybrid search with regards to
effort, being the only interface that reaches a negative value
here which corresponds to the users having to put low effort
into the task, which again speaks strongly for the simplistic
design of the binary search application.

Temporal Demand and Frustration both rank the searches
as binary being the most pleasurable, the hybrid search as
the runner-up and the linear search as the weakest of the
three interfaces. The results in the qualitative time category
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Comparison Mental Physical Temporal Perfor- Effort Frust-
Demand Demand Demand mance ration

Linear & Binary < 0.001 0.004 0.018 < 0.001 < 0.001 < 0.001
Linear & Hybrid < 0.001 0.002 0.058 < 0.001 0.021 0.056
Binary & Hybrid 0.003 0.190 0.720 0.040 < 0.001 0.038

Table 3: Pairwise Tukey post-hoc comparisons of all NASA-TLX Values from the User Test. Bold values show statistically
significant differences (after Holm-Bonferroni correction).

and the quantitative time category from the prior subsection
match. Even though users were (according to the Perfor-
mance question) most confident in their results on the linear
interface, they still felt frustrated by the longer searching
periods and long lists.

Conclusions From the Main Evaluation
Based on our results, we consider the binary search interface
to be the best-performing interface out of the three for the
task at hand. The hybrid interface and the linear interface
have not been able to reach the same level of performance
that the binary interface produced. While the results from
the NASA-TLX questionnaire were not entirely unfavourable
towards the linear search interface, the binary search showed
better results in two categories that are very relevant to
HCI in general, effort and frustration. Even though Mental
Load is still higher for the binary search, this tradeoff can
be considered acceptable as long as the users do not feel
overwhelmed (Effort) or become frustrated with how hard
the task is (Frustration).
As mentioned earlier, the impressions from the quantita-

tive and qualitative values match. However, the NASA-TLX
shows that the mental demand for both binary and hybrid
interface is considerably higher than it is for linear search.
While this result is not surprising, it is important to point out
that this requires further investigation for various real-life
scenarios (see also following section 5).
Finally, it is worth noting that the standard deviation of

the time values differs heavily between conditions. The bi-
nary search showed standard deviations of 3.09 seconds, 4.51
seconds and 4.32 seconds for the small, medium and large
arrays respectively. At the same time, the hybrid search had
standard deviations of 3.74 seconds, 3.52 seconds and 3.36
seconds respectively. These numbers are considerably lower
compared to the linear search, that showed 5.78 seconds of
deviation on the small, 6.61 seconds on the medium, and 7.90
seconds for large list size. The overall spread of completion
times is higher in the linear search — simply because there
are targets in the list that can be found quickly and just as
many that will take a very long time to find. It could be
assumed, based on these deviations, that binary search in

general will provide more predictable search times - while
not having many "instant find" scenarios, it also has less
"long search" scenarios.

5 DISCUSSION & FUTUREWORK
The binary search interface presented in this work proves
to be an option that not only outperforms the linear search,
but also reaches better overall values in qualitative measures.
Even though these results are convincing, the users have
struggled to use the two-stage binary search interface, which
was initially designed to be an improvement over the binary
interface.

One limitation of our tests is the implicit assumption that
the user knows that the list contains the word they are look-
ing for. Otherwise, the user will continue to narrow down
the search area where they expect the word, but will eventu-
ally limit the search range down to a point where they can
be sure that they missed the word. At this point, the user
can either conclude that the list does indeed not contain the
word they are searching for, or could (erroneously) conclude
that they made a mistake and will try to fix this through an
undo or reset command, likely leading to frustration after
repeated futile attempts. At the moment, this problem can
only be solved through a complementary search field.
In terms of future user tests, it would be valuable to ana-

lyze whether users would actually enjoy the interface in real
life. A controlled setting is important for user tests, but the
validity of such a lab setting is limited to similar conditions.
Using the interface in traffic, on the subway or even just
during dinner for music selection are all possible and rele-
vant scenarios that this test does not cover. There is only one
realistic way to find out whether these are actually scenarios
in which users, in particular experienced smartwatch users,
would use the application, and this is a long-term deploy-
ment for everyday scenarios. Obviously, this requires the
implementation of the interface into other standard watch
applications such as the music or contact application. A long-
term test would provide an additional outcome: learning how
expert users interact with such an interface. Extended data
gathering would also be able to show if there is a learning
effect, and if so, how strong that effect is.
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When looking at usage scenarios for the search interface,
another issue that our present user test does not cover is the
topic of cognitive load. Cognitive load generally describes
mental effort that is being used to perform any task [9, 16]
and is partly represented in the NASA-TLX tests under "men-
tal demand". As stated before, the results for mental demand
are quite high for both binary search approaches. While a
controlled study was able to produce promising results, it
still is a test that imposes little pressure and no multitasking
requirements on the participants and therefore, the possibly
problematic mental load does not show its effect in these
studies. All scenarios named earlier in this section add some
form of multitasking to the interface’s use and might there-
fore turn the high mental load into a much more problematic
issue than it appears after controlled tests.
Although the tested interfaces had a clear separation be-

tween binary and linear search, this is not a strict require-
ment. For example, an initial binary search step could be
combined with the linear interface. This approach adds four
design options; the only one of those that was fully tested in
this paper, however, is the variant that uses binary search in
both steps. While the implications of our user tests are that
binary search generally performs better than linear search,
it is quite possible that another two-step interface may still
lead to better results, or even just better qualitative measures.
Dunlop et al. [5] presented a text entry interface, which

used swiping gestures as confirmation and undo button. This
is a very elegant way to solve the problem of lack of space
on the smartwatch. As of now, our approach uses a larger
button for the confirm interaction and a two smaller ones
for the undo and reset commands. A possible modification
would be to use a small, rounded reset button and left/right
swipe for undo and confirm. This gives additional emphasis
to the swiping interaction and does not require the users to
switch their mental space to button interaction.
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