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Abstract We propose two learning-based methods to patcladvantages of our approach on real-time 3D object detection
rectification that are faster and more reliable than st&te-oand tracking applications.
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and accurately estimate the homography between the refq_r- . Lo

. . earning- Pose Estimation
ence view and the new view. Our methods are more memory-
consuming than affine region detectors, and are in practice
currently limited to a few ten patches. However, if the refer 1 |htroduction
ence image is a fronto-parallel view and the internal param-

eters known, one single patch is often enough to preciselgetrieving the poses of patches around keypoints in additio
estimate an object pose. As a result, we can deal in real-timg matching them is an essential task in many applications
with objects that are significantly less textured than theson sych as vision-based robot localization [9], object re¢ogn
required by state-of-the-art methods. tion [25] or image retrieval [8,24] to constrain the problem
The first method favors fast run-time performance whileat hand. It is usually done by decoupling the matching pro-
the second one is designed for fast real-time learning anéess from the keypoint pose estimation: The standard ap-
robustness, however they follow the same general approachroach is to first use some affine region detector [19] and
First, a classifier provides for every keypoint a first estena then rely on SIFT [15] or SURF [3] descriptors on the recti-
of its transformation. Then, the estimate allows carrying o fied regions to match them.
an accurate perspective rectification using linear presct Recently, it has been shown that taking advantage of a
The last step is a fast verification—made possible by the adtaining phase, when possible, greatly improves the speed
curate perspective rectification—of the patch identity gmd and the rate of keypoint recognition tasks [16,22]. Such a
sub-pixel precision position estimation. We demonstttage t training phase is possible when the application relies areso
databaseof keypoints, such as object detection or SLAM.
By contrast with [19], these learning-based approaches usu
Stefan Hinterstoisser, Selim Benhimane, Nassir Navab ally do not rely on the extraction of local patch transforma-
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Fig. 1 The advantages of learning for patch recognition and pdseat#on. (a) Given a training images or a video sequence, our methoddearn
to recognize patches and in the same time to estimate thesfarmation(b) The results are very accurate and mostly exempt of outidoge

we get the full perspective pose, and not only an affine toamsdtion.(c) Hence a single patch is often sufficient to detect objectsestichate
their pose very accuratelfd) To illustrate the accuracy, we use the 'Graffiti 1’ image amellCCV booklet cover respectively to train our method
and detect patches in the 'Graffiti 6’ image and in the reahsaespectively. We then superimpose the retrieved tremsfions with the original
patches warped by the ground truth homogragayEven after zooming, the errors are still barely visil§fi By contrast, the standard methods
retrieve comparatively inaccurate transformations, Wiaie limited to the affine transformation group.

to estimate the 3—D pose of the object the keypoint lies orstricted range of poses. Due to the Fern structure the com-
provided that a fronto-parallel view of the keypointis give putations can be done in almost no time which results in a
for training. As a result, we can robustly handle very poorlyvery fast runtime performance.
textured or strongly occluded objects.

More exactly we propose two methods based on this ap- Unfortunately the Ferns require a Iong_training stage and
proach. The first method was calle&@PARin [11] where a Iarge_ "’_‘mO‘_J”t of memory. 802 dramatically Qecreases
it was originally published, and will be refer as 801 in the training time and the memory amount and is even more

this paper. It is the faster method, and still more accuratgccurate; however, it is slower tharLéo1 at run-time. In

than affine region detectors. The second method was callé%i"Goz’ the Ferns classifier is replaced by a simple nearest-
GEPARD in [12], and will be referred as £G02. ALGO2 neighbour classifier, as new classes can be added quickly to

produces the more reliable results and requires only a ve cha classifier.. To retrieve the incoming_ keypoints identi
fast training stage. Choosing between the two methods d les and approximate poses, each keypoint in the database

pends on the application at hand. is characterized in the classifier by a set of “mean patches”,
Both hod de of The fi each of them being the average of the keypoint appearances
oth methods are made of two stages. The first stage res, o 5 restricted range of poses. Our mean patches are re-

lies on a cI.assifie.r to quickly recognize the keypoints anqated to Geometric Blur [6], but we show how to very quickly

prqwde a first estimate of th_elr poses to the second staggompute them, making our approach more efficient.

This second stage uses relatively slower but much more ac-

curate template matching techniques to refine the pose es- T retrieve an accurate full perspective transformation,

timate. The difference between the two methods lies in thehe second stage uses linear regressors similar to the ene de

way the first stage proceeds. scribed in [13] for template matching. We made this choice
ALGoOLl first retrieves the patch identity and then a coarsdecause our experiments proved they converge faster and

pose using an extended version of the Ferns classifier [22fnore accurately than other least-squares optimizatioh suc

To each keypoint in our database correspond several classes Gauss-Newton for this purpose. In addition, we show that

where each class covers its possible appearances for a these regressors can be trained efficiently The final pose es-



timate is typically accurate enough to allow a final check by  Unfortunately, as the experiments presented in this paper
simple cross-correlation and prune the incorrect results.  show, the retrieved transformations are often not accurate

Compared to affine region detectors, their closest comWe will show that our learning-based methods can reach a
petitors in the state-of-the-art, our two methods have ome i much better accuracy.
portant limitation: They do not scale very well with the size
of the keypoints database, and our current limitations are Learning-based methods to recognize keypoints became
limited to a few tens of keypoints to keep real-time the appli quite popular recently, however all the previous methods
cations. Moreover, they need a frontal training view and theprovide only theidentity of the points, not their pose. For
camera internal parameters to compute the camera pose wiskample, in [14], Randomized Trees are trained with ran-
respect to the keypoint. However, as our experiments showlomly warped patches to estimate a probability distributio
our two methods not only are much faster but they providever the classes for each leaf node. The non-terminal nodes
an accurate 3-D pose for each keypoint, by contrast witeontain decisions based on pairwise intensity comparisons
an approximate affine transformation. In practice, a singlevhich are very fast to compute. Once the trees are trained
keypoint is often enough to compute the camera or the taan incoming patch is classified by adding up the probabil-
get pose, which compensates this limitation on the databas distributions of the leaf nodes that were reached and by
size at least for the applications we present in this paper. identifying the class with the maximal probability. Howeve

In the remainder of the paper, we first discuss relatedraining the Randomized Trees is slow and performed of-
work. Then, we describe our two methods, and comparéine, which is problematic for applications such as SLAM.
them against affine region detectors [19]. Finally, we pnése [28] replaced the Randomized Trees by a simpler list struc-
applications of tracking-by-detection and SLAM using ourture and binary values instead of a probability distribatio
method. These modifications allow them to learn new features online

in real-time. Another approach based on the boosting algo-
rithm presented in [10] to allow online feature learning in

2 Related Work real-time was proposed in [16].

Many different approaches often called “affine region de- More recently, [26]introduced a learning-based approach
tectors” have been proposed to recognize keypoints undéat is closer to the approach presented in this paper. It is
large perspective distortion. For example, [27] geneedliz based on what is called “Histogrammed Intensity Patches”
the Forstner-Harris approach, which was designed to ddHIP). The link with our approach is that the HIPs are rem-
tect keypoints stable under translation, to small sintisi ~ iniscent of our “mean patches” used inéo2: Each key-

and affine transformations. However, it does not provide th@oint in the database is represented by a set of HIPs, each
transformation itself. Other methods attempt to retrieve ®f them computed over a small range of poses. For fast in-
canonical affine transformation withoaipriori knowledge. — dexation, a HIP is a binarized histogram of the intensitfes o
This transformation is then used to rectify the image aroun@ few pixels around the keypoint. However, while this is in
the keypoint and make them easier to recognize. For exarfdeory possible, estimating the keypoint pose has not been
ple, [19] showed that the Hessian-Affine detector of [18] ancevaluated nor demonstrated, and this method too provides
the MSER detector of [17] are the most reliable ones. IrPnly the keypointidentities.

the case of the Hessian-Affine detector, the retrieved affine

transformation is based on the image second moment ma- Another work related to this paper is [20], which exploits
trix. It normalizes the region up to a rotation, which canthe perspective transformation of patches centered on land
then be estimated for example by considering the peaks @fiarks in a SLAM application. However, it is still very de-
the histogram of gradient orientations over the patch as ipending on the tracking prediction to match the landmarks
SIFT[15]. Inthe case of the MSER detector, other approachasd to retrieve their transformations, while we do not need
exploiting the region shape are also possible [21], and any prior on the pose. Moreover, in [20], these transforma-
common approach is to compute the transformation from théions are recovered using a Jacobian-based method while, in
region covariance matrix and solve for the remaining degreeur case, a linear predictor can be trained very efficiewity f

of freedom using local maximums of curvature and bitan{faster convergence.

gents.

But besides helping the recognition, the estimated affine In short, to the best of our knowledge, there is no method
transformations can provide useful constraints. For examp in the literature that attempts to reach the exact same goal a
[25] uses them to build and recognize 3-D objects in steremurs. Our two methods can estimate quickly and accurately
scopic images. [8] uses them to add constraints between thiee pose of keypoints of a database, thanks to a learning-
different regions and help matching them more reliably.  based approach.



in Fig. 3(a). Formally, for a given patcR centered on a
keypoint we want to recognize, it estimates:

initial id = argmax P(Id = id | P), @)
id

patch p

P
. whereld is a random variable representing the identity of
2 the keypoint. The identity is simply the index of the corre-
;23 — g ( geg sponding keypoint in the database. The classifier represent

the patchP as a set of simple image binary features that are
grouped into subsets, ard is estimated following a semi-
Naive Bayesian scheme that assumes the feature subsets in-

—Final roctifoation dependent. This classifier is usually able to retrieve thelpa
' — Initial guess after identity Id under scale, perspective and lighting variations.
angle extraction

270 deg
3.2 Discretizing and Estimating the Keypoint's Pose

Fig. 2 Afirst estimate of the patch transformation is obtained gisin ) ] o ]
classifier that provides the values of the anglgdefined as the angles OnceId is estimated, our objective is then to get an esti-

between the lines that go through the patch center and eabk &dur ~ mate of the transformation of the patch around the keypoint.
comers. Because we also want to use a classifier for that, we first
need a way to quantize the transformations. We tried vari-
ous approaches, and the best results were obtained with the

&m parametrization described in Fig. 2. It is made of the four
anglesa; between the horizontal axis and the semi-lines go-
e e ing from the patch center and passing through the patch cor-

A= AS A ners. Each angle is quantized into 36 values, and to reduce
the required amount of memory and to increase the speed at
@ % &5 @ runtime, we estimate each angle independently as:

@ @ Vi=1...4 a;=argmaxP(A; =a; | Id=1id,P), (2)
(b)

using four Ferns classifiers specific to the keypoint of iden-
tity Jd.

Fig. 3 Examples of patches used for classification. (a) To estithate
keypoint identity, patches from the same keypoint are gediip a sin- ALGO1 will be evaluated in Section 6. Before that, we

gle class. (b) To estimate the patch transformation, skelsses for  hresent our second method and their common second stage.
different transformations are created for each keypoititédatabase.

3 ALGOL1: A Classifier Favoring Run-Time Performance 4 ALGO2: A Classifier Favoring Real-Time Learning
and Robustness
We present in this section the first stage of our first method.
It provides the identity and an approximate pose of a keyALGO1 was designed for run-time speed, and it requires a
point, given an image patch centered on this keypoint, usinglow training phase: It takes about 1 second tozA1l to
an extension of [22]. The second stage, the keypoint podéarn one keypoint, and this makes it not suitable for on-

refinement and checking steps, is common to our two metHine applications like SLAM. We therefore propose a sec-
ods, and will be presented Section 5. ond method, which is slower at run-time but can learn new

keypoints much faster. It is also more accurate.

3.1 Finding the Keypoint’s Identity

4.1 Finding the Keypoint’s Identity and Pose
ALGOL1 first recognizes the keypoint to which the patch cor-
responds to by using the Ferns classifier presented in [22As depicted by Fig. 5, our starting idea to estimate the key-
Ferns are trained with patches centered on the keypoints point’s identity and pose is to first build a set of “mean
the database and seen under different viewing conditions gmtches”. Each mean patch is computed as the average of the
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Fig. 4 We tried to use in AGo1 the homography discretization used
in ALGO2. As the graph shows, it does not result in any improvemen
in terms of matching score compared to the discretizaticeniged in
Fig. 2. Since it requires more computation time and memooabse
the number of discrete homographies is larger, we used ttiboghe
of Fig. 2 for ALGO1. The experiment was performed on the standard
Graffiti test set [19].

Fig. 6 Computing a set of mean patches clearly outperforms simple
tblurring of a set of warped patches. Different Gaussian $hiog ker-

nels were tried and we show that our approach improves thehingt
rate constantly of about 20%.

descriptor for the incoming points, and that makes the ap-

| s proach faster at runtime. The set of means that characterize
b -~ a keypoint in the database can be seen as a descriptor, which
| - we refer to as a “one-way descriptor” since it does not have
-] v to be computed for the new points. This approach increases
: the number of vectors that have to be stored in the database,
M but fortunately, efficient methods exist for nearest-nbiah
@) () search in large databases of high-dimensional vectors [4].

More formally, given a keypoirit in a reference image,

Fig. 5 The ALGO2 descriptor. (a) For a feature poigf, this descrip- W€ compute a set of mean patcHgs, } where each mean
tor is made of a set of mean patcHgs 1, }, each computed for asmall p;; can be expressed as

range of pose${,, from a reference patch; centered on the feature

pointk;. (b) Some other mean patches for the same feature point. The

examples shown here are full resolution patches for viggih prac- pn = W(p* H)p(H)dH 3
tice we use downscaled patches. HeH, ’

keypoint appearance when the pose varies in the neighbo"rv-here

hood of a reference pose. Then, we can use nearest-neighbor 17 enresents a pose, in our case a homography
classification: We assign to an incoming keypoint the pose_ p+ s thereference patchthe image patch centered on
of the most similar mean patch as a first estimate of its pose. keypointk in the reference image. To be robust to
Of course, computing a single mean patch over the full  jignt changes, the pixel intensities #* are normalized
range of poses would resultin a blurred irrelevant patch. Be  gg their sum is equal to 0, and their standard deviation to
cause we compute these mean patches over only a small 1
range of poses, they are meaningful and allow for reliable _ w(P, H) returns the patc® seen under posel
recogn!tlon.Anotheradvantage is that they are robust to IM _ )(H) is the probability that the keypoint will be seen
age noise and blur. As the mean patches in Fig. 5 look like nger pose7, and
blurred image patches, one may wonder if using a uniform_ H, is a range of poses, as represented in Fig. 5. The
blur on warped patches would be enough. The answeris no: ;. 's are defined so that they cover small variations a-

As Fig. 6 shows, using mean patches substantially improves 4,nd a fixed posél, but together they span the set of
the matching rate by about 20% compared to using blurred possible posels),, Hs,.

warped patches.
Compared to standard approaches [19], we do not have practice, the integrals in Eq. (3) are replaced by finite
to extract an estimate of the keypoint's pose, nor compute sums, the distribution over the transformatidhgs assumed



uniform and the expression gf, becomes linear transformation. This fact was used for example in [7]
N for transformation-invariant data modeling. In our case, b
1 cause we use perspective transformations, parts that are no
R= Y w(P*, Hy;) (C I persp > P
N = visible in the original one could appear in the generated

patch. To solve this issue, we simply take the original patch
where theff), ; are N poses sampled fromy,. larger than the warped patch, and large enough so that there
Once the meanp,, are computed, it is easy to match are never parts in the warped patch which were not present
incoming keypoints against the database, and get a coargethe original patch. The functiow(., H) then becomes a

pose. Given the normalized patghcentered on such an permutation followed by a projection, and this composition
incoming point with assumed |dentmﬂ its coarse pose remains a linear transformation.

H,_ fa,n—h Indexed byh is obtained by finding: Thanks to this property, Eq.(7) simplifies easily:
h = argmaxp ' - Py . 5
i:gfd,h b © Pr ~ %ZW Zanz, j.h) (8)
However, computing th@y, using Eq. (4) is very inef- JNI
ficient because it would require the generation of too many _ L Z ( aw(Vy, H h)) (9)
samplesw(P*, Hy, ;). In practice, to reach decent results, N =
we have to use at least 300 samples, and this takes about 1.1 I N
seconds to generate which was not acceptable for inter- Z ol ZW vV, H (10)
active applications. We show below that the mean patches - N J=1
can actually be computed very quickly, independently of the L
number of samples used. = Z Vi (11)

where thev; ;,’s are patches obtained by warping the eigen-

4.2 Fast Computation of the Mean Patches .
vectorsy; under poses ift,:

We show here that we can move most of the computation N
cost of the mean patches to an offline stage, so that compu(;_ 1 Z Vi Hjp). (12)
ing the mean patches at runtime can be done very efficiently.” N &
To this end, we first approximate the reference p&¢tas:
Like theV;, thev; ;s patches can be computed offline. The
P V4 ZO‘M (6) r_number of sampleﬁf therefore does not matter for the run-
time computations, and we can use a very large number.

_ In summary, when we have to insert a new keypoint in
where) and theV’s are respectively the mean and the  the database, we simply have to project it in the eigenspace,
first principal components of a large set of image patchegnd compute its associated mean patches by linear combina-
centered on keypoints. The are therefore the coordinates tjons, The complete process can be written in matrix form:
of P* in this eigenspace, and can be computed;as V," -

P*. o = PpCAP and (13)
Computingy and theV;’s takes time but this can be done v, pr = Vo, (14)

offline. Because we consider normalized patches, the mean

¥ is equal to 0, and the expressioniif from Eq.(3) be- whereP* is the reference patch seen as a vedpi;a the

comes projection matrix into the eigenspaee the vector of they,
. coefficients, and th&/,’s are matrices. The rows @pca
1 are they, vectors, and the columns of thg,’s matrices are
~— V 7 L L
Pr=7N Zw DoV, Hyn ") the v, vectors. This approach saves significant computa-

tion time with respect to the naive way to compute Eq.(7).
This expression can be simplified by using the fact that  To speed-up computation even further, mostly in the eval-
the warping functiorw (-, H) is a linear function: Warping uation of the similarity between an incoming pajstand a
is mostly a permutation of the pixel intensities between thenean patchpy, as in Eq. (5), we downsample these patches.
original patch and the patch after warping, and therefore ge keep the reference pat@r and the eigenvectory;

LAl fimes given in this paper were reached on a on a standzest no at the original resolution to avoid losing important detail

book (Intef® Centrino Cor€M 2 Duo with 2.6GHz and 3GB RAM Downscaling is applied only on the result of the sum in
and an NVIDIA quadro FX3600M with 512MB). Eq. (12), which is performed off-line anyway.
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Fig. 7 Normalized cross-correlation between approximated mearFig. 8 Recognition rates as a function of the viewpoint angle fér di

patches and their exact computation as a function of the sumb  ferent number of principal components. The values are geeraver

principal components. The values are averaged over 108gmfoom 100 patches from the Graffiti image set. We use synthesizegés

the Graffiti image set. In this experiment, the patches 20e< 120 pix-  to generate more views than the original Graffiti image segeeln

els but we need only a small percentage of the principal cois to  this experiment, the patches arg0 x 120 pixels but using only 150

get a good approximation. principal components over 14400 gives results comparabtbet full
method up to 40 degrees and is more than 70 times faster.

To handle scale efficiently, we compute the mean patches
only on one scale level. Then, the evaluation of the similarwhich is the expression of the homogragyrelating two
ity in Eq. (5) is done several times for each mean patch wittyiews of a 3-D plane, wherK is the matrix of the camera
different versions of the incoming patgh each version ex- internal parametersn’”, d|" the parameters of the plane
tracted at a different scale. in the first view, andAR anddt the camera displacement
In practice, as shown in Fig. 7, we can keep only a smalPetween the two views. For simplification, we assume we
percentage of the first principal components and still gepave a frontal view of the reference patches.
a good approximation of the mean patches_ The graph of We first tried diSCfetiZing the motion between the views
Fig. 8 shows that using onlf. = 150 principal compo- by simply discretizing the rotation angles around the three
nents and 192 mean patches over 3 Sca|es_giving a tota' éf(es. HOWeVer, forthe nearest-neighborClaSSificatiOHJIlkW
576 mean patches_ah'eady gives reasonably good resung_e”, it must be initialized as close as pOSSible to the agdrre
The computation time is then 15 milliseconds for patchesolution, and we provide a better solution. As shown by the
downsamp'ed frorﬁl x 71t012 x 12 inc|uding the com- left image of F|g 9, we found that the vertices of (almOSt)
putation ofa while using directly Eq. (4) takes 1.1 seconds.e€gular polyhedrons provide a more regular sampling that is
Using the GPU to compute the matrix form expressions ir#seful to discretize the angle the second view in Eq. (15)
Egs. (13) and (14), we can reduce the processing time evéRakes with the patch plane.
further to only 5.5 milliseconds However, there exists only a few convex regular polyhe-
drons —the Platonic solids— with the icosahedron the one
with the largest number of vertices, 12. As the right image
4.3 Discretizing the Pose Space for@o2 of Fig. 9 illustrates, we obtain a finer sampling by recur-
sively substituting each triangle into four almost eq@itat
The quantized pose Space used fo_r(‘__:’@]_ represented in triangles. The vertices of the created pOlyhedron giVe asth
Fig. 2 was designed to keep the number of discrete homogréo out-of-plane rotation angles for the sampled posejs¢hat
phies small, because a finer discretization does not improv@ound the x- and y-axes of Fig. 9. We discretize the in-plane
the matching score while slowing down the recognition andotation angle to cover the 36@ange with 10 steps.
increasing the required memory. InA02 however, we can
afford a finer discretization and that results in better geco ] ]
nition rate. 5 Pose Refinement and Final Check
This discretization is done based on the formula: Having the output of the first stage ofL&O1 or ALGO2,
St-nT' K1 the keypoint's identity and approximate pose, we want to
) ’ (19) compute a better estimate of the pose, in the form of a ho-

HK<AR+



Fig. 9 Pose space sampling using almost regular polyhedrons.Tteftred dots represent the vertices of an (almost) regolghpdron generated
by our recursive decomposition and centered on a planahpé@ie sampled directions of views are given by vectorsistaftom one of the
vertices and pointing toward the patch center. The greewas an example of such a vector. Right: The initial icosabedind the result of the
first triangle substitution.

mography, without quantization anymore. This refinementhese matrices remains fast and gives a more accurate es-
is based on linear regression, and we show how the linedimate than with a single level. In order to do an ultimate
predictors can be computed incrementally and how we carefinement the ESM algorithm [5] can be applied.
improve the training speed. The refinement s followed by a  In practice, our vectors/(P, ﬁ) andp* contain the in-
final check step, to suppress keypoints that were incoyrectltensities at locations sampled on a regular grid ®f 13
recognized. over image patches of siZz& x 75 pixels, and we normal-
ize them to be robust to light changes. We parametrize the
homographies by the 2D locations of the patch four corners
5.1 Linear Prediction for Refinement since this parametrization is proved to be more stable than

he h héi " the i ) initial others in [1]. In practice, for one patch we train four to fen
The homographyl computed in the first stage is an initial 1, ceqB with different ranges of variation from coarse to

estimate of the true homograph We use the method pre- fine, using downscaled patchesl@fx 13 = 169 pixels and
sented in [13] and based on linear predictors to obtain thg00 to 5008 training samples

parameters of a corective homography-: For online applications, thB’s matrices must be com-

X—B (w(P, ﬁ) _ p*> 7 (16) puted for each new keypoint m;erted |n.the Qatabase gt run-
time. Thus, learning th&,;s which consists in computing
where a set of couples made of small random transformatidns

) . . . and the corresponding warped patchesP, H, 1) as dis-
- Bis th(_a matrix of our Im_egr predictor, and depends On sqeq helow must be fast enough to fulfill the real-time
the_ retrieved pa_tch |de_nt|'rzyi;_ ) constraints. In order to do so we precompute the transfor-
—Pis the patch in the incoming image, centered on th‘?nationsHs and the warped pixel locations in order to obtain
keypoint to recognize; _ very quickly thew(P, H; ') patches at run-time for an ar-
— w(P, H) is the patctp warped by the current estimate .oy incoming feature point. The whole process thus can

H and downscaled for efficiency. Note thatwe do notacy,q gneeq yp to 29 millisecondssing 300 samples and four
tually warp the patch, we simply warp back the sampledB matrices.

pixel locations;
— p"isthe reference patch* after downscalingP™ is the
image patch centered on the keypaidtin a reference

. . ) 5.2 Incrementally Learning the Linear Predictor
image as in Section 4.

This equation gives us the paramet&rsf the incremental For some applications it is desirable to improve the tragkin
homography that updat@$ to produce a better estimate of by performing online learning. Since the classificatiompste

the true homographi: in ALGO1 as well as in AGO2 can easily be extended to do
~ N ~ online learning, we only have to concentrate on the linear
H+—HoH(x). A7) predictors.

For more accuracy, we iterate Eqgs. (16) and (17) using a sé-, . - : -

. . : I . . Depending on the application. Using mdBg matrices improves
ries of linear predictor®;, each matrix being dedicated to the accuracy but the computation time for this step inceedisearly
smaller errors than its predecessor: Applying successivelwith the number of matrices.



The linear predictoB in Eq. (16) can be computed as 5.3 Correlation-based Hypothesis Selection and
the pseudo-inverse of the analytically derived Jacobian ma/erification
trix of a correlation measure [2,5]. However, the hyperplan
approximation [13] computed from several examples yielddn ALGO2, for each possible keypoint identity we use
a much larger region of convergence. The maBiis then  the method explained above to estimate a fine homogra-

computed as: phy ﬁi7fina|. Thanks to the high accuracy of the retrieved
transformation, we can select the correct pair of keypoint
B=XDT (DDT)*l (18) identity ; and poseH; fina based on the normalized cross-

correlation between the reference pafhand the warped

whereX is a matrix made ok; column vectors, an® a patchw (P, Hifina) S€€n under posH, sina. The selection

matrix made of column vectors;. Each vectod; is the dif- is done by

ference between the reference papchand the same patch argmax’P,;‘T -w(P, ﬁi7fina|) , (23)

after warping by the homography parametrizedkyd; = i

w(p,H(x;)) — p*. In ALGO1, the keypoint identity is directly provided by the
Eq. (18) requires all the couplés;, d;) to be simulta-  Ferns classifier.

neously available. If it is applied directly, this prevents Finally, we use a thresholthcc = 0.9 in order to re-

cremental learning but this can be fixed. Suppose that th@ove wrong matches:
matrix B = B,, is already computed for examples, and = T

n = w(P,H, - P’ > Tnee s 24
then a new exampléx, .1, d,.1) becomes available. We ( fina) ANCC (24)
want to update the matri8 into the matrixB,,;; thattakes Thus, each patcw (P, H; sinal) that gives the maximum sim-
into account all thex + 1 examples. Let us introduce the ilarity score, which exceedscc at the same time, yields an
matricesY,, = X,,D, andZ,, = D, D,. We then have:  accepted match.

—1
Bn+1 = Yn+1 Zn.l,_l

T T
= XTL+1 Dn+1 (D7L+1 Dn+1)

= [X,|%n41][Dnldnia] ([Dn|dn+1][D,,L|<;1,,L+1]T)_1 We compare here our approach against affine region detec-
T T T + -1 torson the Graffiti image set from [19] towards robustness
(XaDyy + Xpt1dy41) (DuDyy + digad,, i) and accuracy. At the end of this section, we also evaluate
(Y, +xpp1dyy 1) (Zn + dnﬂd,,TLJrl)*1 (19) the performance of our algorithms with respect to training
time, running time and memory consumption. For each ex-

wherex,,, andd,,, are concatenated &, andD,, re-  perimentwe give a detailed discussion about the specific ad-

spectively to formX,, ., andD,, ;. Thus, by only storing vantages of each of our two methods.
theconstant sizenatricesY,, andZ,, and updating them as:

-1 6 Experimental Validation

Y1 ¢— Yo +Xpp1d, 4 (20) 6.1 Evaluation on the Graffiti Image Set
Zni1 ¢— Zy +dpiad, (21)

We first built a database of the most stable 100 Harris key-
it becomes possible to incrementally learn the linear predi points from the first image of the Graffiti set. These key-
tor without storing the previous examples, and allows for arpoints were found by synthetically rendering the image un-
arbitrary large number of examples. der many random transformations, adding artificial image

Since the computation dB has to be done for many noise and extracting Harris keypoints. We then kept the 100
locations in each incoming image aif, is a large ma-  keypoints detected the most frequently.
trix in practice, we need to go one step further in order to  The Ferns classifiers in 1401 were trained with syn-
avoid the computation oZ,,! at every iteration. We apply thetic images as well, by scaling and rotating the first image

the Sherman-Morrison formula @}, and we get: for changes in viewpoint angle up to 65 degrees and adding
. noise. In the case of X602 only the first image is needed.

Z, i = (Zp+dpad) ) We then extracted Harris keypoints in the other images of
g Z;ldanLlZ;l 22) the set, and run Acol and ALGO2 to recognize them and

estimate their poses.

We also run the different region detectors over the set
Therefore, if we stord.. ! instead ofZ,, itself, and update images and matched the regions in the first image against
it using Eqg. (22), no matrix inversion is required anymore the regions in the other images using the SIFT descriptor
and the computation of matri®,,, ; becomes very fast. computed on the rectified regions.

1+ d;LrJrlz’;ld'rH-l
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Fig. 10 Comparing the robustness of our methods and of affine regitectbrs on the Graffiti image sé€&): Matching score as a function of
the viewpoint angle. The curves oft&01 and ALGo2 plot our results with the correlation test of Section 58atlied. Even then, our methods
compare very favorably with the affine region detectiny. Same with the correlation test turned on. No outlier is pozat.
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Fig. 11 Comparing our method against affine region detectors on taitcimage set(a) Number of correct matches for our approach and
the affine region detectors. We trained our methods on 10pduets in the first image(b) ALGO2 can manage more keypoints, and for this
experiment we trained it on 400 keypoints. For the largestpbint we still obtain a matching rate of about 50%.

6.1.1 Robustness better, at least up to an angle &f° in the case of AGo1.
When we turn the final check on, not a single outlier is kept

In Fig. 10, we compare the matching scores for the differenin this experiment. For completness, we also show the ac-

methods. The matching score is computed as the ratio béal number of correct matches in Fig. 11(a). Note, that we

tween the number of correct matches and the smaller nuncan manually choose how many patches we initially want to

ber of regions detected in one of the two images as definetack while affine region detectors can not.

in [19]. Two regions are said to be correctly matched if the

overlap error is smaller that0%. In our case, the regions Because the Ferns classifier consumes a large amount of

are defined as the patch surfaces warped by the retrieveflemory that grows linearly with the number of classes, it

transformations is difficult to handle more than 100 keypoints with 801.

For a fair comparison, we first turned off our final check ALGO2 by contrast uses a nearest-neighbour classifier and
on the correlation since there is no equivalent for the affinean deal with more keypoints. We therefore performed in
regions in [19]. This yields the 'Aco1/ALG02 without Fig. 11(b) the same kind of experiment as in Fig. 11(a), but
Correlation’ curves. Even then, our methods perform muchwvith 400 keypoints for AGo2. In that case, for the large
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viewpoint angles, we get more correctly matches keypointsne single patch on the outlet to track in order to emphasize

than regions with the affine region detectors. the possibility to track an object with only a single patch.
ALGO?2 is also more robust to scale and perspective disALGO2 achieved a successful matching rate in over 98%,

tortions than AGoL1. In practice we found out that the limit- directly followed by A Go1 with 97%.

ing factor is by far the repeatability of the keypoint detect For the affine region detectors we tried two different

However, once a keypoint is correctly detected, it is verymethods to estimate the pose of the outlet:

frequently correctly matched at least by @o2. — Method A: For the first row of Fig. 14 we computed the

pose from the 2—-D locations of all the correctly matched
affine regions. The correct matches were obtained by
computing the overlap error between the regions that
were matched by SIFT. In order to compute the over-
lap error we used the ground truth transformations. Note
that this gives a strong advantage to the affine region de-
tectors since the ground truth is usually not available.
Each pair of regions was labeled as correctly matched

6.1.2 2-D Accuracy

In Figs. 13(a)-(d), we compare the 2—-D accuracy for the dif-
ferent methods. To create these graphs, we proceed as shown
in Fig. 12. We first fit a square tangent to the normalized re-
gion, take into account the canonical orientation retridwe
SIFT and warp these squares back with the inverse transfor-
mation to get a quadrangle. To account for different scales, .
9 .q ) 9 . if the overlap error was below 40%. The IBR detector
we proceed as in [19]: We normalize the reference patch and : . :
. obtained the best results with a 18% matching rate.
the back-warped quadrangle such that the size of the refer-
. — Method B: For the second row, we used the shape of two
ence patch is the same for all the patches. , . . .
. . . matched affine regions in order to determine the current
Two corresponding regions should overlap if one of them . ) .
. . pose of the object. In order to obtain the missing degree
is warped using the ground truth homography. A perfect . . . .
. . . . of freedom, the orientation was obtained by determin-
overlap for the affine regions cannot be expected since their . : . _ o .
. . . ing the dominant orientation within the patch [15]. Since
detectors are unable to retrieve the full perspective.€Simc . . .
. . . - for each image several transformations are available due
SIFT several orientations were considered when ambiguity . . .
. . . to several extracted affine regions, we finally took the
arises, we decided to keep the one that yields the most accu- .
transformation that corresponds best to the ground truth.
rate correspondence. In the case of our method, the quadran- ; )
. . The MSER and the Hessian-Affine detector perform best
gles are simply taken to be the patch borders after warping . .
. : with a matching rate of 43% and 35%.
by the retrieved transformations.

Fig. 13(a) evaluates the error based on the overlap be- For the second experiment, shown in Fig. 15, we tracked
tween the quadrangles and their corresponding warped vea-foot printin a snowy ground in a sequence of 453 images.
sions. This overlap is between 90% and 100% for our methThe results are very similar to the first experiment’s result
ods, about 5-10% better than MSER and about 15-25% beFhe success rate of our algorithms is around 88%. Again,
ter for the other methods. Fig. 13(b) evaluates the erraxdas Method A with the IBR detector performs best among the
on the distances between the quadrangle corners. Our metiifine region detectors with a matching rate of 12%. All
ods also perform much better than the other methods. Thether detectors had a success rate of below 1%. For Method
error of the patch corner is less than two pixels in average foB, all affine region detectors performed around 5% except
ALGO1 and slightly more for Aco2. Figs. 10(c) and (d) the EBR detector which had a matching rate below 1%.
show the same comparisons, this time when taking only the

best 100 regions into account. The results are very similar.
6.3 Speed

6.2 3—D Pose Evaluation for Low-Textured Objects We give below the computation times for training and run-
time for both of our methods. All times given were obtained

In order to demonstrate the usefulness of our approach espen a standard notebodk Our implementations are written

cially for low textured objects and for outdoor environngnt in C++ using the Intel OpenCV and IPP libraries.

we did two other quantitative experiments.

For the first experiment we run different methods to re-6.3.1 Training

trieve the camera pose using the outlet of Fig. 14 in a se-

quence of 398 real images. To obtain ground truth data w&able 1 shows the advantage of @02 over ALGO1: Itis

attached an artificial marker next to the outlet and trackednuch faster than Acol. When the GPU is used, learning

this marker. The marker itself was hidden in the referencéime drops to 5.5 milliseconds, which is largely fast enough

image. We consider errors on the camera center larger thdar frame rate learning, for SLAM applications for example.

50 units as not correctly matched. For clarity we do not dis<Computing theB’s matrices for the refinement stage can be

play these false results. For our approaches we learned ondpne in additional 29 ms on the CPU.
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@) (b) © (d) (e

Fig. 12 Measuring the overlapping errors and the corners distaf@e$wo matched affine regions. (b) The same regions, aftenalization by
their affine transformations displayed with their canoharéentations. (c) Squares are fitted to the final normalizggdons. (d) The squares are
warped back into quadrangles in the original images. (e)qitarangle of the second region is warped back with the grtuth homography
and compare with the quadrangle of the first image. |dea#iytto quadrangles should overlap. For comparison of differegion detectors we
normalize the reference region to a fixed size and scale theedaegion correspondingly.
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Fig. 13 Comparing the accuracy of our methods and of affine regioactlats on the Graffiti image sef): Average overlapping area of all
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Fig. 14 Camera trajectories retrieved by different methods fordee@isequence of the outlet of Fig. 22. For clarity we do nqtldisresults if
the error on the camera center is larger than 50 uRitst row : X, Y and Z coordinates of the camera center over the sequareeoordinates
system centered on the outlet. For the affine region detedtte camera pose was retrieved using Method A as explain@edtion 6.2Second

row: Same but using Method Bast two rows: Typical results for different methods. the blue quadranglthe ground truth, the green one was
retrieved using AG02, the red one using one of the affine region detectors.

ALGO1 [11] 1.05 seconds
ALGO2 (CPU) [12] | 15 miliseconds
ALGO2 (GPU) [12] | 5.5 miliseconds

Table 1 Average learning time per feature for the first step in déffer

6.3.2 Run-Time

Our currentimplementation of A5 02 runs at about 10 frames

per second using 10 keypoints in the database and 70 can-

approaches. BG02 is more than 70 times faster when the GPU is used'didate keypoints. A better run-time performance is achdeve
with ALGO1: Our implementation runs at about 10 frames
per second using a database of 50 keypoints and 400 candi-
date keypoints. Note that fori& 01 the run-time is almost
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Fig. 15 Camera trajectories retrieved by different methods fordeeisequence of a footprint in the snow. For clarity we do msgldy results if
the error on the camera center is larger than 50 uRitst row: X, Y and Z coordinates of the camera center over the sequareeoordinates
system centered on the outlet. For the affine region detgdtoe camera pose was retrieved using Method A as explain@edtion 6.2Second
row: Same but using Method Bast two rows: Typical results for different methods. the blue quadrangithe ground truth, the green one was
retrieved using AG02, the red one using one of the affine region detectors.

constant with respect to the size of the database and on§pecial data structure for nearest neighbor search ang usin
depends on the number of candidate keypoints. Ras@?2  for example KD-trees [4] would speed it up. However, due
the run-time is not only influenced by the number of can-to the methods robustness and accuracy, one detected key-
didate keypoints but also behaves linearly in the number gboint is enough to detect the target object and to estimate it
patches in the database. The single times for one patch in tip@se reliably. This can considerably speed up the proagssin
database with respect to the number of candidate keypointsne if the object is seen in the image and the result of only
in the currentimage are given in Fig. 16. We do not use angne extracted patch is enough to start a non-linear optimiza



15

100

;
—0— ALGO1
—p— ALGO2

90 - .l

701 .
60 : s
50 > 1
40t 8

30+ .l

max time per patch in database [msec]

10- .l

I I I I I I
50 100 150 200 250 300 350 400
feature points in image [deg]

oS

Fig. 17 Training framework. We incrementally train the classifiensi
the linear predictors over the frames of a training sequeracthis end,
Fig. 16 We compare the maximal run-time per keypoint of both of the object is automatically registered in each incominméausing the
our methods with respect to the number of keypoints extdaictéhe  current state of these classifiers and linear predictors.

image. For AGcol we give two different run-times: The first one uses
the same matching schema asd®©2 which is more robust but slower.
If we use the patch pre-classification described in Eq. 1 dinetime

is decreased even more. Few hundreds of patches can be chamdle
real-time if the pre-classification is switched on.

7.2 Examples

In Figs. 18, 19, 20, and 21, we applyL&01 to object de-
tection and pose estimation application using a low-gyalit
tion process. Thus, the processing of all remaining keypoin camera. AGo1 is robust and accurate even in presence of
in an image can be skipped as soon as one keypoint is e¥rastic perspective changes, light changes, blur, oaaiysi
tracted. and deformations. For each of these objects we learned the
patches from an initial frontal view. In Figs. 20 and 21 we
used the template matching-based ESM algorithm [5] to re-
6.4 Memory fine the pose obtained from a single patch. As one can see,

Typicallv. A 1 bout 8 MB K . hile A one extracted patch is already good enought to obtain the
ypically, ALGO1 uses about per keypoint, while. pose of the object reliably.

G02 uses only 350 KB. The actual amount depends on sev- Several applications usingi&02 are shown Figs. 22,

eral parameters, but these values are representativet-In P3 . o .
. ) . . 3, 24, and 25, respectively SLAM re-localisation using a
ticular the ratio between the two methods is typicalcbl single keypoint, poorly textured object detection, defabte

trades a large amount of memory for run-time speed. object detection, and SLAM re-localisation in a room.

In Fig. 22 we learned the outlet from a frontal view with
one patch and tracked it throughout 372 images as shown
in the corresponding trajectory. While the outlet is a hard
7.1 Training Framework to track object we can still track it reliably despite of larg

scale and view point changes. Note, that SLAM usually uses
Our methods can be trained using either a small set of trairpriori information about its pose in order to be fast while
ing images or a video sequence. In the first case, we synthae do redetection in each frame in real-time.
size images by warping the original patches with randomho- In Fig. 23 we show Aco2 working with poorly tex-
mographies and adding noise to train the classifiers and tHered objects i.e. a telephone and a soldering stationcStru
linear predictors. A video sequence and a 3D model coultured and weakly textured objects like them are often found
also be used if available. In that case we proceed as proposidhuman environments and it is especially important to be
in [23]: The first image is registered manually and approxi-able to interact with them. Although they do not exhibit very
mately. It is used to partially train the classifiers anddine discriminative texture they still can be reliably recogiz
predictors. Assuming a small interframe displacementén th by our approach.
training sequence, this is enough to recognize featurdpoin  In Fig. 24 we tried our approach on matching deformable
in the next image, and register it. The process is iterated tsurfaces. We learned five patches on the book from an initial
process the whole sequence as shown in Fig. 17. frontal view. Although the book is then strongly deformed

7 Applications



16

and we do not model the deformation within our recognition 2.
pipline, most of the learned patches are reliably recoghize
The returned poses — represented by the visualized normal&
shown in blue — very often fit well to the deformation. We 4
also found out that not the deformation but the specular re-
flection on the book cover is very often harder to overcome.
In Fig. 25 we show another example of a possible SLAM ¢
application. We walk around in an arbitrary office space and
learn key landmarks which are reliably redetected in eaché.
successive frame if available. While scalability is cuthgn
still an issue and avoids the excessive use of patches, we’
see a possible application of our approach in learning few
key landmarks which help to relocalize the SLAM system 8.
fast in difficult areas where is not much texture around and
state-of-the-art relocalization approaches would fail. 9

8 Conclusion 10.

We showed that including pose estimation within the recog—ll'
nition process considerably improves the robustness and th
accuracy of the results of object detection, and this makes
our approach highly desirable. Thanks to a two-step algo-
rithm, it is possible to get matching sets that do usually-con
tain no outliers. Even low-textured objects can therefae b13.
well detected and their pose can be well estimated.

We showed in the paper that a Fern based classifier ig,
able to recognize the keypoints in a very fast manner that
allows to track several hundred patches very accurately in
real-time. We also showed that the simultaneous estimatiot?”
of keypoint identities and poses is more reliable but slower
than the two separate steps undertaken consecutively. Fis.
nally, we showed how to build in real-time an one-way de-
scriptor based on geometric blur that quickly, robustly an
accurately estimates the pose of feature points and threrefo
is appropriate for applications where real-time learniag i
mandatory. 18.

We demonstrated in various experiments the improvqu
performance compared to previous state-of-the-art mesthod
and demonstrated our approach on many applications in-
cluding simple 3D tracking-by-detection, SLAM applica-
tions, low-textured object detection and deformable dkjec
registration. However, many other applications could fiene
from it, such as object recognition, image retrieval or tobo 21.
localization.
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(@ (b) (d)
Fig. 18 Robustness of Ac0o1 to deformation and occlusiofa) Patches detected on the book in a frontal vi@yy.Most of these patches are
detected even under a strong deformat{ghThe book is half occluded but some patches can still be getiael) The book is almost completely
hidden but one patch is still correctly extracted. No outliwere produced.

cY (d)
Fig. 19 Accuracy of AL.co1 of the retrieved transformation. For each of these imagesjraw the borders of the book estimated from a single
patch. This is made possible by the fact we estimate a fuligeetive transform instead of only an affine one.

@) (h)
Fig. 20 Some frames of a Tracking-by-Detection with. 01 sequence shot with a low-quality camefa)-(g) The book pose is retrieved in
each frame independently at 10fps. The yellow quadrangleei®est patch obtained byL&ol. The green quadrangle is the result of the ESM
algorithm [5] initialized with the pose obtained from thiatph. The retrieved pose is very accurate despite drastsp@etive and intensities
changes and blu¢h) When the book is not visible, our method does not producese fabsitive.
M \‘
5“‘.1 )

(e) (h)
Fig. 21 Another example of a Tracking-by-Detection sequence witle@1. The book pose is retrieved undg) scale changeg¢c-d) drastic
perspective change&) blur, (f) occlusion, andg-h) deformations.
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Fig. 22 Tracking an outlet with AGo2. We can retrieve the camera trajectory through the scesptdevery limited texture and large viewpoint

changes. Since the patch is detected and its poses estiima&testy frame independently, the method is very robustgbrfzotion and occlusion.
The two graphs show the retrieved trajectory.

Fig. 23 Application to tracking-by-detection of poorly textureljects under large viewing changes with@02.



Fig. 24 Application to a deformable object withi&02. We can retrieve an accurate pose even under large defonmatVhile it is no

4

here, such cues would be very useful to constrain the 3Dcidatimation.

Fig. 25 Another example of SLAM re-localisation withi&02, using 8 different patches.
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