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Abstract. We propose a benchmark for 6D pose estimation of a rigid
object from a single RGB-D input image. The training data consists of
a texture-mapped 3D object model or images of the object in known 6D
poses. The benchmark comprises of: i) eight datasets in a unified format
that cover different practical scenarios, including two new datasets focus-
ing on varying lighting conditions, ii) an evaluation methodology with a
pose-error function that deals with pose ambiguities, iii) a comprehensive
evaluation of 15 diverse recent methods that captures the status quo of
the field, and iv) an online evaluation system that is open for continu-
ous submission of new results. The evaluation shows that methods based
on point-pair features currently perform best, outperforming template
matching methods, learning-based methods and methods based on 3D
local features. The project website is available at bop.felk.cvut.cz.

1 Introduction

Estimating the 6D pose, i.e. 3D translation and 3D rotation, of a rigid object
has become an accessible task with the introduction of consumer-grade RGB-D
sensors. An accurate, fast and robust method that solves this task will have a
big impact in application fields such as robotics or augmented reality.

Many methods for 6D object pose estimation have been published recently,
e.g. [34,24,18,2,36,21,27,25], but it is unclear which methods perform well and
in which scenarios. The most commonly used dataset for evaluation was created
by Hinterstoisser et al. [14], which was not intended as a general benchmark and
has several limitations: the lighting conditions are constant and the objects are
easy to distinguish, unoccluded and located around the image center. Since then,
some of the limitations have been addressed. Brachmann et al. [1] added ground-
truth annotation for occluded objects in the dataset of [14]. Hodaň et al. [16]
created a dataset that features industry-relevant objects with symmetries and
similarities, and Drost et al. [8] introduced a dataset containing objects with
reflective surfaces. However, the datasets have different formats and no standard
evaluation methodology has emerged. New methods are usually compared with
only a few competitors on a small subset of datasets.

∗Authors have been leading the project jointly.
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Fig. 1. A collection of benchmark datasets. Top: Example test RGB-D images where
the second row shows the images overlaid with 3D object models in the ground-truth
6D poses. Bottom: Texture-mapped 3D object models. At training time, a method is
given an object model or a set of training images with ground-truth object poses. At
test time, the method is provided with one test image and an identifier of the target
object. The task is to estimate the 6D pose of an instance of this object.

This work makes the following contributions:

1. Eight datasets in a unified format, including two new datasets focusing
on varying lighting conditions, are made available (Fig. 1). The datasets con-
tain: i) texture-mapped 3D models of 89 objects with a wide range of sizes,
shapes and reflectance properties, ii) 277K training RGB-D images showing
isolated objects from different viewpoints, and iii) 62K test RGB-D images
of scenes with graded complexity. High-quality ground-truth 6D poses of the
modeled objects are provided for all images.

2. An evaluation methodology based on [17] that includes the formulation
of an industry-relevant task, and a pose-error function which deals well with
pose ambiguity of symmetric or partially occluded objects, in contrast to the
commonly used function by Hinterstoisser et al. [14].

3. A comprehensive evaluation of 15 methods on the benchmark datasets
using the proposed evaluation methodology. We provide an analysis of the
results, report the state of the art, and identify open problems.

4. An online evaluation system at bop.felk.cvut.cz that allows for con-
tinuous submission of new results and provides up-to-date leaderboards.

http://bop.felk.cvut.cz
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1.1 Related Work

The progress of research in computer vision has been strongly influenced by
challenges and benchmarks, which enable to evaluate and compare methods and
better understand their limitations. The Middlebury benchmark [31,32] for depth
from stereo and optical flow estimation was one of the first that gained large
attention. The PASCAL VOC challenge [10], based on a photo collection from
the internet, was the first to standardize the evaluation of object detection and
image classification. It was followed by the ImageNet challenge [29], which has
been running for eight years, starting in 2010, and has pushed image classification
methods to new levels of accuracy. The key was a large-scale dataset that enabled
training of deep neural networks, which then quickly became a game-changer for
many other tasks [23]. With increasing maturity of computer vision methods,
recent benchmarks moved to real-world scenarios. A great example is the KITTI
benchmark [11] focusing on problems related to autonomous driving. It showed
that methods ranking high on established benchmarks, such as the Middlebury,
perform below average when moved outside the laboratory conditions.

Unlike the PASCAL VOC and ImageNet challenges, the task considered in
this work requires a specific set of calibrated modalities that cannot be easily
acquired from the internet. In contrast to KITTY, it was not necessary to record
large amounts of new data. By combining existing datasets, we have covered
many practical scenarios. Additionally, we created two datasets with varying
lighting conditions, which is an aspect not covered by the existing datasets.

2 Evaluation Methodology

The proposed evaluation methodology formulates the 6D object pose estimation
task and defines a pose-error function which is compared with the commonly
used function by Hinterstoisser et al. [13].

2.1 Formulation of the Task

Methods for 6D object pose estimation report their predictions on the basis
of two sources of information. Firstly, at training time, a method is given a
training set T = {To}no=1, where o is an object identifier. Training data To may
have different forms, e.g. a 3D mesh model of the object or a set of RGB-D
images showing object instances in known 6D poses. Secondly, at test time, the
method is provided with a test target defined by a pair (I, o), where I is an
image showing at least one instance of object o. The goal is to estimate the 6D
pose of one of the instances of object o visible in image I.

If multiple instances of the same object model are present, then the pose
of an arbitrary instance may be reported. If multiple object models are shown
in a test image, and annotated with their ground truth poses, then each object
model may define a different test target. For example, if a test image shows three
object models, each in two instances, then we define three test targets. For each
test target, the pose of one of the two object instances has to be estimated.
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This task reflects the industry-relevant bin-picking scenario where a robot
needs to grasp a single arbitrary instance of the required object, e.g. a component
such as a bolt or nut, and perform some operation with it. It is the simplest
variant of the 6D localization task [17] and a common denominator of its other
variants, which deal with a single instance of multiple objects, multiple instances
of a single object, or multiple instances of multiple objects. It is also the core of
the 6D detection task, where no prior information about the object presence in
the test image is provided [17].

2.2 Measuring Error

A 3D object model is defined as a set of vertices in R3 and a set of polygons that
describe the object surface. The object pose is represented by a 4 × 4 matrix
P = [R, t; 0, 1], where R is a 3× 3 rotation matrix and t is a 3× 1 translation
vector. The matrix P transforms a 3D homogeneous point xm in the model
coordinate system to a 3D point xc in the camera coordinate system: xc = Pxm.

Visible Surface Discrepancy. To calculate the error of an estimated pose P̂
w.r.t. the ground-truth pose P̄ in a test image I, an object model M is first
rendered in the two poses. The result of the rendering is two distance maps1 Ŝ
and S̄. As in [17], the distance maps are compared with the distance map SI of
the test image I to obtain the visibility masks V̂ and V̄ , i.e. the sets of pixels
where the model M is visible in the image I (Fig. 2). Given a misalignment
tolerance τ , the error is calculated as:

eVSD(Ŝ, S̄, SI , V̂ , V̄ , τ) = avg
p∈V̂ ∪V̄

{
0 if p ∈ V̂ ∩ V̄ ∧ |Ŝ(p)− S̄(p)| < τ

1 otherwise.
(1)

Properties of eVSD. The object pose can be ambiguous, i.e. there can be
multiple poses that are indistinguishable. This is caused by the existence of
multiple fits of the visible part of the object surface to the entire object surface.
The visible part is determined by self-occlusion and occlusion by other objects
and the multiple surface fits are induced by global or partial object symmetries.

Pose error eVSD is calculated only over the visible part of the model surface
and thus the indistinguishable poses are treated as equivalent. This is a desirable
property which is not provided by pose-error functions commonly used in the
literature [17], including eADD and eADI discussed below. As the commonly used
pose-error functions, eVSD does not consider color information.

Definition (1) is different from the original definition in [17] where the pixel-
wise cost linearly increases to 1 as |Ŝ(p)−S̄(p)| increases to τ . The new definition
is easier to interpret and does not penalize small distance differences that may
be caused by imprecisions of the depth sensor or of the ground-truth pose.

1 A distance map stores at a pixel p the distance from the camera center to a 3D point
xp that projects to p. It can be readily computed from the depth map which stores
at p the Z coordinate of xp and which can be obtained by a Kinect-like sensor.
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RGBI SI Ŝ V̂ S̄ V̄ S∆

Fig. 2. Quantities used in the calculation of eVSD. Left: Color channels RGBI (only for
illustration) and distance map SI of a test image I. Right: Distance maps Ŝ and S̄ are
obtained by rendering the object model M at the estimated pose P̂ and the ground-
truth pose P̄ respectively. V̂ and V̄ are masks of the model surface that is visible in I,
obtained by comparing Ŝ and S̄ with SI . Distance differences S∆(p) = Ŝ(p) − S̄(p),
∀p ∈ V̂ ∩ V̄ , are used for the pixel-wise evaluation of the surface alignment.
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3.7/15.2

b: 0.08
3.6/10.9

c: 0.11
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d: 0.19
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Fig. 3. Comparison of eVSD (bold, τ = 20 mm) with eADI/θAD (mm) on example pose
estimates sorted by increasing eVSD. Top: Cropped and brightened test images overlaid
with renderings of the model at i) the estimated pose P̂ in blue, and ii) the ground-
truth pose P̄ in green. Only the part of the model surface that falls into the respective
visibility mask is shown. Bottom: Difference maps S∆. Case (b) is analyzed in Fig. 2.

Criterion of Correctness. An estimated pose P̂ is considered correct w.r.t.
the ground-truth pose P̄ if the error eVSD < θ. If multiple instances of the
target object are visible in the test image, the estimated pose is compared to the
ground-truth instance that minimizes the error. The choice of the misalignment
tolerance τ and the correctness threshold θ depends on the target application.
For robotic manipulation, where a robotic arm operates in 3D space, both τ and
θ need to be low, e.g. τ = 20 mm, θ = 0.3, which is the default setting in the
evaluation presented in Sec. 5. The requirement is different for augmented reality
applications. Here the surface alignment in the Z dimension, i.e. the optical axis
of the camera, is less important than the alignment in the X and Y dimension.
The tolerance τ can be therefore relaxed, but θ needs to stay low.
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Comparison to Hinterstoisser et al. In [14], the error is calculated as the
average distance from vertices of the model M in the ground-truth pose P̄ to
vertices ofM in the estimated pose P̂. The distance is measured to the position
of the same vertex if the object has no indistinguishable views (eADD), otherwise

to the position of the closest vertex (eADI). The estimated pose P̂ is considered
correct if e ≤ θAD = 0.1d, where e is eADD or eADI, and d is the object diameter,
i.e. the largest distance between any pair of model vertices.

Error eADI can be un-intuitively low because of many-to-one vertex match-
ing established by the search for the closest vertex. This is shown in Fig. 3,
which compares eVSD and eADI on example pose estimates of objects that have
indistinguishable views. Overall, (f)-(n) yield low eADI scores and satisfy the
correctness criterion of Hinterstoisser et al. These estimates are not considered
correct by our criterion. Estimates (a)-(e) are considered correct and (o)-(p) are
considered wrong by both criteria.

3 Datasets

We collected six publicly available datasets, some of which we reduced to remove
redundancies2 and re-annotated to ensure a high quality of the ground truth.
Additionally, we created two new datasets focusing on varying lighting condi-
tions, since this variation is not present in the existing datasets. An overview of
the datasets is in Fig. 1 and a detailed description follows.

3.1 Training and Test Data

The datasets consist of texture-mapped 3D object models and training and test
RGB-D images annotated with ground-truth 6D object poses. The 3D object
models were created using KinectFusion-like systems for 3D surface reconstruc-
tion [26,33]. All images are of approximately VGA resolution.

For training, a method may use the 3D object models and/or the training
images. While 3D models are often available or can be generated at a low cost,
capturing and annotating real training images requires a significant effort. The
benchmark is therefore focused primarily on the more practical scenario where
only the object models, which can be used to render synthetic training images,
are available at training time. All datasets contain already synthesized training
images. Methods are allowed to synthesize additional training images, but this
option was not utilized for the evaluation in this paper. Only T-LESS and TUD-L
include real training images of isolated, i.e. non-occluded, objects.

To generate the synthetic training images, objects from the same dataset were
rendered from the same range of azimuth/elevation covering the distribution of
object poses in the test scenes. The viewpoints were sampled from a sphere, as
in [14], with the sphere radius set to the distance of the closest object instance
in the test scenes. The objects were rendered with fixed lighting conditions and
a black background.

2 Identifiers of the selected images are available on the project website.
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Dataset Objects Training images/obj. Test images Test targets

Real Synt. Used All Used All

LM [14] 15 – 1313 3000 18273 3000 18273
LM-O [1] 8 – 1313 200 1214 1445 8916
IC-MI [34] 6 – 1313 300 2067 300 2067
IC-BIN [7] 2 – 2377 150 177 200 238
T-LESS [16] 30 1296 2562 2000 10080 9819 49805
RU-APC [28] 14 – 2562 1380 5964 1380 5911
TUD-L - new 3 >11000 1827 600 23914 600 23914
TYO-L - new 21 – 2562 – 1680 – 1669

Total 89 7450 62155 16951 110793

Table 1. Parameters of the datasets. Note that if a test image shows multiple object
models, each model defines a different test target – see Sec. 2.1.

.

The test images are real images from a structured-light sensor – Microsoft
Kinect v1 or Primesense Carmine 1.09. The test images originate from indoor
scenes with varying complexity, ranging from simple scenes with a single isolated
object instance to very challenging scenes with multiple instances of several
objects and a high amount of clutter and occlusion. Poses of the modeled objects
were annotated manually. While LM, IC-MI and RU-APC provide annotation for
instances of only one object per image, the other datasets provide ground-truth
for all modeled objects. Details of the datasets are in Tab. 1.

3.2 The Dataset Collection

LM/LM-O [14,1]. LM (a.k.a. Linemod) has been the most commonly used
dataset for 6D object pose estimation. It contains 15 texture-less household
objects with discriminative color, shape and size. Each object is associated with
a test image set showing one annotated object instance with significant clutter
but only mild occlusion. LM-O (a.k.a. Linemod-Occluded) provides ground-truth
annotation for all other instances of the modeled objects in one of the test sets.
This introduces challenging test cases with various levels of occlusion.

IC-MI/IC-BIN [34,7]. IC-MI (a.k.a. Tejani et al.) contains models of two
texture-less and four textured household objects. The test images show multiple
object instances with clutter and slight occlusion. IC-BIN (a.k.a. Doumano-
glou et al., scenario 2) includes test images of two objects from IC-MI, which
appear in multiple locations with heavy occlusion in a bin-picking scenario. We
have removed test images with low-quality ground-truth annotations from both
datasets, and refined the annotations for the remaining images in IC-BIN.

T-LESS [16]. It features 30 industry-relevant objects with no significant texture
or discriminative color. The objects exhibit symmetries and mutual similarities
in shape and/or size, and a few objects are a composition of other objects. T-
LESS includes images from three different sensors and two types of 3D object
models. For our evaluation, we only used RGB-D images from the Primesense
sensor and the automatically reconstructed 3D object models.
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RU-APC [28]. This dataset (a.k.a. Rutgers APC) includes 14 textured prod-
ucts from the Amazon Picking Challenge 2015 [6], each associated with test im-
ages of a cluttered warehouse shelf. The camera was equipped with LED strips
to ensure constant lighting. From the original dataset, we omitted ten objects
which are non-rigid or poorly captured by the depth sensor, and included only
one from the four images captured from the same viewpoint.

TUD-L/TYO-L. Two new datasets with household objects captured under
different settings of ambient and directional light. TUD-L (TU Dresden Light)
contains training and test image sequences that show three moving objects under
eight lighting conditions. The object poses were annotated by manually aligning
the 3D object model with the first frame of the sequence and propagating the
initial pose through the sequence using ICP. TYO-L (Toyota Light) contains 21
objects, each captured in multiple poses on a table-top setup, with four different
table cloths and five different lighting conditions. To obtain the ground truth
poses, manually chosen correspondences were utilized to estimate rough poses
which were then refined by ICP. The images in both datasets are labeled by
categorized lighting conditions.

4 Evaluated Methods

The evaluated methods cover the major research directions of the 6D object pose
estimation field. This section provides a review of the methods, together with a
description of the setting of their key parameters. If not stated otherwise, the
image-based methods used the synthetic training images.

4.1 Learning-Based Methods

Brachmann-14 [1]. For each pixel of an input image, a regression forest pre-
dicts the object identity and the location in the coordinate frame of the object
model, a so called “object coordinate”. Simple RGB and depth difference features
are used for the prediction. Each object coordinate prediction defines a 3D-3D
correspondence between the image and the 3D object model. A RANSAC-based
optimization schema samples sets of three correspondences to create a pool of
pose hypotheses. The final hypothesis is chosen, and iteratively refined, to max-
imize the alignment of predicted correspondences, as well as the alignment of
observed depth with the object model. The main parameters of the method were
set as follows: maximum feature offset: 20 px, features per tree node: 1000, train-
ing patches per object: 1.5M, number of trees: 3, size of the hypothesis pool: 210,
refined hypotheses: 25. Real training images were used for TUD-L and T-LESS.

Brachmann-16 [2]. The method of [1] is extended in several ways. Firstly,
the random forest is improved using an auto-context algorithm to support pose
estimation from RGB-only images. Secondly, the RANSAC-based optimization
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hypothesizes not only with regard to the object pose but also with regard to the
object identity in cases where it is unknown which objects are visible in the input
image. Both improvements were disabled for the evaluation since we deal with
RGB-D input, and it is known which objects are visible in the image. Thirdly,
the random forest predicts for each pixel a full, three-dimensional distribution
over object coordinates capturing uncertainty information. The distributions are
estimated using mean-shift in each forest leaf, and can therefore be heavily multi-
modal. The final hypothesis is chosen, and iteratively refined, to maximize the
likelihood under the predicted distributions. The 3D object model is not used
for fitting the pose. The parameters were set as: maximum feature offset: 10 px,
features per tree node: 100, number of trees: 3, number of sampled hypotheses:
256, pixels drawn in each RANSAC iteration: 10K, inlier threshold: 1 cm.

Tejani-14 [34]. Linemod [14] is adapted into a scale-invariant patch descriptor
and integrated into a regression forest with a new template-based split function.
This split function is more discriminative than simple pixel tests and acceler-
ated via binary bit-operations. The method is trained on positive samples only,
i.e. rendered images of the 3D object model. During the inference, the class dis-
tributions at the leaf nodes are iteratively updated, providing occlusion-aware
segmentation masks. The object pose is estimated by accumulating pose regres-
sion votes from the estimated foreground patches. The baseline evaluated in this
paper implements [34] but omits the iterative segmentation/refinement step and
does not perform ICP. The features and forest parameters were set as in [34]:
number of trees: 10, maximum depth of each tree: 25, number of features in both
the color gradient and the surface normal channel: 20, patch size: 1/2 the image,
rendered images used to train each forest: 360.

Kehl-16 [22]. Scale-invariant RGB-D patches are extracted from a regular grid
attached to the input image, and described by features calculated using a con-
volutional auto-encoder. At training time, a codebook is constructed from de-
scriptors of patches from the training images, with each codebook entry holding
information about the 6D pose. For each patch descriptor from the test image,
k-nearest neighbors from the codebook are found, and a 6D vote is cast using
neighbors whose distance is below a threshold t. After the voting stage, the 6D
hypothesis space is filtered to remove spurious votes. Modes are identified by
mean-shift and refined by ICP. The final hypothesis is verified in color, depth
and surface normals to suppress false positives. The main parameters of the
method with the used values: patch size: 32× 32 px, patch sampling step: 6 px,
k-nearest neighbors: 3, threshold t: 2, number of extracted modes from the pose
space: 8. Real training images were used for T-LESS.

4.2 Template Matching Methods

Hodaň-15 [18]. A template matching method that applies an efficient cascade-
style evaluation to each sliding window location. A simple objectness filter is ap-
plied first, rapidly rejecting most locations. For each remaining location, a set of
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candidate templates is identified by a voting procedure based on hashing, which
makes the computational complexity largely unaffected by the total number of
stored templates. The candidate templates are then verified as in Linemod [14]
by matching feature points in different modalities (surface normals, image gradi-
ents, depth, color). Finally, object poses associated with the detected templates
are refined by particle swarm optimization (PSO). The templates were gener-
ated by applying the full circle of in-plane rotations with 10◦ step to a portion of
the synthetic training images, resulting in 11–23K templates per object. Other
parameters were set as described in [18]. We present also results without the last
refinement step (Hodaň-15-nr).

4.3 Methods Based on Point-Pair Features

Drost-10 [9]. A method based on matching oriented point pairs between the
point cloud of the test scene and the object model, and grouping the matches
using a local voting scheme. At training time, point pairs from the model are
sampled and stored in a hash table. At test time, reference points are fixed in the
scene, and a low-dimensional parameter space for the voting scheme is created
by restricting to those poses that align the reference point with the model. Point
pairs between the reference point and other scene points are created, similar
model point pairs searched for using the hash table, and a vote is cast for each
matching point pair. Peaks in the accumulator space are extracted and used
as pose candidates, which are refined by coarse-to-fine ICP and re-scored by
the relative amount of visible model surface. Note that color information is
not used. It was evaluated using function find surface model from HALCON
13.0.2 [12]. The sampling distances for model and scene were set to 3% of the
object diameter, 10% of points were used as the reference points, and the normals
were computed using the mls method. Points further than 2 m were discarded.

Drost-10-edge. An extension of [9] which additionally detects 3D edges from
the scene and favors poses in which the model contours are aligned with the
edges. A multi-modal refinement minimizes the surface distances and the dis-
tances of reprojected model contours to the detected edges. The evaluation was
performed using the same software and parameters as Drost-10, but with acti-
vated parameter train 3d edges during the model creation.

Vidal-18 [35]. The point cloud is first sub-sampled by clustering points based on
the surface normal orientation. Inspired by improvements of [15], the matching
strategy of [9] was improved by mitigating the effect of the feature discretization
step. Additionally, an improved non-maximum suppression of the pose candi-
dates from different reference points removes spurious matches. The most voted
500 pose candidates are sorted by a surface fitting score and the 200 best candi-
dates are refined by projective ICP. For the final 10 candidates, the consistency
of the object surface and silhouette with the scene is evaluated. The sampling
distance for model, scene and features was set to 5% of the object diameter, and
20% of the scene points were used as the reference points.
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4.4 Methods Based on 3D Local Features

Buch-16 [3]. A RANSAC-based method that iteratively samples three feature
correspondences between the object model and the scene. The correspondences
are obtained by matching 3D local shape descriptors and are used to generate
a 6D pose candidate, whose quality is measured by the consensus set size. The
final pose is refined by ICP. The method achieved the state-of-the-art results on
earlier object recognition datasets captured by LIDAR, but suffers from a cubic
complexity in the number of correspondences. The number of RANSAC itera-
tions was set to 10000, allowing only for a limited search in cluttered scenes. The
method was evaluated with several descriptors: 153d SI [19], 352d SHOT [30],
30d ECSAD [20], and 1536d PPFH [5]. None of the descriptors utilize color.

Buch-17 [4]. This method is based on the observation that a correspondence
between two oriented points on the object surface is constrained to cast votes
in a 1-DoF rotational subgroup of the full group of poses, SE(3). The time
complexity of the method is thus linear in the number of correspondences. Kernel
density estimation is used to efficiently combine the votes and generate a 6D pose
estimate. As Buch-16, the method relies on 3D local shape descriptors and refines
the final pose estimate by ICP. The parameters were set as in the paper: 60 angle
tessellations were used for casting rotational votes, and the translation/rotation
bandwidths were set to 10 mm/22.5◦.

5 Evaluation

The methods reviewed in Sec. 4 were evaluated by their original authors on the
datasets described in Sec. 3, using the evaluation methodology from Sec. 2.

5.1 Experimental Setup

Fixed Parameters. The parameters of each method were fixed for all objects
and datasets. The distribution of object poses in the test scenes was the only
dataset-specific information used by the methods. The distribution determined
the range of viewpoints from which the object models were rendered to obtain
synthetic training images.

Pose Error. The error of a 6D object pose estimate is measured with the pose-
error function eVSD defined in Sec. 2.2. The visibility masks were calculated as
in [17], with the occlusion tolerance δ set to 15 mm. Only the ground truth poses
in which the object is visible from at least 10% were considered in the evaluation.

Performance Score. The performance is measured by the recall score, i.e. the
fraction of test targets for which a correct object pose was estimated. Recall
scores per dataset and per object are reported. The overall performance is given
by the average of per-dataset recall scores. We thus treat each dataset as a sep-
arate challenge and avoid the overall score being dominated by larger datasets.



12 Hodaň, Michel et al.

Subsets Used for the Evaluation. We reduced the number of test images to
remove redundancies and to encourage participation of new, in particular slow,
methods. From the total of 62K test images, we sub-sampled 7K, reducing the
number of test targets from 110K to 17K (Tab. 1). Full datasets with identifiers
of the selected test images are on the project website. TYO-L was not used for
the evaluation presented in this paper, but it is a part of the online evaluation.

5.2 Results

Accuracy. Tab. 2 and 3 show the recall scores of the evaluated methods per
dataset and per object respectively, for the misalignment tolerance τ = 20 mm
and the correctness threshold θ = 0.3. Ranking of the methods according to the
recall score is mostly stable across the datasets. Methods based on point-pair
features perform best. Vidal-18 is the top-performing method with the average
recall of 74.6%, followed by Drost-10-edge, Drost-10, and the template matching
method Hodaň-15, all with the average recall above 67%. Brachmann-16 is the
best learning-based method, with 55.4%, and Buch-17-ppfh is the best method
based on 3D local features, with 54.0%. Scores of Buch-16-si and Buch-16-shot
are inferior to the other variants of this method and not presented.

Fig. 4 shows the average of the per-dataset recall scores for different values
of τ and θ. If the misalignment tolerance τ is increased from 20 mm to 80 mm,
the scores increase only slightly for most methods. Similarly, the scores increase
only slowly for θ > 0.3. This suggests that poses estimated by most methods are
either of a high quality or totally off, i.e. it is a hit or miss.

Speed. The average running times per test target are reported in Tab. 2. How-
ever, the methods were evaluated on different computers3 and thus the presented
running times are not directly comparable. Moreover, the methods were opti-
mized primarily for the recall score, not for speed. For example, we evaluated
Drost-10 with several parameter settings and observed that the running time
can be lowered by a factor of ∼5 to 0.5 s with only a relatively small drop of
the average recall score from 68.1% to 65.8%. However, in Tab. 2 we present the
result with the highest score. Brachmann-14 could be sped up by sub-sampling
the 3D object models and Hodaň-15 by using less object templates. A study of
such speed/accuracy trade-offs is left for future work.

Open Problems. Occlusion is a big challenge for current methods, as shown by
scores dropping swiftly already at low levels of occlusion (Fig. 4, right). The big
gap between LM and LM-O scores provide further evidence. All methods per-
form on LM by at least 30% better than on LM-O, which includes the same but
partially occluded objects. Inspection of estimated poses on T-LESS test images
confirms the weak performance for occluded objects. Scores on TUD-L show that
varying lighting conditions present a serious challenge for methods that rely on

3 Specifications of computers used for the evaluation are on the project website.
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# Method LM LM-O IC-MI IC-BIN T-LESS RU-APC TUD-L Average Time (s)

1. Vidal-18 87.83 59.31 95.33 96.50 66.51 36.52 80.17 74.60 4.7
2. Drost-10-edge 79.13 54.95 94.00 92.00 67.50 27.17 87.33 71.73 21.5
3. Drost-10 82.00 55.36 94.33 87.00 56.81 22.25 78.67 68.06 2.3
4. Hodan-15 87.10 51.42 95.33 90.50 63.18 37.61 45.50 67.23 13.5
5. Brachmann-16 75.33 52.04 73.33 56.50 17.84 24.35 88.67 55.44 4.4
6. Hodan-15-nopso 69.83 34.39 84.67 76.00 62.70 32.39 27.83 55.40 12.3
7. Buch-17-ppfh 56.60 36.96 95.00 75.00 25.10 20.80 68.67 54.02 14.2
8. Kehl-16 58.20 33.91 65.00 44.00 24.60 25.58 7.50 36.97 1.8
9. Buch-17-si 33.33 20.35 67.33 59.00 13.34 23.12 41.17 36.81 15.9

10. Brachmann-14 67.60 41.52 78.67 24.00 0.25 30.22 0.00 34.61 1.4
11. Buch-17-ecsad 13.27 9.62 40.67 59.00 7.16 6.59 24.00 22.90 5.9
12. Buch-17-shot 5.97 1.45 43.00 38.50 3.83 0.07 16.67 15.64 6.7
13. Tejani-14 12.10 4.50 36.33 10.00 0.13 1.52 0.00 9.23 1.4
14. Buch-16-ppfh 8.13 2.28 20.00 2.50 7.81 8.99 0.67 7.20 47.1
15. Buch-16-ecsad 3.70 0.97 3.67 4.00 1.24 2.90 0.17 2.38 39.1

Table 2. Recall scores (%) for τ = 20 mm and θ = 0.3. The recall score is the percentage
of test targets for which a correct object pose was estimated. The methods are sorted
by their average recall score calculated as the average of the per-dataset recall scores.
The right-most column shows the average running time per test target.

# Method LM LM-O TUD-L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 5 6 8 9 10 11 12 1 2 3

1. Vidal-18 89 96 91 94 92 96 89 89 87 97 59 69 93 92 90 66 81 46 65 73 43 26 64 79 88 74
2. Drost-10-edge 77 97 94 40 98 94 83 96 45 94 68 66 72 88 79 47 82 46 75 42 44 36 57 85 88 90
3. Drost-10 86 83 89 84 93 87 86 92 66 96 53 67 79 91 80 62 75 39 70 57 46 26 57 73 90 74
4. Hodan-15 91 97 79 97 91 97 73 69 90 97 81 79 99 74 95 54 66 40 26 73 37 44 68 27 63 48
5. Brachmann-16 92 93 76 84 86 90 44 72 85 79 46 67 94 60 66 64 65 44 68 71 3 32 61 81 95 91
6. Hodan-15-nr 91 57 40 89 66 87 59 49 92 90 65 63 71 54 79 47 35 24 12 63 9 32 53 12 52 20
7. Buch-17-ppfh 77 65 0 94 84 60 24 59 75 67 24 39 75 47 62 59 63 18 35 60 17 5 30 55 89 63
8. Kehl-16 60 52 81 25 79 68 17 68 42 91 45 42 78 83 46 39 47 24 30 48 14 13 49 0 23 0
9. Buch-17-si 40 43 1 63 81 47 12 8 36 43 18 3 46 19 43 54 63 11 2 16 9 1 3 2 74 48

10. Brachmann-14 74 70 77 75 88 66 11 81 69 66 50 75 92 75 49 50 48 27 44 60 6 30 62 0 0 0
11. Buch-17-ecsad 31 2 2 19 66 3 3 0 9 49 1 0 3 7 6 29 29 0 0 7 8 1 0 1 62 10
12. Buch-17-shot 3 4 11 9 9 4 1 3 2 10 1 0 10 12 14 2 7 0 0 1 1 1 0 1 33 17
13. Tejani-14 36 0 36 0 1 0 1 11 1 70 27 0 0 0 0 26 2 0 1 0 0 10 0 0 0 0
14. Buch-16-ppfh 11 0 1 22 3 7 2 7 18 12 4 3 9 12 14 4 0 0 2 11 1 1 1 2 0 0
15. Buch-16-ecsad 2 0 0 9 5 0 0 4 5 8 0 0 17 3 5 1 3 0 2 2 0 0 0 0 1 0

IC-MI -BIN T-LESS

1 2 3 4 5 6 2 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1. Vidal-18 80 100100 98 100 94 100 93 43 46 68 65 69 71 76 76 92 69 68 84 55 47 54 85 82 79
2. Drost-10-edge 78 100100100 90 96 100 84 53 44 61 67 71 73 75 89 92 72 64 81 53 46 55 85 88 78
3. Drost-10 76 100 98 100 96 96 100 74 34 46 63 63 68 64 54 48 59 54 51 69 43 45 53 80 79 68
4. Hodan-15 100100100 74 98 100100 81 66 67 72 72 61 60 52 61 86 72 56 55 54 21 59 81 81 79
5. Brachmann-16 42 98 70 88 64 78 84 29 8 10 21 4 46 19 52 22 12 7 3 3 0 0 0 5 3 54
6. Hodan-15-nr 100100 92 62 60 94 93 59 64 67 71 73 62 57 49 56 85 70 57 55 60 23 60 82 81 77
7. Buch-17-ppfh 88 100 94 100100 88 100 50 1 7 0 5 25 16 4 35 37 48 4 10 4 0 0 12 34 49
8. Kehl-16 22 100 70 72 96 30 71 17 7 10 18 24 23 10 0 2 11 17 5 1 0 9 12 56 52 22
9. Buch-17-si 62 100 94 62 52 34 97 21 0 1 17 17 9 3 1 4 0 8 2 0 0 0 0 20 26 12

10. Brachmann-14 96 100 66 72 46 92 28 20 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2
11. Buch-17-ecsad 66 88 0 56 34 0 95 23 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 8
12. Buch-17-shot 52 88 38 36 40 4 66 11 0 0 1 0 1 5 0 2 1 0 0 1 0 1 1 2 1 3
13. Tejani-14 42 36 0 40 26 74 4 16 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14. Buch-16-ppfh 28 34 20 6 24 8 4 1 1 6 3 1 24 4 10 13 10 13 3 8 1 0 0 5 32 13
15. Buch-16-ecsad 4 4 8 4 2 0 5 3 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2

T-LESS RU-APC

19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Vidal-18 57 43 62 69 85 66 43 58 62 69 69 85 39 38 42 54 53 43 4 82 32 0 48 47 20 8
2. Drost-10-edge 55 47 55 56 84 59 47 69 61 80 84 89 0 20 35 47 35 39 0 89 28 0 48 21 15 3
3. Drost-10 53 35 60 61 81 57 28 51 32 60 81 71 0 11 29 45 33 29 26 71 10 0 47 9 0 0
4. Hodan-15 59 27 57 50 74 59 47 72 45 73 74 85 4 36 59 24 47 46 52 97 28 28 34 52 17 0
5. Brachmann-16 38 1 39 19 61 1 16 27 17 13 6 5 6 64 25 21 32 41 47 37 1 0 18 40 0 5
6. Hodan-15-nr 58 27 55 50 73 60 49 72 40 72 76 85 4 39 50 24 41 15 43 91 25 33 31 39 16 1
7. Buch-17-ppfh 31 25 36 35 71 46 64 51 4 44 49 58 16 5 17 51 27 6 57 24 8 10 55 5 11 0
8. Kehl-16 35 5 26 27 71 36 28 51 34 54 86 69 19 14 46 38 54 40 4 80 3 5 3 37 7 5
9. Buch-17-si 11 21 18 11 37 4 52 53 3 35 32 53 24 49 16 39 3 4 32 54 14 9 43 15 17 5

10. Brachmann-14 0 0 0 0 1 0 1 1 0 0 0 0 6 80 42 19 31 33 52 89 19 1 0 40 7 0
11. Buch-17-ecsad 16 11 16 8 27 20 51 31 0 32 22 3 1 2 0 1 3 8 23 34 5 8 2 0 3 1
12. Buch-17-shot 6 6 8 2 28 3 17 13 0 11 7 6 0 0 0 0 0 0 0 1 0 0 0 0 0 0
13. Tejani-14 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 3 9 0 0 5 0 0 0 3 0 0
14. Buch-16-ppfh 3 3 8 8 16 2 24 4 5 11 6 1 0 0 6 19 2 12 34 8 0 0 38 2 5 0
15. Buch-16-ecsad 2 1 3 0 10 0 12 1 2 4 1 1 0 3 5 0 1 1 11 13 0 0 3 2 0 1

Table 3. Recall scores (%) per object for τ = 20 mm and θ = 0.3.
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Fig. 4. Left, middle: Average of the per-dataset recall scores for the misalignment
tolerance τ fixed to 20 mm and 80 mm, and varying value of the correctness threshold θ.
The curves do not change much for τ > 80 mm. Right: The recall scores w.r.t. the visible
fraction of the target object. If more instances of the target object were present in the
test image, the largest visible fraction was considered.

synthetic training RGB images, which were generated with fixed lighting. Meth-
ods relying only on depth information (e.g. Vidal-18, Drost-10) are noticeably
more robust under such conditions. Note that Brachmann-16 achieved a high
score on TUD-L despite relying on RGB images because it used real training
images, which were captured under the same range of lighting conditions as the
test images. Methods based on 3D local features and learning-based methods
have very low scores on T-LESS, which is likely caused by the object symme-
tries and similarities. All methods perform poorly on RU-APC, which is likely
because of a higher level of noise in the depth images.

6 Conclusion

We have proposed a benchmark for 6D object pose estimation that includes eight
datasets in a unified format, an evaluation methodology, a comprehensive evalu-
ation of 15 recent methods, and an online evaluation system open for continuous
submission of new results. With this benchmark, we have captured the status
quo in the field and will be able to systematically measure its progress in the fu-
ture. The evaluation showed that methods based on point-pair features perform
best, outperforming template matching methods, learning-based methods and
methods based on 3D local features. As open problems, our analysis identified
occlusion, varying lighting conditions, and object symmetries and similarities.
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