
Dominant Orientation Templates for Real-Time Detection of Texture-Less Objects

Stefan Hinterstoisser1, Vincent Lepetit2, Slobodan Ilic1, Pascal Fua2, Nassir Navab1

1Department of Computer Science, CAMP, Technische Universität München (TUM), Germany
2École Polytechnique Fédérale de Lausanne (EPFL), Computer Vision Laboratory, Switzerland

{hinterst,slobodan.ilic,navab}@in.tum.de, {vincent.lepetit,pascal.fua}@epfl.ch

Abstract

We present a method for real-time 3D object detection
that does not require a time consuming training stage, and
can handle untextured objects. At its core, is a novel tem-
plate representation that is designed to be robust to small
image transformations. This robustness based on dominant
gradient orientations lets us test only a small subset of all
possible pixel locations when parsing the image, and to rep-
resent a 3D object with a limited set of templates. We show
that together with a binary representation that makes eval-
uation very fast and a branch-and-bound approach to effi-
ciently scan the image, it can detect untextured objects in
complex situations and provide their 3D pose in real-time.

1. Introduction
Currently, the dominant approach to object recognition

is to use statistical learning to build a classifier offline, and
then to use it at run-time for the recognition [17]. This
works remarkably well but is not applicable for all scenar-
ios, for example, a system that has to continuously learn
new objects online. It is then difficult, or even impossible,
to update the classifier without losing efficiency.

To overcome this problem, we propose an approach
based on real-time template recognition. With such a tool
at hand, it is then trivial and virtually instantaneous to learn
new incoming objects by simply adding new templates to
the database while simultaneously maintaining reliable real-
time recognition.

However, we also wish to keep the advantages of statis-
tical methods, as they learn how to reject unpromising im-
age locations very quickly, which increases their real-time
performance considerably. They can also be very robust,
because they can generalize well from the training set. For
these reasons, we also designed our template representation
based on some fast to compute image statistics that provide
invariance to small translations and deformations, which in
turn allows us to quickly yet reliably search the image.

Figure 1. Overview. Our templates can detect non-textured objects
over cluttered background in real-time without relying on feature
point detection. Adding new objects is fast and easy, as it can be
done online without the need for an initial training set. Only a few
templates are required to cover all appearances of the objects.

As shown in Figure 1, in this paper we propose a tem-
plate representation that is invariant enough to make search
in the images very fast and generalizes well. As a result, we
can almost instantaneously learn new objects and recognize
them in real-time without requiring much time for training
or any feature point detection at runtime.

Our representation is related to the Histograms-of-
Gradients (HoG) based representation [1] that has proved to
generalize well. Instead of local histograms, it relies on lo-
cally dominant orientations, and is made explicitly invariant
to small translations. Our experiments show it is in practice
at least as discriminant as HoG, while being much faster.
Because it is explicitly made invariant to small translations,
we can skip many locations while parsing the images with-
out the risk of missing the targets. Moreover we developed
a bit-coding method inspired by [16] to evaluate an image
location for the presence of a template. It mostly uses sim-
ple bit-wise operations, and is therefore very fast on modern
CPUs. Our similarity measure also fulfills the requirements
for recent branch-and-bound exploration techniques [10],

1

speeding-up the search even more.
In the remainder of the paper we first discuss related

work before we explain our template representation and
how similarity can be evaluated very fast. We then show
quantitative experiments and real world applications of our
method.

2. Related Work
Template Matching is attractive for object detection be-

cause of its simplicity and its capability to handle different
types of objects. It neither needs a large training set nor a
time-consuming training stage, and can handle low-textured
objects, which are, for example, difficult to detect with fea-
ture points-based methods.

An early approach to Template Matching [13] and its
extension [3] include the use of the Chamfer distance be-
tween the template and the input image contours as a dis-
similarity measure. This distance can efficiently be com-
puted using the image Distance Transform (DT). It tends
to generate many false positives, but [13] shows that taking
the orientations into account drastically reduces the num-
ber of false positives. [9] is also based on the Distance
Transform, however, it is invariant to scale changes and ro-
bust enough against perspective distortions to do real-time
matching. Unfortunately, it is restricted to objects with
closed contours, which are not always available.

But the main weakness of all Distance Transform-based
methods is the need to extract contour points, using Canny
method for example, and this stage is relatively fragile. It
is sensitive to illumination changes, noise and blur. For in-
stance, if the image contrast is lowered, contours on the ob-
ject may not be detected and the detection will fail.

The method proposed in [15] tries to overcome these lim-
itations by considering the image gradients in contrast to
the image contours. It relies on the dot product as a sim-
ilarity measure between the template gradients and those
in the image. Unfortunately, this measure rapidly declines
with the distance to the object location, or when the ob-
ject appearance is even slightly distorted. As a result, the
similarity measure must be evaluated densely, and with
many templates to handle appearance variations, making
the method computationally costly. Using image pyramids
provides some speed improvements, however, fine but im-
portant structures tend to be lost if one does not carefully
sample the scale space.

Histogram of Gradients [1] is another very popular
method. It describes the local distributions of image gra-
dients as computed on a regular grid. It has proven to give
reliable results but tends to be slow due to the computational
complexity.

Recently, [2] proposed a learning-based method that rec-
ognizes objects via a Hough-style voting scheme with a
non-rigid shape matcher on the contour image. It relies on

statistical methods to learn the model from few images that
are only constraint with a bounding box around the object.
While giving very good classification results, the approach
is neither appropriate for object tracking in real-time due
to its expensive computation nor it is exact enough to re-
turn the correct pose of the object. Moreover, it holds all
the disadvantages of Distance Transform based methods as
mentioned previously.

Grabner and Bischof [4, 5] developed another learning
based approach that put more focus on online learning.
In [4, 5] it is shown how a classifier can be trained online in
real-time, with a training set generated automatically. How-
ever, [4] was demonstrated on textured objects, and [5] can-
not provide the object pose.

The method proposed in this paper has the strength of
the similarity measure of [15], the robustness of [1] and the
online learning capability of [4, 5]. In addition, by binariz-
ing the template representation and using a recent branch-
and-bound method of [10] our method becomes very fast,
making possible the detection of untextured 3D objects in
real-time.

3. Proposed Approach
In this section, we describe our Dominant Orientation

Templates, and how they can be built and used to parse im-
ages to quickly find objects. We will start by deriving our
similarity measure, emphasizing the contributions of each
aspect of it. We then show how to use a binary representa-
tion to compute the similarity using efficient bit-wise opera-
tions. We finally demonstrate how to use it within a branch-
and-bound exploration of the image.

3.1. Initial Similarity Measure

Our starting idea is to measure the similarity between
an input image I, and a reference image O of an object
centered on a location c in the image I by comparing the
orientations of their gradients.

We chose to consider image gradients because they
proved to be more discriminant than other forms of repre-
sentations [11, 15] and are robust to illumination change
and noise. For even more robustness to such changes,
we use their magnitudes only to retain the orientations of
the strongest gradients, without using their actual values
for matching. Also, to correctly handle object occluding
boundaries, we consider only the orientations of the gradi-
ents, by contrast with their directions (two vectors with a
180deg angle between them have the same orientation).. In
this way, the measure will not be affected if the object is
over a dark background, or a bright background. Moreover,
as in SIFT or HoG [1], we discretize the orientations to a
small number no of integer values.

Our initial energy function E1 counts how many orienta-

tions are similar between the image and the template cen-
tered on location c, and can be formalized as:

E1(I,O, c) =
∑
r

δ
(

ori(I, c+ r) = ori(O, r)
)
, (1)

where

• δ(P) is a binary function that returns 1 if P is true, 0
otherwise;

• ori(O, r) is the discretized gradient orientation in the
reference image O at location r which parses the tem-
plate. Similarly, ori(I, c+r) is the discretized gradient
orientation at c shifted by r in the input image I.

3.2. Robustness to Small Deformations

To make our measure tolerant to small deformations, and
also to make it faster to compute, we will not consider all
possible locations, and will decompose the two images into
small squared regions R over a regular grid. For each
region, we will consider only the dominant orientations.
Such an approach is similar to the HMAX pooling mech-
anism [14]. Our similarity measure can now be modified
as:

E2(I,O, c) =
∑

R in O
δ
(

do(I, c+R) ∈ DO(O,R)
)
, (2)

where DO(O,R) returns the set of orientations of the
strongest gradients in region R of the object reference im-
age. In contrast, do(I, c + R) returns only one orienta-
tion, the orientation of the strongest gradient in the region
R shifted by c in the input image.

The reason why we chose each region in O to be repre-
sented by the strongest gradients is that the strongest gra-
dients are easy and fast to identify and very robust to noise
and illumination change. Moreover, to describe uniform re-
gions, we introduce the symbol⊥ to indicate that no reliable
gradient information is available for the region. The DO(.)
function therefore returns either a set of discretized gradi-
ent orientations of the k strongest gradients in the range of
[0, no − 1] or {⊥}, and can be formally written as:

DO(O,R) =

{
S(O,R) if S(O,R) 6= ∅,
{⊥} otherwise (3)

with

S(O,R) = {ori (O, l) : l ∈ maxmagk(R) ∧mag(O, l) > τ}
(4)

where

• l is a pixel location inR,

• ori(O, l) is the gradient orientation at l in image O,
and mag(O, l) its magnitude,

...

...

...

Image

Region
 R

t

t

L(O,R
1,1

)

cy

cx

c

 c+R 1,2

 c+R 2,1

mismatched
orientation

dominant template
orientation
matched
orientation

Template
dominant image
orientation

Figure 2. Similarity measure E4. Our final energy measure E4

counts how many times a local dominant orientation for a region
R in the image belongs to the corresponding precomputed list of
orientations L(O,R) for the corresponding template region. Each
list is made of the local dominant orientations that are in the region
R when the object template is slightly translated.

• maxmagk(R) is the set of locations for the k strongest
gradients in R. In practice we take k = 7 but the
choice of k does not seem critical.

• τ is a threshold on the gradient magnitudes to decide
if the region is uniform or not.

The function do(I, c+R) is computed similarly in the input
image I. However, to be faster at runtime, in do(I, c+R),
k is restricted to 1, and therefore do(I, c+R) returns only
one single element.

3.3. Invariance to Small Translation

We will now explicitly make our similarity measure in-
variant to small motions. In this way, we will be able to
consider only a limited number of locations c when parsing
an image and save a significant amount of time without in-
creasing the chance of missing the target object. To do so,
we consider a measure that returns the maximal value of E2
when the object is slightly moved, which can be written as:

E3(I,O, c) = max
M∈M

E2(I,w(O,M), c)

= max
M∈M

∑
R in O

δ
(

do(I, c+R) ∈ DO(w(O,M),R)
)
,

(5)
where w(O,M) is the image O of the object warped using
a transformation M . In practice, we consider for M only
2D translations as it appears sufficient to handle other small
deformations, andM is the set of all (small) translations in
the range [− t

2 ; + t
2]2.

There is of course a limit for the range t. A large t will
result in high speed-up but also in a loss of discriminative
power of the function. In practice, we found that t = 7 for
640× 480 images is a good trade-off.

3.4. Ignoring the Dependence between Regions

Our last step is to ignore the dependence between the
different regions R. This will simplify and significantly
speed-up the computation of the similarity. We therefore
approximate E3 as given in Eq.(5) by:

E4(I,O, c)
=

∑
R in O

max
M∈M

δ
(

do(I, c+R) ∈ DO(w(O,M),R)
)
.

(6)
The speed-up comes from the fact that, for each region R,
we can precompute a list L(O,R) of the dominant orienta-
tions in R when O is translated overM. As illustrated by
Figure 2, the measure E4 can thus be written as:

E4(I,O, c) =
∑

R in O
δ
(

do(I, c+R) ∈ L(O,R)
)
, (7)

and L(O,R) can formally be written as:

L(O,R)
= {o : ∃M ∈M such that o ∈ DO(w(O,M),R)} .

(8)
The collection of lists over all regions R in O forms the
final object template.

3.5. Using Bitwise Operations

Inspired by [16], and as shown in Figure 3, we efficiently
compute the energy function E4 using a binary representa-
tion of the lists L(O,R) and of the dominant orientations
do(I, c+R). This allows us to compute E4 with only a few
bitwise operations.

By setting no, the number of discretized orientations, to
7 we can represent a list L(O,R) or a dominant orientation
do(I, c +R) with one byte i.e. a 8-bit integer. Each of the
7 first bits corresponds to an orientation while the last bit
stands for ⊥.

More exactly, to each list L(O,R) corresponds a byte L
whose ith bit with 0 ≤ i ≤ 6 is set to 1 iff i ∈ L(O,R),
and whose 7th bit is set to 1 iff ⊥ ∈ L(O,R). A byte D
can be constructed similarly to represent a dominant orien-
tation do(I, c+R). Note that only one bit of D is set to 1.
Now the term δ

(
do(I, c + R) ∈ L(O,R)

)
in Eq.(7) can

be evaluated very quickly. We have:

δ
(

do(I, c+R) ∈ L(O,R)
)

= 1 iff L⊗D 6= 0 , (9)

where ⊗ is the bitwise AND operation.

3.6. Using SSE Instructions

The computation of E4 as formulated in Section 3.5 can
be further speeded up using SSE operations. In addition to

L(O,R) :

do(I,c+R) :

10011001 01000110 11100001 00100100

10000000 00010000 01000000 00000100

10000000 00000000 01000000 00000100

lookup table [...1011...]

AND

 != 0

...

or
i 1

or
i 7

...

or
i 1

or
i 7

...

or
i 1

or
i 7

...

or
i 1

or
i 7

byten byten+1 byten+2 byten+3

bytei

Figure 3. Computing the similarity E4 using bitwise operations and
a lookup table that counts how many terms δ() as in Eq.(9) are
equal to 1.

int energy_function4(__m128i lhs, __m128i rhs)
{

__m128i a = _mm_and_si128(lhs,rhs);
__m128i b = _mm_cmpeq_epi8(a,_mm_setzero());

return lookuptable[_mm_movemask_epi8(b)];
}

Listing 1. C++ Energy function for 16 regions with 3 SSE
instructions and one look-up in a 16-bit-table. Since in SSE there
is no comparison on non-equality for unsigned 8-bit integers we
have—in contrast to Figure 3—to compare the AND’ed result to
zero and count the ”0” instead.

bitwise operations, which are already very fast, SSE tech-
nology allows to perform the same operation on 16 bytes in
parallel. Thus, by using the function given in Listing 1, the
similarity score for 16 regions can be computed with only
3 SSE operations and one lookup-table with 16-bits entries.
Thus, if n denotes the number of regions R, we only have
to use 3

⌈
n
16

⌉
SEE instructions,

⌈
n
16

⌉
uses of a lookup table

with 16-bits entries and additional
⌈

n
16

⌉
− 1 ”+” operations

if the number of regions n is larger than 16. Assuming that
each operation has the same computational cost we need
5
⌈

n
16

⌉
− 1 operations for n regions which results in only

≈ 0.3 operations per region.
This method is extremely cache friendly because only

successive chunks of 128 bits are processed at a time which
holds the number of cache misses low. This is very im-
portant because SSE technology is very sensitive to optimal
cache alignment. This is probably why, although our energy
function is slightly more computationally expensive in the-
ory than [16], we found that our formulation performed 1.5
times faster in practice.

Another advantage of our algorithm, however, is that it is
very flexible with respect to varying template sizes without
loosing the capability of using the computational capacities
very efficiently. In our method, the optimal processor load
is reached by multiples of 16 in contrast to [16] that needs

20 30 40 50 60
0

20

40

60

80

100

viewpoint change [deg]

m
at

ch
in

g
sc

or
e

[%
]

DOT
HoG Templates
Leopar
Panter
Gepard
Harris Affine
Hessian Affine
MSER
IBR
EBR

20 30 40 50 60
0

20

40

60

80

100

viewpoint change [deg]

m
at

ch
in

g
sc

or
e

[%
]

DOT
HoG Templates
Leopar
Panter
Gepard
Harris Affine
Hessian Affine
MSER
IBR
EBR

20 30 40 50 60
60

65

70

75

80

85

90

95

100

viewpoint change [deg]

av
er

ag
e

ov
er

la
pp

in
g

[%
]

DOT
HoG Templates
Leopar
Panter
Gepard
Harris Affine
Hessian Affine
MSER
IBR
EBR

(a) (b) (c)
Figure 4. Methods comparisons on the Graffiti and Wall Oxford datasets. (a-b): Matching scores for Graffiti and Wall sets when increasing
the viewpoint angle. Our method is referred as “DOT”, and reaches a 100% score on both sets for every angle. These results are discussed
in Section 4.1. (c) shows the overlaps between the retrieved and expected regions as an accuracy measure for Graffiti. These results are
discussed in Section 4.2.

0 500 1000 1500
10

−2

10
−1

10
0

10
1

number of templates

ru
nt

im
e

[s
ec

on
ds

]

DOT clustering
DOT binary tree
DOT without clustering
DOT−Tay without clustering
HoG Templates

0 20 40 60 80 100
0

20

40

60

80

100

visibility [%]

si
m

ila
ri

ty
 s

co
re

 [%
]

20
30

40
50

60

 7
11

14
21

0

50

100

region size [pixels]x[pixels]viewpoint change [deg]

m
at

ch
in

g
sc

or
e

[%
]

(a) (b) (c)
Figure 5. (a) Comparison of different methods and cluster schemes with respect to speed. Our method with our cluster scheme performs
superior over all other methods and cluster schemes as discussed in Section 4.3. (b) In Section 4.4 we discuss the linear behavior of our
method with respect to occlusion. (c) t = 7 is a good trade-off between speed and robustness (Section 4.5).

multiples of 128 in a possible dynamic SSE implementa-
tion. The probability of wasting computational power is
therefore much lower using our approach.

3.7. Clustering for Efficient Branch and Bound

We can further improve the scalability of our method by
exploiting the similarity between different templates repre-
senting different objects under different views. The general
idea is to build clusters of similar templates—each of them
being represented by what we will refer to as a cluster tem-
plate. A cluster template is computed as a bitwise OR op-
eration applied to all the templates belonging to the same
cluster. It provides tight upper bounds and can be used in
a branch and bound constrained search as in [10]. By first
computing the similarity measure E4 between the image and
the cluster templates at run-time, we can reject all the tem-
plates that belong to a cluster template not similar enough
to the current image.

We use a bottom-up clustering method: To build a clus-
ter, we start from a template picked randomly among the
templates that do not yet belong to a cluster and iteratively
search for the templates T that fulfill:

argmin
T /∈Clusteri

max(dh(C or T, T), dh(C or T,C)), (10)

where dh is the hamming distance, ”or” the bitwise OR op-
eration and C the cluster template before OR’ing. We pro-
ceed this way until the cluster has a given number of tem-
plates assigned or no templates are left. In the first case, we
continue building clusters until every template is assigned
to a cluster.

For our approach, this clustering scheme allows faster
runtime than the binary tree clustering suggested in [16], as
will be shown in Section 4.3.

4. Experimental Results

In the experiments, we compared our approach called
DOT (for Dominant Orientation Templates) to Affine Re-
gion Detectors [12] (Harris-Affine, Hessian-Affine, MSER,
IBR, EBR), to patch rectification methods [8, 7, 6] (Leopar,
Panter, Gepard) and to the Histograms-of-Gradients (HoG)
template matching approach [1].

For HoG, we used our own SSE optimized implemen-
tation. In order to detect the correct template from a large
template database we replaced the Support Vector Machine
mentioned in the original work of HoG by a nearest neigh-
bor search since we want to avoid a training phase and to
look for a robust representation instead.

We did the performance evaluation on the Oxford Graf-
fiti and on the Oxford Wall image set [12]. Since no video
sequence is available, we synthesized a training set by scal-
ing and rotating the first image of the dataset for changes
in viewpoint angle up to 75 degrees and by adding random
noise and affine illumination change.

4.1. Robustness

The matching scores of the different methods is shown
in Figure 4(a) for the Graffiti dataset, and in Figure 4(b)
for the Wall dataset. As defined in [12], this score is the
ratio between the number of correct matches and the smaller
number of regions detected in one of the two images.

For the affine regions, we first extract the regions us-
ing different region detectors and match them using SIFT.
Two of them are said to be correctly matched if the over-
lap error of the normalized regions is smaller than 40%.
In our case, the regions are defined as the patches warped
by the retrieved transformation. For a fair comparison, we
used the same numbers and appearances of templates for
the DOT and HoG approaches. We also turned off the fi-
nal check on the correlation for all patch rectification ap-
proaches (Leopar, Panter, Gepard) since there is no equiva-
lent for the affine regions.

DOT and HoG clearly outperform the other approaches
by delivering optimal matching results of 100% on the Graf-
fiti image set. For the Wall image set, DOT performs opti-
mal again with a matching rate of 100% while HoG per-
forms worse for larger viewpoint changes.

These very good performances can be explained by the
fact that DOT and HoG scan the whole image while the
affine regions approach is dependent on the quality of the re-
gion extraction. As it will be shown in Section 4.3, even if it
parses the whole image, our approach is fast enough to com-
pete with affine region and patch rectification approaches in
terms of computation times.

4.2. Detection Accuracy

As it was done in [7], in Figure 4(c), we compare the
average overlap between the ground truth quadrangles and
their corresponding warped versions obtained with DOT,
HoG, the patch rectification methods and with the affine re-
gions detectors. We did the experiments for overlap and
accuracy on both image sets but due to the similarity of the
results and the lack of space we only show the results on
the Graffiti image set. Since the Affine Region Detectors
deliver elliptic regions we fit quadrangles around these el-
lipses by aligning them to the main gradient orientation as
it was done in [7].

The average overlap is very close to 100% for DOT and
HoG, about 10% better than MSER and about 20% better
than the other affine region detectors.

4.3. Speed

Although performing similar in terms of robustness and
accuracy, DOT clearly outperforms HoG in terms of speed
by several magnitudes. In order to compare both ap-
proaches, we trained them on the same locations and ap-
pearances on a 640 × 480 image with |R| = 121. The
experiment was done on a standard notebook with an Intel
Centrino Processor Core2Duo with 2.4GHz and 3GB RAM
where unoptimized training of one template took 1.8ms and
the clustering of about 1600 templates 0.76s. As one can
see in Figure 5(a), when using about 1600 templates our
approach is about 310 times faster at runtime than our SSE
optimized HoG implementation. The reason for this is both
the robustness to small deformations that allows DOT to
skip most of the pixel locations and the binary representa-
tion of our templates that enables a fast similarity evalua-
tion.

We also compared our similarity measure to a SSE op-
timized version of Taylor’s version [16]. Our approach is
constantly about 1.5 times faster than Taylor’s. We believe
it is due to the cache friendly formulation of E4 where we
successively use sequential chunks of 128 bits at a time
while [16] has to jump back and forth within 1024 bits (in
case |R| = 121) for successively OR’ing pairs of 128 bit
vectors and accumulating the result (for a closer explana-
tion of Taylor’s similarity measure please refer to [16]) in a
SSE register.

We also did experiments with respect to the different
clustering schemes. We compared the approach where no
clustering is used to the binary tree of [16] and our cluster-
ing described in Section 3.7. Surprisingly, our clustering is
twice as fast as the binary tree clustering at runtime. Al-
though the matching should behave in O(log(N)) time, our
implementation of the binary tree clustering behaves lin-
early up to about 1600 templates as it was also observed
by [16]. As the authors of [16] claim, the reason for this
might be that there are not enough overlapping templates to
fully exploit the potential of their tree structure.

4.4. Occlusion

Occlusion is a very important aspect in template match-
ing. To test our approach towards occlusion we selected 100
templates on the first image of the Oxford Graffiti image
set, added small image deformation, noise and illumination
changes and incrementally occluded the template in 2.5%
steps from 0% to 100%. The results are displayed in Fig-
ure 5(b). As expected the similarity of our method behaves
linearly to the percentage of occlusion. This is a desirable
property since it allows to detect partly occluded templates
by setting the detection threshold with respect to the toler-
ated percentage of occlusion.

20 30 40 50 60
0

20

40

60

80

100

viewpoint change [deg]

m
at

ch
in

g
sc

or
e

[%
]

DOT
HoG Templates

Figure 6. Failure Case. When the object does not exhibit strong
gradients, like the blurry image on the left, our method performs
worse than HoG.

4.5. Region Size

The size of the region R is another important parame-
ter. The larger the region R gets the faster the approach
becomes at runtime. However, at the same time as the size
of the region increases the discriminative power of the ap-
proach decreases since the number of gradients to be con-
sidered rises. Therefore, it is necessary to choose the size of
the regionR carefully to find a compromise between speed
and robustness. In the following experiment on the Graffiti
image set we tested the behavior of DOT with respect to the
matching score and the size of the region R. The result is
shown in Figure 5(c). As the matching score is still 100%
for regions of 7 × 7 pixels, one can see that the robustness
decreases with increasing region size. Although dependent
on the texture and on the density of strong gradients within
one region R, we empirically found on many different ob-
jects that a region size of 7× 7 gives very good results.

4.6. Failure Cases

Figure 6 shows the limitation of our method: To obtain
such optimal results as in Figure 4, the templates have to
exhibit strong gradients. In case of too smooth or blurry
template images, HoG tends to perform better.

4.7. Applications

Due to the robustness and the real-time capability of our
approach, DOT is suited for many different applications in-
cluding untextured object detection as shown in Figure 8,
and planar patches detection as shown in Figure 9. Al-
though neither a final refinement nor any final verification,
by contrast with [7] for example, was applied to the found
3D objects, the results are very accurate, robust and sta-
ble. Creating the templates for new objects is easy and il-
lustrated by Figure 7.

5. Conclusion
We introduce a new binary template representation

based on locally dominant gradient orientations that is
invariant to small image deformations. It can very reliably

detect untextured 3D objects using relatively few templates
from many different viewpoints in real-time. We have
shown that our approach performs superior to state-of-the-
art methods with respect to the combination of recognition
rate and speed. Moreover, the template creation is fast and
easy, does not require a training set, only a few exemplars,
and can be done interactively.

Acknowledgment: This project was funded by the
BMBF project AVILUSplus (01IM08002).

References
[1] N. Dalal and B. Triggs. Histograms of Oriented Gradients

for Human Detection. In CVPR, 2005.
[2] V. Ferrari, F. Jurie, and C. Schmid. From images to shape

models for object detection. IJCV, 2009.
[3] D. Gavrila and V. Philomin. Real-time object detection for

“smart” vehicles. In ICCV, 1999.
[4] M. Grabner, H. Grabner, and H. Bischof. Tracking via Dis-

criminative Online Learning of Local Features. In CVPR,
2007.

[5] M. Grabner, C. Leistner, and H. Bischof. Semi-supervised
on-line boosting for robust tracking. In ECCV, 2008.

[6] S. Hinterstoisser, S. Benhimane, V. Lepetit, P. Fua, and
N. Navab. Simultaneous recognition and homography ex-
traction of local patches with a simple linear classifier. In
BMVC, 2008.

[7] S. Hinterstoisser, S. Benhimane, N. Navab, P. Fua, and
V. Lepetit. Online learning of patch perspective rectification
for efficient object detection. In CVPR, 2008.

[8] S. Hinterstoisser, O. Kutter, N. Navab, P. Fua, and V. Lepetit.
Real-time learning of accurate patch rectification. In CVPR,
2009.

[9] S. Holzer, S. Hinterstoisser, S. Ilic, and N. Navab. Distance
transform templates for object detection and pose estimation.
In CVPR, 2009.

[10] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond
Sliding Windows: Object Localization by Efficient Subwin-
dow Search. In CVPR, June 2008.

[11] D. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. IJCV, 20(2):91–110, 2004.

[12] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A com-
parison of affine region detectors. IJCV, 2005.

[13] C. F. Olson and D. P. Huttenlocher. Automatic target recog-
nition by matching oriented edge pixels. IP, 6, 1997.

[14] T. Serre and M. Riesenhuber. Realistic modeling of simple
and complex cell tuning in the hmax model, and implications
for invariant object recognition in cortex. TR, MIT, 2004.

[15] C. Steger. Occlusion Clutter, and Illumination Invariant Ob-
ject Recognition. In IAPRS, 2002.

[16] S. Taylor and T. Drummond. Multiple target localisation at
over 100 fps. In BMVC, 2009.

[17] P. Viola and M. Jones. Robust real-time object detection.
IJCV, 2001.

Figure 7. Templates creation. To easily define the templates for a new object, we use DOT to detect a known object—the ICCV logo in
this case—next to the object to learn in order to estimate the camera pose and to define an area in which the object to learn is located. A
template for the new object is created from the first image, and we start detecting the object while moving the camera. When the detection
score becomes too low, a new template is created in order to cover the different object appearances when the viewpoint changes.

Figure 8. Detection of different objects at about 12 fps over a cluttered background. The detections are shown by superimpos-
ing the thresholded gradient magnitudes from the object image over the input images. The corresponding video is available on
http://campar.in.tum.de/Main/StefanHinterstoisser.

Figure 9. Patch 3D orientation estimation. Like Gepard [8], DOT can detect planar patches and provide an estimate of their orientations.
DOT is however much more reliable as it does not rely on feature point detection, but parses the image instead. The corresponding video
is available on http://campar.in.tum.de/Main/StefanHinterstoisser.

