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Abstract We propose two learning-based methods to patch
rectification that are faster and more reliable than state-of-
the-art affine region detection methods. Given a reference
view of a patch, they can quickly recognize it in new views
and accurately estimate the homography between the refer-
ence view and the new view. Our methods are more memory-
consuming than affine region detectors, and are in practice
currently limited to a few ten patches. However, if the refer-
ence image is a fronto-parallel view and the internal param-
eters known, one single patch is often enough to precisely
estimate an object pose. As a result, we can deal in real-time
with objects that are significantly less textured than the ones
required by state-of-the-art methods.

The first method favors fast run-time performance while
the second one is designed for fast real-time learning and
robustness, however they follow the same general approach:
First, a classifier provides for every keypoint a first estimate
of its transformation. Then, the estimate allows carrying out
an accurate perspective rectification using linear predictors.
The last step is a fast verification—made possible by the ac-
curate perspective rectification—of the patch identity andits
sub-pixel precision position estimation. We demonstrate the
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École Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
Tel.: +41-21-6936716
Fax: +41-21-6937520
E-mail:{pascal.fua,vincent.lepetit}@epfl.ch

advantages of our approach on real-time 3D object detection
and tracking applications.
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1 Introduction

Retrieving the poses of patches around keypoints in addition
to matching them is an essential task in many applications
such as vision-based robot localization [9], object recogni-
tion [25] or image retrieval [8,24] to constrain the problem
at hand. It is usually done by decoupling the matching pro-
cess from the keypoint pose estimation: The standard ap-
proach is to first use some affine region detector [19] and
then rely on SIFT [15] or SURF [3] descriptors on the recti-
fied regions to match them.

Recently, it has been shown that taking advantage of a
training phase, when possible, greatly improves the speed
and the rate of keypoint recognition tasks [16,22]. Such a
training phase is possible when the application relies on some
databaseof keypoints, such as object detection or SLAM.
By contrast with [19], these learning-based approaches usu-
ally do not rely on the extraction of local patch transforma-
tions in order to handle larger perspective distortions buton
the ability to generalize well from training data. The draw-
back is they only provide a 2–D location, while using an
affine region detector provides additional constraints that
proved to be useful [25,8].

To overcome this problem we introduce an approach il-
lustrated in Fig. 1 and that can provide not only an affine
transformation but the full perspective patch rectification and
that is still real-time thanks to a learning stage. We show this
is very useful for object detection and SLAM applications:
Applying our approach on a single keypoint is often enough
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Fig. 1 The advantages of learning for patch recognition and pose estimation.(a) Given a training images or a video sequence, our method learns
to recognize patches and in the same time to estimate their transformation.(b) The results are very accurate and mostly exempt of outliers.Note
we get the full perspective pose, and not only an affine transformation.(c) Hence a single patch is often sufficient to detect objects andestimate
their pose very accurately.(d) To illustrate the accuracy, we use the ’Graffiti 1’ image and the ICCV booklet cover respectively to train our method
and detect patches in the ’Graffiti 6’ image and in the real scene respectively. We then superimpose the retrieved transformations with the original
patches warped by the ground truth homography.(e) Even after zooming, the errors are still barely visible.(f) By contrast, the standard methods
retrieve comparatively inaccurate transformations, which are limited to the affine transformation group.

to estimate the 3–D pose of the object the keypoint lies on,
provided that a fronto-parallel view of the keypoint is given
for training. As a result, we can robustly handle very poorly
textured or strongly occluded objects.

More exactly we propose two methods based on this ap-
proach. The first method was called LEOPAR in [11] where
it was originally published, and will be refer as ALGO1 in
this paper. It is the faster method, and still more accurate
than affine region detectors. The second method was called
GEPARD in [12], and will be referred as ALGO2. ALGO2
produces the more reliable results and requires only a very
fast training stage. Choosing between the two methods de-
pends on the application at hand.

Both methods are made of two stages. The first stage re-
lies on a classifier to quickly recognize the keypoints and
provide a first estimate of their poses to the second stage.
This second stage uses relatively slower but much more ac-
curate template matching techniques to refine the pose es-
timate. The difference between the two methods lies in the
way the first stage proceeds.

ALGO1 first retrieves the patch identity and then a coarse
pose using an extended version of the Ferns classifier [22]:
To each keypoint in our database correspond several classes,
where each class covers its possible appearances for a re-

stricted range of poses. Due to the Fern structure the com-
putations can be done in almost no time which results in a
very fast runtime performance.

Unfortunately the Ferns require a long training stage and
a large amount of memory. ALGO2 dramatically decreases
the training time and the memory amount and is even more
accurate; however, it is slower than ALGO1 at run-time. In
ALGO2, the Ferns classifier is replaced by a simple nearest-
neighbour classifier, as new classes can be added quickly to
such a classifier. To retrieve the incoming keypoints identi-
ties and approximate poses, each keypoint in the database
is characterized in the classifier by a set of “mean patches”,
each of them being the average of the keypoint appearances
over a restricted range of poses. Our mean patches are re-
lated to Geometric Blur [6], but we show how to very quickly
compute them, making our approach more efficient.

To retrieve an accurate full perspective transformation,
the second stage uses linear regressors similar to the one de-
scribed in [13] for template matching. We made this choice
because our experiments proved they converge faster and
more accurately than other least-squares optimization such
as Gauss-Newton for this purpose. In addition, we show that
these regressors can be trained efficiently The final pose es-
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timate is typically accurate enough to allow a final check by
simple cross-correlation and prune the incorrect results.

Compared to affine region detectors, their closest com-
petitors in the state-of-the-art, our two methods have one im-
portant limitation: They do not scale very well with the size
of the keypoints database, and our current limitations are
limited to a few tens of keypoints to keep real-time the appli-
cations. Moreover, they need a frontal training view and the
camera internal parameters to compute the camera pose with
respect to the keypoint. However, as our experiments show,
our two methods not only are much faster but they provide
an accurate 3–D pose for each keypoint, by contrast with
an approximate affine transformation. In practice, a single
keypoint is often enough to compute the camera or the tar-
get pose, which compensates this limitation on the database
size at least for the applications we present in this paper.

In the remainder of the paper, we first discuss related
work. Then, we describe our two methods, and compare
them against affine region detectors [19]. Finally, we present
applications of tracking-by-detection and SLAM using our
method.

2 Related Work

Many different approaches often called “affine region de-
tectors” have been proposed to recognize keypoints under
large perspective distortion. For example, [27] generalized
the Förstner-Harris approach, which was designed to de-
tect keypoints stable under translation, to small similarities
and affine transformations. However, it does not provide the
transformation itself. Other methods attempt to retrieve a
canonical affine transformation withouta priori knowledge.
This transformation is then used to rectify the image around
the keypoint and make them easier to recognize. For exam-
ple, [19] showed that the Hessian-Affine detector of [18] and
the MSER detector of [17] are the most reliable ones. In
the case of the Hessian-Affine detector, the retrieved affine
transformation is based on the image second moment ma-
trix. It normalizes the region up to a rotation, which can
then be estimated for example by considering the peaks of
the histogram of gradient orientations over the patch as in
SIFT [15]. In the case of the MSER detector, other approaches
exploiting the region shape are also possible [21], and a
common approach is to compute the transformation from the
region covariance matrix and solve for the remaining degree
of freedom using local maximums of curvature and bitan-
gents.

But besides helping the recognition, the estimated affine
transformations can provide useful constraints. For example,
[25] uses them to build and recognize 3–D objects in stereo-
scopic images. [8] uses them to add constraints between the
different regions and help matching them more reliably.

Unfortunately, as the experiments presented in this paper
show, the retrieved transformations are often not accurate.
We will show that our learning-based methods can reach a
much better accuracy.

Learning-based methods to recognize keypoints became
quite popular recently, however all the previous methods
provide only theidentity of the points, not their pose. For
example, in [14], Randomized Trees are trained with ran-
domly warped patches to estimate a probability distribution
over the classes for each leaf node. The non-terminal nodes
contain decisions based on pairwise intensity comparisons
which are very fast to compute. Once the trees are trained
an incoming patch is classified by adding up the probabil-
ity distributions of the leaf nodes that were reached and by
identifying the class with the maximal probability. However,
training the Randomized Trees is slow and performed of-
fline, which is problematic for applications such as SLAM.
[28] replaced the Randomized Trees by a simpler list struc-
ture and binary values instead of a probability distribution.
These modifications allow them to learn new features online
in real-time. Another approach based on the boosting algo-
rithm presented in [10] to allow online feature learning in
real-time was proposed in [16].

More recently, [26] introduced a learning-based approach
that is closer to the approach presented in this paper. It is
based on what is called “Histogrammed Intensity Patches”
(HIP). The link with our approach is that the HIPs are rem-
iniscent of our “mean patches” used in ALGO2: Each key-
point in the database is represented by a set of HIPs, each
of them computed over a small range of poses. For fast in-
dexation, a HIP is a binarized histogram of the intensities of
a few pixels around the keypoint. However, while this is in
theory possible, estimating the keypoint pose has not been
evaluated nor demonstrated, and this method too provides
only the keypoint identities.

Another work related to this paper is [20], which exploits
the perspective transformation of patches centered on land-
marks in a SLAM application. However, it is still very de-
pending on the tracking prediction to match the landmarks
and to retrieve their transformations, while we do not need
any prior on the pose. Moreover, in [20], these transforma-
tions are recovered using a Jacobian-based method while, in
our case, a linear predictor can be trained very efficiently for
faster convergence.

In short, to the best of our knowledge, there is no method
in the literature that attempts to reach the exact same goal as
ours. Our two methods can estimate quickly and accurately
the pose of keypoints of a database, thanks to a learning-
based approach.
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Fig. 2 A first estimate of the patch transformation is obtained using a
classifier that provides the values of the anglesai defined as the angles
between the lines that go through the patch center and each ofthe four
corners.

(a) (b)

Fig. 3 Examples of patches used for classification. (a) To estimatethe
keypoint identity, patches from the same keypoint are grouped in a sin-
gle class. (b) To estimate the patch transformation, several classes for
different transformations are created for each keypoint inthe database.

3 ALGO1: A Classifier Favoring Run-Time Performance

We present in this section the first stage of our first method.
It provides the identity and an approximate pose of a key-
point, given an image patch centered on this keypoint, using
an extension of [22]. The second stage, the keypoint pose
refinement and checking steps, is common to our two meth-
ods, and will be presented Section 5.

3.1 Finding the Keypoint’s Identity

ALGO1 first recognizes the keypoint to which the patch cor-
responds to by using the Ferns classifier presented in [22].
Ferns are trained with patches centered on the keypoints in
the database and seen under different viewing conditions as

in Fig. 3(a). Formally, for a given patchP centered on a
keypoint we want to recognize, it estimates:

îd = argmax
id

P (Id = id | P) , (1)

whereId is a random variable representing the identity of
the keypoint. The identity is simply the index of the corre-
sponding keypoint in the database. The classifier represents
the patchP as a set of simple image binary features that are
grouped into subsets, andId is estimated following a semi-
Naive Bayesian scheme that assumes the feature subsets in-
dependent. This classifier is usually able to retrieve the patch
identityId under scale, perspective and lighting variations.

3.2 Discretizing and Estimating the Keypoint’s Pose

OnceId is estimated, our objective is then to get an esti-
mate of the transformation of the patch around the keypoint.
Because we also want to use a classifier for that, we first
need a way to quantize the transformations. We tried vari-
ous approaches, and the best results were obtained with the
parametrization described in Fig. 2. It is made of the four
anglesai between the horizontal axis and the semi-lines go-
ing from the patch center and passing through the patch cor-
ners. Each angle is quantized into 36 values, and to reduce
the required amount of memory and to increase the speed at
runtime, we estimate each angle independently as:

∀i = 1 . . . 4 âi = argmax
ai

P (Ai = ai | Id = id,P) , (2)

using four Ferns classifiers specific to the keypoint of iden-
tity Id.

ALGO1 will be evaluated in Section 6. Before that, we
present our second method and their common second stage.

4 ALGO2: A Classifier Favoring Real-Time Learning
and Robustness

ALGO1 was designed for run-time speed, and it requires a
slow training phase: It takes about 1 second to ALGO1 to
learn one keypoint, and this makes it not suitable for on-
line applications like SLAM. We therefore propose a sec-
ond method, which is slower at run-time but can learn new
keypoints much faster. It is also more accurate.

4.1 Finding the Keypoint’s Identity and Pose

As depicted by Fig. 5, our starting idea to estimate the key-
point’s identity and pose is to first build a set of “mean
patches”. Each mean patch is computed as the average of the



5

15 20 25 30 35 40 45 50 55 60 65
0

10

20

30

40

50

60

70

80

90

100

viewpoint change [deg]

m
at

ch
in

g
 s

co
re

 [
%

]

 

 

ALGO1 classifier trained with homographies
ALGO1−without−correlation
ALGO2−without−correlation

Fig. 4 We tried to use in ALGO1 the homography discretization used
in ALGO2. As the graph shows, it does not result in any improvement
in terms of matching score compared to the discretization described in
Fig. 2. Since it requires more computation time and memory because
the number of discrete homographies is larger, we used the method
of Fig. 2 for ALGO1. The experiment was performed on the standard
Graffiti test set [19].

(a) (b)

Fig. 5 The ALGO2 descriptor. (a) For a feature pointki, this descrip-
tor is made of a set of mean patches{pi,h}, each computed for a small
range of posesHh from a reference patchpi centered on the feature
pointki. (b) Some other mean patches for the same feature point. The
examples shown here are full resolution patches for visibility, in prac-
tice we use downscaled patches.

keypoint appearance when the pose varies in the neighbor-
hood of a reference pose. Then, we can use nearest-neighbor
classification: We assign to an incoming keypoint the pose
of the most similar mean patch as a first estimate of its pose.

Of course, computing a single mean patch over the full
range of poses would result in a blurred irrelevant patch. Be-
cause we compute these mean patches over only a small
range of poses, they are meaningful and allow for reliable
recognition. Another advantage is that they are robust to im-
age noise and blur. As the mean patches in Fig. 5 look like
blurred image patches, one may wonder if using a uniform
blur on warped patches would be enough. The answer is no:
As Fig. 6 shows, using mean patches substantially improves
the matching rate by about 20% compared to using blurred
warped patches.

Compared to standard approaches [19], we do not have
to extract an estimate of the keypoint’s pose, nor compute a
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warping first − kernel size 3

warping first − kernel size 7

warping first − kernel size 13

warping first − kernel size 17

warping first − kernel size 21

Fig. 6 Computing a set of mean patches clearly outperforms simple
blurring of a set of warped patches. Different Gaussian smoothing ker-
nels were tried and we show that our approach improves the matching
rate constantly of about 20%.

descriptor for the incoming points, and that makes the ap-
proach faster at runtime. The set of means that characterizes
a keypoint in the database can be seen as a descriptor, which
we refer to as a “one-way descriptor” since it does not have
to be computed for the new points. This approach increases
the number of vectors that have to be stored in the database,
but fortunately, efficient methods exist for nearest-neighbor
search in large databases of high-dimensional vectors [4].

More formally, given a keypointk in a reference image,
we compute a set of mean patches{ph} where each mean
ph can be expressed as

ph =

∫

H∈Hh

w(P∗, H)p(H)dH (3)

where

– H represents a pose, in our case a homography,
– P∗ is thereference patch, the image patch centered on

the keypointk in the reference image. To be robust to
light changes, the pixel intensities inP∗ are normalized
so their sum is equal to 0, and their standard deviation to
1,

– w(P , H) returns the patchP seen under poseH ,
– p(H) is the probability that the keypoint will be seen

under poseH , and
– Hh is a range of poses, as represented in Fig. 5. The
Hh’s are defined so that they cover small variations a-
round a fixed poseHh but together they span the set of
possible poses

⋃
hHh.

In practice, the integrals in Eq. (3) are replaced by finite
sums, the distribution over the transformationsH is assumed
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uniform and the expression ofph becomes

ph =
1

N

N∑

j=1

w(P∗, Hh,j) (4)

where theHh,j areN poses sampled fromHh.
Once the meansph are computed, it is easy to match

incoming keypoints against the database, and get a coarse
pose. Given the normalized patchp centered on such an
incoming point with assumed identitŷid, its coarse pose
Ĥ

i=îd,h=ĥ
indexed bŷh is obtained by finding:

ĥ = argmax
i=îd,h

p⊤ · ph . (5)

However, computing theph using Eq. (4) is very inef-
ficient because it would require the generation of too many
samplesw(P∗, Hh,j). In practice, to reach decent results,
we have to use at least 300 samples, and this takes about 1.1
seconds to generate1, which was not acceptable for inter-
active applications. We show below that the mean patches
can actually be computed very quickly, independently of the
number of samples used.

4.2 Fast Computation of the Mean Patches

We show here that we can move most of the computation
cost of the mean patches to an offline stage, so that comput-
ing the mean patches at runtime can be done very efficiently.
To this end, we first approximate the reference patchP∗ as:

P∗ ≈ V +

L∑

l=1

αlVl (6)

whereV and theVl’s are respectively the mean and theL
first principal components of a large set of image patches
centered on keypoints. Theαl are therefore the coordinates
of P∗ in this eigenspace, and can be computed asαl = V

⊤
l ·

P∗.
ComputingV and theVi’s takes time but this can be done

offline. Because we consider normalized patches, the mean
V is equal to 0, and the expression ofph from Eq.(3) be-
comes

ph ≈
1

N

∑

j

w(

L∑

l=1

αlVl, Hj,h) . (7)

This expression can be simplified by using the fact that
the warping functionw(·, H) is a linear function: Warping
is mostly a permutation of the pixel intensities between the
original patch and the patch after warping, and therefore a

1 All times given in this paper were reached on a on a standard note-
book (Intel(R) Centrino Core(TM)2 Duo with 2.6GHz and 3GB RAM
and an NVIDIA quadro FX3600M with 512MB).

linear transformation. This fact was used for example in [7]
for transformation-invariant data modeling. In our case, be-
cause we use perspective transformations, parts that are not
visible in the original one could appear in the generated
patch. To solve this issue, we simply take the original patch
larger than the warped patch, and large enough so that there
are never parts in the warped patch which were not present
in the original patch. The functionw(., H) then becomes a
permutation followed by a projection, and this composition
remains a linear transformation.

Thanks to this property, Eq.(7) simplifies easily:

ph ≈
1

N

N∑

j=1

w(

L∑

l=1

αlVl, Hj,h) (8)

=
1

N

N∑

j=1

(
L∑

l=1

αlw(Vl, Hj,h)

)
(9)

=

L∑

l=1

αl

N

N∑

j=1

w(Vl, Hj,h) (10)

=

L∑

l=1

αlvl,h (11)

where thevl,h’s are patches obtained by warping the eigen-
vectorsVl under poses inHh:

vl,h =
1

N

N∑

j=1

w(Vl, Hj,h) . (12)

Like theVl, thevl,h’s patches can be computed offline. The
number of samplesN therefore does not matter for the run-
time computations, and we can use a very large number.

In summary, when we have to insert a new keypoint in
the database, we simply have to project it in the eigenspace,
and compute its associated mean patches by linear combina-
tions. The complete process can be written in matrix form:

α = PPCAP
∗ , and (13)

∀h ph = Vhα , (14)

whereP∗ is the reference patch seen as a vector,PPCA the
projection matrix into the eigenspace,α the vector of theαl

coefficients, and theVh’s are matrices. The rows ofPPCA

are theVl vectors, and the columns of theVh’s matrices are
thevl,h vectors. This approach saves significant computa-
tion time with respect to the naive way to compute Eq.(7).

To speed-up computation even further, mostly in the eval-
uation of the similarity between an incoming patchp and a
mean patchph as in Eq. (5), we downsample these patches.
We keep the reference patchP∗ and the eigenvectorsVl
at the original resolution to avoid losing important details.
Downscaling is applied only on the result of the sum in
Eq. (12), which is performed off-line anyway.
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Fig. 7 Normalized cross-correlation between approximated mean
patches and their exact computation as a function of the number of
principal components. The values are averaged over 100 patches from
the Graffiti image set. In this experiment, the patches are120×120 pix-
els but we need only a small percentage of the principal components to
get a good approximation.

To handle scale efficiently, we compute the mean patches
only on one scale level. Then, the evaluation of the similar-
ity in Eq. (5) is done several times for each mean patch with
different versions of the incoming patchp, each version ex-
tracted at a different scale.

In practice, as shown in Fig. 7, we can keep only a small
percentage of the first principal components and still get
a good approximation of the mean patches. The graph of
Fig. 8 shows that using onlyL = 150 principal compo-
nents and 192 mean patches over 3 scales—giving a total of
576 mean patches—already gives reasonably good results.
The computation time is then 15 milliseconds for patches
downsampled from71 × 71 to 12 × 12 including the com-
putation ofα while using directly Eq. (4) takes 1.1 seconds.
Using the GPU to compute the matrix form expressions in
Eqs. (13) and (14), we can reduce the processing time even
further to only 5.5 milliseconds1.

4.3 Discretizing the Pose Space for ALGO2

The quantized pose space used for ALGO1 represented in
Fig. 2 was designed to keep the number of discrete homogra-
phies small, because a finer discretization does not improve
the matching score while slowing down the recognition and
increasing the required memory. In ALGO2 however, we can
afford a finer discretization and that results in better recog-
nition rate.

This discretization is done based on the formula:

H = K

(
∆R+

δt · n⊤

d

)
K−1 , (15)
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ALGO2: #pcas: 14400
ALGO2: #pcas: 300
ALGO2: #pcas: 150
ALGO2: #pcas: 75
ALGO2: #pcas: 50
ALGO2: #pcas: 25

Fig. 8 Recognition rates as a function of the viewpoint angle for dif-
ferent number of principal components. The values are averaged over
100 patches from the Graffiti image set. We use synthesized images
to generate more views than the original Graffiti image sequence. In
this experiment, the patches are120 × 120 pixels but using only 150
principal components over 14400 gives results comparable to the full
method up to 40 degrees and is more than 70 times faster.

which is the expression of the homographyH relating two
views of a 3–D plane, whereK is the matrix of the camera
internal parameters,[n⊤, d]⊤ the parameters of the plane
in the first view, and∆R andδt the camera displacement
between the two views. For simplification, we assume we
have a frontal view of the reference patches.

We first tried discretizing the motion between the views
by simply discretizing the rotation angles around the three
axes. However, for the nearest-neighbor classification to work
well, it must be initialized as close as possible to the correct
solution, and we provide a better solution. As shown by the
left image of Fig. 9, we found that the vertices of (almost)
regular polyhedrons provide a more regular sampling that is
useful to discretize the angle the second view in Eq. (15)
makes with the patch plane.

However, there exists only a few convex regular polyhe-
drons —the Platonic solids— with the icosahedron the one
with the largest number of vertices, 12. As the right image
of Fig. 9 illustrates, we obtain a finer sampling by recur-
sively substituting each triangle into four almost equilateral
triangles. The vertices of the created polyhedron give us the
two out-of-plane rotation angles for the sampled pose, thatis
around the x- and y-axes of Fig. 9. We discretize the in-plane
rotation angle to cover the 360◦ range with 10◦ steps.

5 Pose Refinement and Final Check

Having the output of the first stage of ALGO1 or ALGO2,
the keypoint’s identity and approximate pose, we want to
compute a better estimate of the pose, in the form of a ho-
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Fig. 9 Pose space sampling using almost regular polyhedrons. Left: The red dots represent the vertices of an (almost) regular polyhedron generated
by our recursive decomposition and centered on a planar patch. The sampled directions of views are given by vectors starting from one of the
vertices and pointing toward the patch center. The green arrow is an example of such a vector. Right: The initial icosahedron and the result of the
first triangle substitution.

mography, without quantization anymore. This refinement
is based on linear regression, and we show how the linear
predictors can be computed incrementally and how we can
improve the training speed. The refinement is followed by a
final check step, to suppress keypoints that were incorrectly
recognized.

5.1 Linear Prediction for Refinement

The homographŷH computed in the first stage is an initial
estimate of the true homographyH. We use the method pre-
sented in [13] and based on linear predictors to obtain the
parameters̃x of a corrective homography:

x̃ = B
(
w(P , Ĥ)− p∗

)
, (16)

where

– B is the matrix of our linear predictor, and depends on
the retrieved patch identitŷid;

– P is the patch in the incoming image, centered on the
keypoint to recognize;

– w(P , Ĥ) is the patchp warped by the current estimate
Ĥ and downscaled for efficiency. Note that we do not ac-
tually warp the patch, we simply warp back the sampled
pixel locations;

– p∗ is the reference patchP∗ after downscaling.P∗ is the
image patch centered on the keypointîd in a reference
image as in Section 4.

This equation gives us the parametersx̃ of the incremental
homography that updateŝH to produce a better estimate of
the true homographyH:

Ĥ←− Ĥ ◦H(x̃) . (17)

For more accuracy, we iterate Eqs. (16) and (17) using a se-
ries of linear predictorsBi, each matrix being dedicated to
smaller errors than its predecessor: Applying successively

these matrices remains fast and gives a more accurate es-
timate than with a single level. In order to do an ultimate
refinement the ESM algorithm [5] can be applied.

In practice, our vectorsw(P , Ĥ) andp∗ contain the in-
tensities at locations sampled on a regular grid of13 × 13
over image patches of size75 × 75 pixels, and we normal-
ize them to be robust to light changes. We parametrize the
homographies by the 2D locations of the patch four corners
since this parametrization is proved to be more stable than
others in [1]. In practice, for one patch we train four to ten2

matricesB with different ranges of variation from coarse to
fine, using downscaled patches of13× 13 = 169 pixels and
300 to 50002 training samples.

For online applications, theB’s matrices must be com-
puted for each new keypoint inserted in the database at run-
time. Thus, learning theBis which consists in computing
a set of couples made of small random transformationsHs

and the corresponding warped patchesw(P , H−1
s ) as dis-

cussed below must be fast enough to fulfill the real-time
constraints. In order to do so we precompute the transfor-
mationsHs and the warped pixel locations in order to obtain
very quickly thew(P , H−1

s ) patches at run-time for an ar-
bitrary incoming feature point. The whole process thus can
be speed up to 29 milliseconds1 using 300 samples and four
B matrices.

5.2 Incrementally Learning the Linear Predictor

For some applications it is desirable to improve the tracking
by performing online learning. Since the classification steps
in ALGO1 as well as in ALGO2 can easily be extended to do
online learning, we only have to concentrate on the linear
predictors.

2 Depending on the application. Using moreBi matrices improves
the accuracy but the computation time for this step increases linearly
with the number of matrices.
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The linear predictorB in Eq. (16) can be computed as
the pseudo-inverse of the analytically derived Jacobian ma-
trix of a correlation measure [2,5]. However, the hyperplane
approximation [13] computed from several examples yields
a much larger region of convergence. The matrixB is then
computed as:

B = XD⊤
(
DD⊤

)−1
, (18)

whereX is a matrix made ofxi column vectors, andD a
matrix made of column vectorsdi. Each vectordi is the dif-
ference between the reference patchp∗ and the same patch
after warping by the homography parametrized byxi: di =

w(p,H(xi))− p∗.
Eq. (18) requires all the couples(xi,di) to be simulta-

neously available. If it is applied directly, this preventsin-
cremental learning but this can be fixed. Suppose that the
matrix B = Bn is already computed forn examples, and
then a new example(xn+1,dn+1) becomes available. We
want to update the matrixB into the matrixBn+1 that takes
into account all then + 1 examples. Let us introduce the
matricesYn = XnD

⊤
n andZn = DnD

⊤
n . We then have:

Bn+1 = Yn+1Z
−1

n+1

= Xn+1D
⊤
n+1

(
Dn+1D

⊤
n+1

)−1

= [Xn|xn+1][Dn|dn+1]
⊤
(
[Dn|dn+1][Dn|dn+1]

⊤
)−1

=
(
XnD

⊤
n + xn+1d

⊤
n+1

) (
DnD

⊤
n + dn+1d

⊤
n+1

)−1

=
(
Yn + xn+1d

⊤
n+1

) (
Zn + dn+1d

⊤
n+1

)−1
(19)

wherexn+1 anddn+1 are concatenated toXn andDn re-
spectively to formXn+1 andDn+1. Thus, by only storing
theconstant sizematricesYn andZn and updating them as:

Yn+1 ←− Yn + xn+1d
⊤
n+1 (20)

Zn+1 ←− Zn + dn+1d
⊤
n+1 , (21)

it becomes possible to incrementally learn the linear predic-
tor without storing the previous examples, and allows for an
arbitrary large number of examples.

Since the computation ofB has to be done for many
locations in each incoming image andZn is a large ma-
trix in practice, we need to go one step further in order to
avoid the computation ofZ−1

n at every iteration. We apply
the Sherman-Morrison formula toZ−1

n+1 and we get:

Z−1

n+1 =
(
Zn + dn+1d

⊤
n+1

)−1

= Z−1
n −

Z−1
n dn+1d

⊤
n+1Z

−1
n

1 + d⊤
n+1

Z−1
n dn+1

. (22)

Therefore, if we storeZ−1
n instead ofZn itself, and update

it using Eq. (22), no matrix inversion is required anymore,
and the computation of matrixBn+1 becomes very fast.

5.3 Correlation-based Hypothesis Selection and
Verification

In ALGO2, for each possible keypoint identityi, we use
the method explained above to estimate a fine homogra-
phy Ĥi,final. Thanks to the high accuracy of the retrieved
transformation, we can select the correct pair of keypoint
identity i and poseĤi,final based on the normalized cross-
correlation between the reference patchP∗

i and the warped
patchw(P , Ĥi,final) seen under posêHi,final. The selection
is done by

argmax
i

P∗
i
⊤ ·w(P , Ĥi,final) , (23)

In ALGO1, the keypoint identityi is directly provided by the
Ferns classifier.

Finally, we use a thresholdτNCC = 0.9 in order to re-
move wrong matches:

w(P , Ĥi,final)
⊤ · P∗

i > τNCC , (24)

Thus, each patchw(P , Ĥi,final) that gives the maximum sim-
ilarity score, which exceedsτNCC at the same time, yields an
accepted match.

6 Experimental Validation

We compare here our approach against affine region detec-
tors on the Graffiti image set from [19] towards robustness
and accuracy. At the end of this section, we also evaluate
the performance of our algorithms with respect to training
time, running time and memory consumption. For each ex-
periment we give a detailed discussion about the specific ad-
vantages of each of our two methods.

6.1 Evaluation on the Graffiti Image Set

We first built a database of the most stable 100 Harris key-
points from the first image of the Graffiti set. These key-
points were found by synthetically rendering the image un-
der many random transformations, adding artificial image
noise and extracting Harris keypoints. We then kept the 100
keypoints detected the most frequently.

The Ferns classifiers in ALGO1 were trained with syn-
thetic images as well, by scaling and rotating the first image
for changes in viewpoint angle up to 65 degrees and adding
noise. In the case of ALGO2 only the first image is needed.
We then extracted Harris keypoints in the other images of
the set, and run ALGO1 and ALGO2 to recognize them and
estimate their poses.

We also run the different region detectors over the set
images and matched the regions in the first image against
the regions in the other images using the SIFT descriptor
computed on the rectified regions.
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Fig. 10 Comparing the robustness of our methods and of affine region detectors on the Graffiti image set.(a): Matching score as a function of
the viewpoint angle. The curves of ALGO1 and ALGO2 plot our results with the correlation test of Section 5.3 disabled. Even then, our methods
compare very favorably with the affine region detectors.(b): Same with the correlation test turned on. No outlier is produced.
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Fig. 11 Comparing our method against affine region detectors on the Graffiti image set.(a) Number of correct matches for our approach and
the affine region detectors. We trained our methods on 100 keypoints in the first image.(b) ALGO2 can manage more keypoints, and for this
experiment we trained it on 400 keypoints. For the largest viewpoint we still obtain a matching rate of about 50%.

6.1.1 Robustness

In Fig. 10, we compare the matching scores for the different
methods. The matching score is computed as the ratio be-
tween the number of correct matches and the smaller num-
ber of regions detected in one of the two images as defined
in [19]. Two regions are said to be correctly matched if the
overlap error is smaller than40%. In our case, the regions
are defined as the patch surfaces warped by the retrieved
transformations

For a fair comparison, we first turned off our final check
on the correlation since there is no equivalent for the affine
regions in [19]. This yields the ’ALGO1/ALGO2 without
Correlation’ curves. Even then, our methods perform much

better, at least up to an angle of50◦ in the case of ALGO1.
When we turn the final check on, not a single outlier is kept
in this experiment. For completness, we also show the ac-
tual number of correct matches in Fig. 11(a). Note, that we
can manually choose how many patches we initially want to
track while affine region detectors can not.

Because the Ferns classifier consumes a large amount of
memory that grows linearly with the number of classes, it
is difficult to handle more than 100 keypoints with ALGO1.
ALGO2 by contrast uses a nearest-neighbour classifier and
can deal with more keypoints. We therefore performed in
Fig. 11(b) the same kind of experiment as in Fig. 11(a), but
with 400 keypoints for ALGO2. In that case, for the large
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viewpoint angles, we get more correctly matches keypoints
than regions with the affine region detectors.

ALGO2 is also more robust to scale and perspective dis-
tortions than ALGO1. In practice we found out that the limit-
ing factor is by far the repeatability of the keypoint detector.
However, once a keypoint is correctly detected, it is very
frequently correctly matched at least by ALGO2.

6.1.2 2–D Accuracy

In Figs. 13(a)-(d), we compare the 2–D accuracy for the dif-
ferent methods. To create these graphs, we proceed as shown
in Fig. 12. We first fit a square tangent to the normalized re-
gion, take into account the canonical orientation retrieved by
SIFT and warp these squares back with the inverse transfor-
mation to get a quadrangle. To account for different scales,
we proceed as in [19]: We normalize the reference patch and
the back-warped quadrangle such that the size of the refer-
ence patch is the same for all the patches.

Two corresponding regions should overlap if one of them
is warped using the ground truth homography. A perfect
overlap for the affine regions cannot be expected since their
detectors are unable to retrieve the full perspective. Since in
SIFT several orientations were considered when ambiguity
arises, we decided to keep the one that yields the most accu-
rate correspondence. In the case of our method, the quadran-
gles are simply taken to be the patch borders after warping
by the retrieved transformations.

Fig. 13(a) evaluates the error based on the overlap be-
tween the quadrangles and their corresponding warped ver-
sions. This overlap is between 90% and 100% for our meth-
ods, about 5-10% better than MSER and about 15-25% bet-
ter for the other methods. Fig. 13(b) evaluates the error based
on the distances between the quadrangle corners. Our meth-
ods also perform much better than the other methods. The
error of the patch corner is less than two pixels in average for
ALGO1 and slightly more for ALGO2. Figs. 10(c) and (d)
show the same comparisons, this time when taking only the
best 100 regions into account. The results are very similar.

6.2 3–D Pose Evaluation for Low-Textured Objects

In order to demonstrate the usefulness of our approach espe-
cially for low textured objects and for outdoor environments,
we did two other quantitative experiments.

For the first experiment we run different methods to re-
trieve the camera pose using the outlet of Fig. 14 in a se-
quence of 398 real images. To obtain ground truth data we
attached an artificial marker next to the outlet and tracked
this marker. The marker itself was hidden in the reference
image. We consider errors on the camera center larger than
50 units as not correctly matched. For clarity we do not dis-
play these false results. For our approaches we learned only

one single patch on the outlet to track in order to emphasize
the possibility to track an object with only a single patch.
ALGO2 achieved a successful matching rate in over 98%,
directly followed by ALGO1 with 97%.

For the affine region detectors we tried two different
methods to estimate the pose of the outlet:

– Method A: For the first row of Fig. 14 we computed the
pose from the 2–D locations of all the correctly matched
affine regions. The correct matches were obtained by
computing the overlap error between the regions that
were matched by SIFT. In order to compute the over-
lap error we used the ground truth transformations. Note
that this gives a strong advantage to the affine region de-
tectors since the ground truth is usually not available.
Each pair of regions was labeled as correctly matched
if the overlap error was below 40%. The IBR detector
obtained the best results with a 18% matching rate.

– Method B: For the second row, we used the shape of two
matched affine regions in order to determine the current
pose of the object. In order to obtain the missing degree
of freedom, the orientation was obtained by determin-
ing the dominant orientation within the patch [15]. Since
for each image several transformations are available due
to several extracted affine regions, we finally took the
transformation that corresponds best to the ground truth.
The MSER and the Hessian-Affine detector perform best
with a matching rate of 43% and 35%.

For the second experiment, shown in Fig. 15, we tracked
a foot print in a snowy ground in a sequence of 453 images.
The results are very similar to the first experiment’s results.
The success rate of our algorithms is around 88%. Again,
Method A with the IBR detector performs best among the
affine region detectors with a matching rate of 12%. All
other detectors had a success rate of below 1%. For Method
B, all affine region detectors performed around 5% except
the EBR detector which had a matching rate below 1%.

6.3 Speed

We give below the computation times for training and run-
time for both of our methods. All times given were obtained
on a standard notebook1. Our implementations are written
in C++ using the Intel OpenCV and IPP libraries.

6.3.1 Training

Table 1 shows the advantage of ALGO2 over ALGO1: It is
much faster than ALGO1. When the GPU is used, learning
time drops to 5.5 milliseconds, which is largely fast enough
for frame rate learning, for SLAM applications for example.
Computing theB’s matrices for the refinement stage can be
done in additional 29 ms on the CPU.
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(a) (b) (c) (d) (e)

Fig. 12 Measuring the overlapping errors and the corners distances. (a) Two matched affine regions. (b) The same regions, after normalization by
their affine transformations displayed with their canonical orientations. (c) Squares are fitted to the final normalizedregions. (d) The squares are
warped back into quadrangles in the original images. (e) Thequadrangle of the second region is warped back with the ground truth homography
and compare with the quadrangle of the first image. Ideally the two quadrangles should overlap. For comparison of different region detectors we
normalize the reference region to a fixed size and scale the warped region correspondingly.
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Fig. 13 Comparing the accuracy of our methods and of affine region detectors on the Graffiti image set.(a): Average overlapping area of all
correctly matched regions. Our method is very close to 100% and always more accurate than the other methods.(b): Average sum of the distances
from the ground truth for the corner points. Our method is also more accurate in that case.(c),(d) Same experiments as(a), (b) but with only the
best 100 regions kept.
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Fig. 14 Camera trajectories retrieved by different methods for a video sequence of the outlet of Fig. 22. For clarity we do not display results if
the error on the camera center is larger than 50 units.First row : X, Y and Z coordinates of the camera center over the sequencein a coordinates
system centered on the outlet. For the affine region detectors, the camera pose was retrieved using Method A as explained in Section 6.2.Second
row: Same but using Method B.Last two rows: Typical results for different methods. the blue quadrangle is the ground truth, the green one was
retrieved using ALGO2, the red one using one of the affine region detectors.

ALGO1 [11] 1.05 seconds
ALGO2 (CPU) [12] 15 miliseconds
ALGO2 (GPU) [12] 5.5 miliseconds

Table 1 Average learning time per feature for the first step in different
approaches. ALGO2 is more than 70 times faster when the GPU is used.

6.3.2 Run-Time

Our current implementation of ALGO2 runs at about 10 frames
per second using 10 keypoints in the database and 70 can-
didate keypoints. A better run-time performance is achieved
with ALGO1: Our implementation runs at about 10 frames
per second using a database of 50 keypoints and 400 candi-
date keypoints. Note that for ALGO1 the run-time is almost
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Fig. 15 Camera trajectories retrieved by different methods for a video sequence of a footprint in the snow. For clarity we do not display results if
the error on the camera center is larger than 50 units.First row : X, Y and Z coordinates of the camera center over the sequencein a coordinates
system centered on the outlet. For the affine region detectors, the camera pose was retrieved using Method A as explained in Section 6.2.Second
row: Same but using Method B.Last two rows: Typical results for different methods. the blue quadrangle is the ground truth, the green one was
retrieved using ALGO2, the red one using one of the affine region detectors.

constant with respect to the size of the database and only
depends on the number of candidate keypoints. For ALGO2
the run-time is not only influenced by the number of can-
didate keypoints but also behaves linearly in the number of
patches in the database. The single times for one patch in the
database with respect to the number of candidate keypoints
in the current image are given in Fig. 16. We do not use any

special data structure for nearest neighbor search and using
for example KD-trees [4] would speed it up. However, due
to the methods robustness and accuracy, one detected key-
point is enough to detect the target object and to estimate its
pose reliably. This can considerably speed up the processing
time if the object is seen in the image and the result of only
one extracted patch is enough to start a non-linear optimiza-
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Fig. 16 We compare the maximal run-time per keypoint of both of
our methods with respect to the number of keypoints extracted in the
image. For ALGO1 we give two different run-times: The first one uses
the same matching schema as ALGO2 which is more robust but slower.
If we use the patch pre-classification described in Eq. 1 the run-time
is decreased even more. Few hundreds of patches can be handled in
real-time if the pre-classification is switched on.

tion process. Thus, the processing of all remaining keypoints
in an image can be skipped as soon as one keypoint is ex-
tracted.

6.4 Memory

Typically, ALGO1 uses about 8 MB per keypoint, while AL-
GO2 uses only 350 KB. The actual amount depends on sev-
eral parameters, but these values are representative. In par-
ticular the ratio between the two methods is typical: ALGO1
trades a large amount of memory for run-time speed.

7 Applications

7.1 Training Framework

Our methods can be trained using either a small set of train-
ing images or a video sequence. In the first case, we synthe-
size images by warping the original patches with random ho-
mographies and adding noise to train the classifiers and the
linear predictors. A video sequence and a 3D model could
also be used if available. In that case we proceed as proposed
in [23]: The first image is registered manually and approxi-
mately. It is used to partially train the classifiers and linear
predictors. Assuming a small interframe displacement in the
training sequence, this is enough to recognize feature points
in the next image, and register it. The process is iterated to
process the whole sequence as shown in Fig. 17.

Fig. 17 Training framework. We incrementally train the classifiersand
the linear predictors over the frames of a training sequence. To this end,
the object is automatically registered in each incoming frame using the
current state of these classifiers and linear predictors.

7.2 Examples

In Figs. 18, 19, 20, and 21, we apply ALGO1 to object de-
tection and pose estimation application using a low-quality
camera. ALGO1 is robust and accurate even in presence of
drastic perspective changes, light changes, blur, occlusion,
and deformations. For each of these objects we learned the
patches from an initial frontal view. In Figs. 20 and 21 we
used the template matching-based ESM algorithm [5] to re-
fine the pose obtained from a single patch. As one can see,
one extracted patch is already good enought to obtain the
pose of the object reliably.

Several applications using ALGO2 are shown Figs. 22,
23, 24, and 25, respectively SLAM re-localisation using a
single keypoint, poorly textured object detection, deformable
object detection, and SLAM re-localisation in a room.

In Fig. 22 we learned the outlet from a frontal view with
one patch and tracked it throughout 372 images as shown
in the corresponding trajectory. While the outlet is a hard
to track object we can still track it reliably despite of large
scale and view point changes. Note, that SLAM usually uses
apriori information about its pose in order to be fast while
we do redetection in each frame in real-time.

In Fig. 23 we show ALGO2 working with poorly tex-
tured objects i.e. a telephone and a soldering station. Struc-
tured and weakly textured objects like them are often found
in human environments and it is especially important to be
able to interact with them. Although they do not exhibit very
discriminative texture they still can be reliably recognized
by our approach.

In Fig. 24 we tried our approach on matching deformable
surfaces. We learned five patches on the book from an initial
frontal view. Although the book is then strongly deformed
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and we do not model the deformation within our recognition
pipline, most of the learned patches are reliably recognized.
The returned poses — represented by the visualized normals
shown in blue — very often fit well to the deformation. We
also found out that not the deformation but the specular re-
flection on the book cover is very often harder to overcome.

In Fig. 25 we show another example of a possible SLAM
application. We walk around in an arbitrary office space and
learn key landmarks which are reliably redetected in each
successive frame if available. While scalability is currently
still an issue and avoids the excessive use of patches, we
see a possible application of our approach in learning few
key landmarks which help to relocalize the SLAM system
fast in difficult areas where is not much texture around and
state-of-the-art relocalization approaches would fail.

8 Conclusion

We showed that including pose estimation within the recog-
nition process considerably improves the robustness and the
accuracy of the results of object detection, and this makes
our approach highly desirable. Thanks to a two-step algo-
rithm, it is possible to get matching sets that do usually con-
tain no outliers. Even low-textured objects can therefore be
well detected and their pose can be well estimated.

We showed in the paper that a Fern based classifier is
able to recognize the keypoints in a very fast manner that
allows to track several hundred patches very accurately in
real-time. We also showed that the simultaneous estimation
of keypoint identities and poses is more reliable but slower
than the two separate steps undertaken consecutively. Fi-
nally, we showed how to build in real-time an one-way de-
scriptor based on geometric blur that quickly, robustly and
accurately estimates the pose of feature points and therefore
is appropriate for applications where real-time learning is
mandatory.

We demonstrated in various experiments the improved
performance compared to previous state-of-the-art methods
and demonstrated our approach on many applications in-
cluding simple 3D tracking-by-detection, SLAM applica-
tions, low-textured object detection and deformable objects
registration. However, many other applications could benefit
from it, such as object recognition, image retrieval or robot
localization.
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(a) (b) (c) (d)
Fig. 18 Robustness of ALGO1 to deformation and occlusion.(a) Patches detected on the book in a frontal view.(b) Most of these patches are
detected even under a strong deformation.(c) The book is half occluded but some patches can still be extracted.(d) The book is almost completely
hidden but one patch is still correctly extracted. No outliers were produced.

(a) (b) (c) (d)
Fig. 19 Accuracy of ALGO1 of the retrieved transformation. For each of these images,we draw the borders of the book estimated from a single
patch. This is made possible by the fact we estimate a full perspective transform instead of only an affine one.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 20 Some frames of a Tracking-by-Detection with ALGO1 sequence shot with a low-quality camera.(a)-(g) The book pose is retrieved in
each frame independently at 10fps. The yellow quadrangle isthe best patch obtained by ALGO1. The green quadrangle is the result of the ESM
algorithm [5] initialized with the pose obtained from this patch. The retrieved pose is very accurate despite drastic perspective and intensities
changes and blur.(h) When the book is not visible, our method does not produce a false positive.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 21 Another example of a Tracking-by-Detection sequence with ALGO1. The book pose is retrieved under(b) scale changes,(c-d) drastic
perspective changes,(e) blur, (f) occlusion, and(g-h) deformations.
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frame #0 frame #18 frame #61 frame #112

frame #165 frame #211 frame #231 frame #246

frame #261 frame #308 frame #333 frame #372

Fig. 22 Tracking an outlet with ALGO2. We can retrieve the camera trajectory through the scene despite very limited texture and large viewpoint
changes. Since the patch is detected and its poses estimatedin every frame independently, the method is very robust to fast motion and occlusion.
The two graphs show the retrieved trajectory.

Fig. 23 Application to tracking-by-detection of poorly textured objects under large viewing changes with ALGO2.
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Fig. 24 Application to a deformable object with ALGO2. We can retrieve an accurate pose even under large deformations. While it is not done
here, such cues would be very useful to constrain the 3D surface estimation.

Fig. 25 Another example of SLAM re-localisation with ALGO2, using 8 different patches.

25. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: Object model-
ing and recognition using local affine-invariant image descriptors
and multi-view spatial constraints. International Journal of Com-
puter Vision66(3), 231–259 (2006)

26. Taylor, S., Drummond, T.: Multiple target localisationat over 100
fps. In: BMVC (2009)

27. Triggs, B.: Detecting Keypoints with Stable Position, Orientation
and Scale under Illumination Changes. In: European Conference
on Computer Vision (2004)

28. Williams, B., Klein, G., Reid, I.: Real-time slam relocalisation. In:
International Conference on Computer Vision (2007)


