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Abstract—Enlarging or reducing the template size by adding new parts, or removing parts of the template according to their suitability
for tracking requires the ability to deal with the variation of the template size. For instance, real-time template tracking using linear
predictors, although fast and reliable, requires using templates of a fixed size and does not allow on-line modification of the predictor.
To solve this problem we propose the Adaptive Linear Predictors (ALPs), which enable fast online modifications of pre-learned linear
predictors. Instead of applying a full matrix inversion for every modification of the template shape, as standard approaches to learning
linear predictors do, we just perform a fast update of this inverse. This allows us to learn the ALPs in a much shorter time than standard
learning approaches, while performing equally well. Additionally, we propose a multi-layer approach to detect occlusions and use ALPs
to effectively handle them. This allows us to track large templates and modify them according to the present occlusions.
We performed exhaustive evaluation of our approach and compared it to standard linear predictors and other state of the art
approaches.

Index Terms—Template tracking, linear predictors.
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1 INTRODUCTION

Template tracking has been studied extensively and used
in many computer vision applications such as vision-
based control, human-computer interfaces, surveillance,
medical imaging and reconstruction.

While there are many template tracking approaches
based on the analytical derivation of the Jacobian [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], learning-based
methods [11], [12], [13], [14], [15], [16], [17] have proved
to be faster and generally more robust with respect to
large perspective changes.

A very successful learning-based template tracker was
proposed by Jurie and Dhome [11]. It is based on
the learning of linear predictor to efficiently compute
template parameter updates. The costly off-line learning
phase, however, prohibits this method from computing
templates of varying sizes online.

Yet, the ability to dynamically change the template
size is necessary in many applications. In indoor SLAM,
e.g., the 3D geometry of the scene is a priori unknown
making it necessary to initially rely on planar structures.
In this case it is preferable to start from small-sized
templates, in order to reduce the risk of loosing track
due to non-planar structures, and to grow or shrink them
online. Thus, the learning of large templates can be dis-
tributed over multiple frames, while keeping the failure
rate low. In combination with a planarity check this strat-
egy enables online segmentation of planar structures and
the reliable maintenance of large templates. As a result,
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Fig. 1. (a) A small initial template is (b) enlarged accord-
ing to a tracking quality measure. The template is tracked
over time and (c) reduced if parts of it go out of sight. The
removed parts are reinserted (d) as soon as they become
visible again.

the set of initially tracked templates evolves towards a
relatively small number of comparably large, optimally
shaped templates, yielding increased robustness.

Current learning-based tracking approaches, like [11],
use templates of a fixed size, because the computation
of the linear predictors requires the costly inversion of a
large, template-specific matrix. Since this is the compu-
tationally most expensive part of the learning process,
the effort for changing the template size is nearly equiv-
alent to that of learning a new template from scratch.
Hence, to overcome the limitations of fixed size template
approaches, while maintaining their robustness to large
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perspective changes, we propose an extension to linear
predictors which allows efficient online modification of
the template size. Instead of computing the inversion of
the whole matrix every time the template shape changes,
we present a computationally efficient way of updating
the inverse which dramatically reduces the time needed
for learning. We start with a small initial template and
enlarge it by small extension templates, as shown in
Fig. 4, according to their suitability for tracking. As long
as the object to track is planar, our approach can expand
the template in any direction, resulting in an arbitrarily
shaped template, as shown in Fig. 1. This breaks the
standard, rectangular shape assumption widely used in
current template tracking approaches and can be seen as
a first step towards a dense SLAM system.

Moreover, the ability to shrink and grow templates
also enables us to handle occlusions. This, however,
requires to detect occlusions in the first place, since it
is usually barely possible to distuinguish between errors
caused by occlusions and those caused by motions. We
use an occlusion detection technique based on multi-
ple layers of differently sized templates. In contrast to
previous approaches [12], [17] which track all templates
simultaneously, we track them sequentially. This means
that the results of the tracking at higher layers are used
to initialize the tracking of smaller templates at lower
layers. If due to occlusion tracking at some layer fails,
the smaller templates at the next lower layer are used
for tracking. The tracking failure of some templates at
the lowest layer indicates occlusion and corresponding
regions are removed from the largest template of the top
layer. This allows us to benefit from the stable tracking
of a large template while using smaller templates for
occlusion detection, which guide the change of the shape
of the large template.

To further maximize the robustness of the template
tracking with respect to large motion in case of occlu-
sions, we introduce the concept of observed and insecure
regions. These regions are used to detect incoming occlu-
sions before they influence the tracking process. Finally,
to achieve high tracking robustness we track a number
of large, shifted templates at the top layer in parallel
fashion.

We perform extensive quantitative evaluations and
compare our approach to the standard approach of
Jurie and Dhome [11] under different transformations
and noise levels and with other state-of-the-art tem-
plate tracking approaches [10], [17]. We demonstrate
that our approach performs better or equally well with
respect to the related approaches, while requiring much
shorter learning times when templates are extended
and shrinked. In case of occlusions, where we explicitly
detect and handle them, it is superior to the other related
works. In the remainder of the paper we will discuss
related work on template tracking, give a detailed de-
scription of our approach on template extension and re-
duction, introduce our approach for occlusion detection,
present our results and show examples on real world

sequences.

2 RELATED WORK
Since the seminal work of Lucas and Kanade [1], many
efforts have been made in the field of template tracking
and image alignment. Most of the presented approaches
can be put into one of two categories: template tracking
based on the analytical derivation of the Jacobian [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10] or based on learning
[11], [12], [13], [14], [15], [16], [17]. While analytical ap-
proaches are generally more flexible regarding template
shape modifications at run-time, learning approaches
enable higher tracking speed and are more robust in
terms of large perspective changes.

A large variety of analytical tracking approaches have
been presented since the work of Lucas and Kanade [1].
Amongst others, the variations in the presented analyt-
ical tracking approaches include different update rules
of the warp [1], [3], [4], [2], [5], [6], different orders of
approximations of the error function [8], [9], [10], occlu-
sion [3], [12], [16], [17], [18], [19] and illumination change
handling [3]. Basically, there are four different types of
update rules, the additive approach [1], the composi-
tional approach [2], the inverse additive approach [3],
[4], and the inverse compositional approach [5], [6]. In
the latter two, the roles of the reference and current
image are switched, which allows to do some of the
computations during an initialization phase, making the
tracking computationally very efficient. Faster conver-
gence rate can additionally be obtained by using a
second-order instead of a first order approximation of
the error function [8], [9], [10]. Furthermore, Hager
and Belhumeur [3] showed how illumination changes
and occlusions can be efficiently handled using iterativly
reweighted least squares for occlusion handling. The
weights are determined using a robust error function
treating large image intensity differences as occlusions.
Baker et. al [18] describe how such robust error functions
can be incorporated into the inverse compositional tem-
plate tracking framework. However, since large motion
as well as occlusions generally result in large image
intensity differences it is hardly possible to distinguish
between them. For a more detailed overview of analyti-
cal tracking methods refer to Baker and Matthews [7].

In contrast to analytical tracking methods, Jurie and
Dhome [11] proposed an approach for the learning of
linear predictor using randomly warped samples of the
initial template. The linear predictors are then used to
predict the parameter updates during tracking. This al-
lows very fast tracking, since the ”Jacobians” are initially
computed once and for all and the parameter updates
can be obtained by simple matrix vector multiplications.
In [12] the authors also extend the approach in order to
handle occlusion. This extension uses multiple layers of
differently sized trackers, which are applied in parallel
fashion. All available trackers then vote for their result-
ing pose change and the final pose change is found by it-
eratively subdividing the space of possible pose changes
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Fig. 2. Shows the tracking and adaption of a template according to present occlusions.

and selecting the N best sub-spaces. This is repeated
until the resulting sub-spaces are sufficiently small so
that they can be considered as a single pose change.
However, as soon as occlusion occurs and tracking the
largest template fails the robustness of the tracking is
reduced. Gräßl et al. [20] show how the robustness of the
linear-predictor based approach can be further increased
with regard to illumination changes. In [13] they also
present an intelligent way of selecting the points for sam-
pling the image data, in order to increase the tracking ac-
curacy. Another linear predictor approach [17] describes
templates consisting of many small templates and tracks
these small templates independently. The approach uses
one layer of small-sized trackers, which allows for the
computation of independent pose updates. A common
pose is computed using RANSAC, which makes the
approach robust against occlusions. However, due to the
small size of the trackers this approach is less robust
against large motion. Instead of using linear predictors,
Mayol and Murray [16] present an approach that fits the
sampling region to pre-trained samples using general
regression. In order to increase the robustness against
occlusions they use two filters. The first filter uses a
weighted scheme in order to define whether the current
scene fits the training samples or not. In case that it does
not fit, it is considered as an occlusion. The second filter
prohibits using the updated parameters from one itera-
tion, if the obtained image value error increases. In both
cases, the parameters from the previous frame iteration
are kept. Therefore, this only works if the tracked object
does not significantly move while occlusion is present.
Patras and Hancock [19] use a particle filter approach
that samples multiple observations and estimates the
relevance of each of these observations. For each of the
observations considered relevant they then use Bayesian
Mixtures of Experts to compute a probabilistic prediction
of the new pose. In that way, observations which include
occlusions are avoided.

All of the proposed learning approaches, do not deal
with templates of variable sizes. To overcome this limita-
tion we developed a method that extends the approach
of Jurie and Dhome [11] to allow online template size
adaptation. We also propose a multi-layer approach
for occlusion detection which, by contrast to other ap-
proaches based on linear predictors, is stable and precise.
This is achieved by using relatively large templates for
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template
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Fig. 3. A template is represented by a set of regularly
placed sample points, which are grouped into subsets of
four points. The pose of a template is parameterized using
four corner points.

tracking, compared to other approaches which rely on
tracking multiple small templates. Tracking small-sized
templates is sensitive to large motion and such motion
can be confused with occlusions. We benefit from the in-
creased robustness against large motion and successfully
handle detected occlusions by employing the proposed
method for fast on-line adaption of the template size.

3 BACKGROUND AND TERMINOLOGY

In this section we introduce our notation and, for the
sake of completeness, review the original template track-
ing approach proposed by Jurie and Dhome [11].

3.1 Template and Parameter Description

A template consists of a set of np sample points, which
are distributed over the template region and are used to
sample image data. The template parameters µ describe
the current deformation of the template within an image.
Within this paper we use a homography to represent the
current perspective distortion of a planar template and
parameterize it using four points as shown in Fig. 3.
Note that our approach can also be easily adapted to
any other parameterizable template deformation.

The sample points are arranged in a regular grid and
grouped together into subsets of four points as shown in
Fig. 3. The usefulness of this grouping will be justified
later in Section 4.1, when we describe our approach for
template extension. However, neither the approach of
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Jurie and Dhome [11] nor our approach are restricted
to this special kind of sample point arrangement. The
image values obtained from the sample points, warped
according to the current template parameters µ, are
arranged in a vector i =

(
i1, i2, . . . , inp

)T .

3.2 Template Tracking based on Linear Predictors
The goal of template tracking is to follow a reference
template, defined by a vector iR of reference image val-
ues and an initial parameter vector µR, over a sequence
of images. The basic approach for this is to compute
a vector δi = iC − iR of image differences, where the
vector iC stores the image values extracted from the
current image. This vector is then used to estimate a
vector of parameter differences δµ used to update the
current template parameters µ so that the position of
the template within the current image is optimized.

Instead of explicitly minimizing an error function, e.g.
by iteratively solving a first- or second-order approxima-
tion of it, Jurie and Dhome [11] use a learned matrix A
to compute δµ based on the vector δi as:

δµ = Aδi. (1)

Here, the matrix A can be seen as a linear predictor. In
order to learn A, we apply a set of nt random transfor-
mations to the initial template. This is done by applying
small disturbances δµi, i = 1, . . . , nt, to the reference pa-
rameter vector µR. Then, each of these transformations
is used to warp the sample points in order to obtain
the corresponding vectors ii of image values. The image
value vector iR, obtained using the reference parameters
µR, is used to compute the image difference vectors
δii = ii − iR for each of the random transformations.
These vectors of parameters and image differences are
combined in the matrices Y =

(
δµ1, δµ2, . . . , δµnt

)
and

H = (δi1, δi2, . . . , δint). In general, nt is chosen so that it
is much bigger than np. Using these matrices Eq. 1 can
be written as Y = AH. Finally, the matrix A is learned
by minimizing:

arg min
A

nt∑
k=1

(δµk −Aδik)
2 (2)

which results in the closed-form solution:

A = YHT
(

HHT
)−1

. (3)

In practice, we normalize the extracted image data with
zero mean and unit standard deviation, which increases
the robustness against illumination changes. In order
to prevent HHT from being rank deficient, we add
random noise to the obtained image value difference vec-
tors. Additionally, we apply a multi-predictor approach,
where multiple levels of linear predictors A1, . . . ,Anl

are
learned for one template, with nl being the number of
predictors per template. Thereby, the first linear predic-
tor A1 is learned for large motions and the following
predictors are learned for subsequently smaller motions.

AI

AE

AN
extension area

initial template

extension

templates

AI

AE

AN
extension area

initial template

extension

templates

(a) (b)
Fig. 4. (a) The initial template together with possible
extension templates defined by the corresponding exten-
sion area. (b) Different template areas and their corre-
sponding linear predictors. The red border defines the
initial template with its predictor AI , the light green border
defines an extension template with its predictor AE and
the blue border defines the new extended template with
its predictor AN .

During tracking we sequentially apply the linear pre-
dictors. Additionally, every predictor is iteratively used
ni times. Within this paper we use five different levels
of predictors per template and three iterations for each
of the predictors. Alg. 1 formalizes the applied tracking
approach.

Algorithm 1 Tracking without Occlusion Handling
function Track (in Image I,

in/out TemplateParameters µ)
Compute homography Tµ from µ.
for level = 1→ nl do

for iteration = 1→ ni do
Extract image data from I at sample points
warped with Tµ.
Normalize image data.
Compute image difference vector δi.
Compute parameter update δµ = Alevelδi.
Compute homography Tδµ from δµ.
Tµ ← TµTδµ.

end for
end for
Compute µ from Tµ.

4 TEMPLATE ADAPTION

In this section we describe our approach for adapting the
template by extending or reducing its size. This enables
us to start tracking with a small-sized template and grow
or shrink it over time, automatically adapting its size and
corresponding linear predictor according to the tracked
scene.

4.1 Template Extension
In the following we denote the linear predictor of an
initial template with AI , and the linear predictor of an
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extension template with AE as depicted in Fig. 4. Using
the standard approach of Sec. 3.2, the separate predictors
would be learned as:

AI = YHT
I

(
HIHT

I

)−1

and (4)

AE = YHT
E

(
HEHT

E

)−1

, (5)

where Y stores the same random transformations for
both linear predictors. The standard approach for learn-
ing a combined predictor AN for the entire template
leads to:

AN = YHT
N

(
HNHT

N

)−1

(6)

= Y
[

HI

HE

]T ([ HI

HE

] [
HI

HE

]T)−1

(7)

= Y
[

HI

HE

]T ([ HIHT
I HIHT

E

HEHT
I HEHT

E

])−1

. (8)

Now, instead of directly updating the old linear predictor

AI we will update the matrix SI =
(

HIHT
I

)−1

using
the formulas presented by Henderson and Searle [21],

so that we obtain the matrix SN =
(

HNHT
N

)−1

. Let S11,
S12, S21 and S22 be the four sub-matrices of SN :

SN =
[

S11 S12

S21 S22

]
=
([

HIHT
I HIHT

E

HEHT
I HEHT

E

])−1

. (9)

Then, we can update SI to SN using

S11 = (HIHT
I )−1

+ (HIHT
I )−1HIHT

ES22HEHT
I (HIHT

I )−T (10)
S12 = −(HIHT

I )−1HIHT
ES22, (11)

S21 = ST12, (12)

S22 =
(

HEHT
E −HEHT

I (HIHT
I )−1HIHT

E

)−1

, (13)

where (HIHI)−1 is known from the learning of the
initial predictor. Therefore, the only inversion that has
to be applied is for the computation of S22. However,
this inversion is not a problem since the extension
templates are always of a smaller size than the entire
extended template and therefore S22 is small as well.
In case the template is already known before run-time,
i.e. if template extension and reduction is only used to
handle occlusions, the necessary inversions can even be
precomputed in order to further speed up processing. In
practice, we use templates for extension and reduction
which consist of 4 sample points.

Note that for the computation of the image value
differences HE we have to use the same random trans-
formations as used for computing HI . The same holds
for HR in case of template reduction (see Section 4.2).

The approach as presented up to now is limited by the
number of random transformations nt, used for learning.
Since nt has to be the same for all extension templates
as well as for the initial template, and since the number
of random transformations has to be greater or at least

equal to the number of used sample points, nt ≥ np, the
maximum number of random transformations has to be
known a priori. In order to remove this restriction we
use the approach presented by Hinterstoisser et al. [22],
which allows us to update the matrix SI in such a way
that we can increase the number of random transfor-
mations nt without having to recompute the updated
ŜI from scratch. This is done by using the Sherman-
Morrison formula:

ŜI =
(

S−1
I + δint+1δiTnt+1

)−1

(14)

= SI −
SIδint+1δiTnt+1SI
1 + δiTnt+1SIδint+1

, (15)

where δint+1 is a vector of image value differences
obtained from a new random transformation applied to
the sample points. In practice, the number of random
transformations is increased each time before a new
extension template is added, such that nt = 3np.

4.2 Template Reduction
In the case when already learned templates have to be
reduced, e.g. due to the presence of non-planarity or
tracking failure, the corresponding linear predictors can
be computed by updating the linear predictor of the
larger template. For this, we denote the linear predictor
of the large template with AL, the predictor of the new
reduction template with AR and the predictor of the
reduced template with AN .

In order to reduce the matrix SL, it has to be re-
arranged first, so that the data corresponding to the
reduction template is positioned in the last rows and
columns of SL. After the rearrangement, the reduction
template can be removed using the following approach.
First, let us consider the submatrices of the matrix SL:

SL =
[

S11 S12

S21 S22

]
=
([

HNHT
N HNHT

R

HRHT
N HRHT

R

])−1

, (16)

where all the sub-matrices S11, S12, S21, S22, HNHT
N ,

HNHT
R, HRHT

N and HRHT
R are available from the large

template. The goal is to compute

AN = YHT
N

(
HNHT

N

)−1

(17)

without the need of inverting HNHT
N , since this is a

large matrix in general. Similar to the Equations 10-13
Henderson and Searle [21] also present the formula

S11 =
(

HNHT
N −HNHT

R(HRHT
R)−1HRHT

N

)−1

, (18)

which can be reformulated as

HNHT
N = S−1

11 + HNHT
R(HRHT

R)−1HRHT
N . (19)

Taking the inverse leads to the desired result:

(HNHT
N )−1 =

(
S−1

11 + HNHT
R(HRHT

R)−1HRHT
N

)−1

.

(20)
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Since we, however, have to invert a big matrix in this
case, namely S11, this is not suitable for online computa-
tion. Therefore, we use the following formula presented
in [21]:

(X + UYUT )−1 = X−1 − X−1UZUTX−1, (21)

Z =
(

Y−1 + UTX−1U
)−1

. (22)

By setting X = S−1
11 , Y = (HRHT

R)−1 and U = HNHT
R we

obtain our desired result:

(HNHT
N )−1 = S11 − S11HNHT

RDHRHT
NS11, (23)

D =
(

HRHT
R + HRHT

NS11HNHT
R

)−1

.(24)

Now the necessary inversion is no longer a problem
since the reduction template is chosen to be of small size
and computing D is not expensive.

4.3 Practical Issues
In this section we discuss practical issues. These are the
normalization of the image data and the estimation of
the subset quality, which is used for the selection of the
next extension template.

4.3.1 Normalization
As mentioned before, the image values are normalized
to zero mean and unit standard deviation. However,
instead of doing this globally by considering all of the
image values of the template we apply a local normal-
ization, where each subset is normalized by considering
only its image values and the image values of its direct
local neighboring subsets. This normalization is applied
to the reference data, the learning data and the current
image data during tracking. The local normalization is
superior to the global normalization since in the case of
the global normalization the mean and standard devia-
tion of the whole image data change, if new parts are
added to the template or some parts are removed.

4.3.2 Suitability Criterion for Subset Selection
In order to decide which subset should be chosen for
extending the current template, we compute a quality
measure for each of the potential extension templates in
the local neighborhood of the current template. This is
done by learning a local predictor AS = YSHT

S (HSHT
S )−1

for this subset at first, where the image data HS is
collected using the set of random transformations rep-
resented by Y. Then, using this predictor together with
the collected image data we compute a prediction ŶS of
Y as

ŶS = ASHS . (25)

Finally, we compute a similarity measurement, which
defines the quality qS of the corresponding subset as

qs =
1
nt

nt∑
i=1

ŷsiy
T
i

|ŷsi||yi|
, (26)

where yi and ŷsi are the i-th column vector of Y and
ŶS respectively. This measures the similarity of the pre-
diction and the data used for learning by computing
the mean angle between the corresponding parameter
vectors. This way an extension template is chosen which
ensures best that each tracking iteration brings the tem-
plate parameters closer to the desired result. The current
template will then be extended using the subset with
the highest quality measure. The suitability criterion is
only computed on a subset, which consists of 4 sample
points, and not on the whole resulting template, since
this would be computationally to expensive. In practice,
we use the suitability criterion to select the best sub-
templates within a user-defined area such that we obtain
a template with a certain number of sample points,
which is also defined by the user.

5 OCCLUSION-AWARE TRACKING

In order to make template tracking robust against oc-
clusions, we detect occlusions and consider them dur-
ing the computation of the template pose parameters.
Since this computation depends on the image differences
between the current image and the template warped
according to the pose parameters of the previous frame,
the difficulty is to distinguish whether these differences
come from the camera/template motion or from real
occlusions. To distinguish this, we propose a multi-layer
approach where on the top level we use a relatively
large template for tracking and on the lower levels
smaller sized templates are used to detect occlusions.
Tracking a large template is more stable compared to
multiple smaller sized templates, thus we always track
a large template while failures in tracking of small sized
templates indicate presence of occlusions. We use the
technique proposed in Sec. 4 to remove the occluded
parts from the large top level template and add them
back as soon as they are visible again. This allows us
to handle complex situations, such as occlusions passing
over the entire template or moving templates with a hole
as demonstrated in the results section. In the remainder
of this section we discuss the proposed approach. An
overview over the proposed approach is given in Alg. 2.

5.1 Multi-Layer Approach
Similar to the approach of Jurie and Dhome [12] we
propose to use multiple layers of linear predictor grids,
where the sizes of the templates, which correspond to the
linear predictors, vary over the different layers. Fig. 5(a)
shows such a layered organization. The size of the tem-
plates decreases with the depth of the layer. The template
of the top layer (Layer 1 in Fig. 5(a)) corresponds to the
actual template size. The template is subdivided in the
next level (Layer 2 in Fig. 5(a)) to four equally sized
templates. Every template is further subdivided into four
new templates at the next layer. In practice, we use only
three layers. This is sufficient to handle occlusions. In
contrast to Jurie and Dhome [12] who applied linear
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Layer 1

Layer 2

Layer 3

(a)

(b) (c) (d)

Fig. 5. (a) The organization of the multiple layers used for
tracking. The sub-figures (b), (c) and (d) show different
transformed templates of the top layer used to increase
the robustness against large motion. (b) shows differently
rotated, (c) differently translated and (d) differently scaled
templates.

predictors for each template at the same time, we do it
sequentially. This means that in the first layer, we track a
single large template. The resulting pose is then used as
an initialization for the grid of trackers in the next layer.
This is repeated for all available layers.

Occluded and non-occluded case. During the track-
ing, we can distinguish two possible scenarios. One is
when there are no occlusions present and the other
when occlusions intervene. If there are no occlusions, the
successful tracking result at a higher level is forwarded
to the next lower level. In general, the tracking of small
templates can fail in the case of large motion. That is
where the approach of Jurie and Dhome [12], in which all
the templates at all the layers are tracked simultaneously,
tends to fail. In our approach, the tracking of small
templates at lower levels is preconditioned by the result
of the preceding tracker layer. In the other scenario we
consider that occlusions happen. In this case, depending
on the size of the occluded area, the trackers at higher
levels fail. Those on lower levels are then used to directly
estimate the pose initialized by the resulting pose in the
previous frame. The failure detection is done using a
simple threshold applied on the mean image intensity
differences of the normalized image data. In practice, we
use different thresholds for each layer, for the first layer
we use 0.03 as threshold on the mean image intensity
differences of the normalized image data, 0.08 for the
second layer and 0.15 for the third layer.

5.2 Combining multiple pose estimates.

Since the layers which consist of more than one template
can lead to different pose parameters, an outlier rejection

has to be applied, which removes erroneous results. For
this, we consider the corner points of each template
as single feature points and use RANSAC to robustly
estimate a homography from them. Based on this, we
only consider a template to be successfully tracked if
its corner points are not rejected as outliers after the
homography estimation. The final homography of each
layer is then computed by considering the corner points
of all the successfully tracked templates. In order not to
replace a successful homography of a higher level by a
failed tracking at a lower level, the homography is only
updated if the change is not too big. The homography
computed in the last layer is used for both pose estima-
tion of the top layer template as well as for occlusion
detection.

In order to increase robustness in the case of occlusions
and large motion, we adapt the template size of the
top layer using our approach discussed in the previous
section. However, this has to be done before an occlusion
occurs. Therefore, we introduce the concept of observed
and insecure regions.

5.3 Observed and Insecure Regions

5.3.1 Observed Regions

The observed regions are placed within an area around
the top layer template, as shown in Fig. 6, similar to
the extension area in [23]. Here, these regions are used
for early detection of incoming occlusions. In order to
detect occlusions within the observed regions, we add
corresponding trackers to the lower layers so that they
cover these regions as depicted in Fig. 6. Then, these
additional trackers are used together with the other
trackers of the specific layer for multi-layer tracking. Suc-
cessful trackers are considered in the RANSAC-process
described in Sec. 5.1.

Detecting occlusions. After estimating the global pose
using the multi-layer approach, we re-evaluate the image
intensity differences of the lowest-layer templates as well
as of the small subsets of the top layer template using the
corresponding mean image intensity differences. These
errors are then used to decide whether an occlusion
is present or not. In practice, we use a value of 0.2
as threshold on the mean image intensity difference to
decide whether a subset is occluded or not. In order to
reduce the impact of noise we only consider subsets to
be occluded if they are not covered by a successfully
tracked template at one of the layers.

5.3.2 Insecure Regions

Knowing the positions of present occlusions, we define
insecure regions around these occlusions as shown in
Fig. 6. These insecure regions are considered as having
a high chance of becoming occluded in the next frame.
Therefore, the occlusions as well as the corresponding
insecure regions are removed from the top layer template
using techniques outlined in Sec. 4 as described below.
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Observed 

region

Template

Occlusion

Insecure 

region

Occluded 
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Fig. 6. The left figure shows the multi-layered template with its observation region depicted as green area. The
middle figure shows the different layers and their contribution to the observed region from a side-view. The right figure
illustrates insecure regions, which are areas around the detected occlusions.

5.4 Template Adaption
Once the occlusions and their corresponding insecure
regions are detected, the shape of the top level template
T0 and its corresponding linear predictors are adapted.
This means that as soon as a subset of T0 is covered
by an occluded part or a insecure region, it is removed
from T0. When the occlusion disappears and no longer
covers the previously occluded parts of the template,
they are added back to the template T0. This enables
us to continuously use a large template for tracking
even in the case of occlusion and therefore, to maintain
robustness against large motion.

5.5 Increased Robustness against Large Motions
To increase the tracking robustness in case of large
motions we introduce multiple transformed versions of
the template at the top layer (see Figures 5(b), (c) and
(d)), which are tracked in parallel. For this, we use
the same linear predictors for each of the transformed
templates. However, since the multi-predictor approach
as stated in Sec. 3.2 would be computationally expensive
in this case we use only the first linear predictor, which
is learned for the largest motions, for the transformed
templates. Then, the parameters of the template that is
best according to the resulting mean image intensity
differences are selected and used to process the best
template only. For this best template we continue with
applying the remaining linear predictors of the multi-
predictor approach.

6 EXPERIMENTAL RESULTS

6.1 Template Adaption
In this section we evaluate the template adaption pro-
posed in Sec. 4 about template adaption. For this pur-
pose, we perform an extensive comparison with several
state-of-the-art approaches on template tracking. This in-
cludes comparisons with the standard learning approach
of Jurie and Dhome [11], the analytical approach of
Benhimane and Malis [10] and a recent approach called
NoSLLip of Zimmermann et al. [17]. The comparisons are
done in terms of tracking precision and computational
efficiency. In the end we show several qualitative results
from real video sequences showing tracking results with
one and several templates. All of the experiments are

Algorithm 2 Tracking with Occlusion Handling
function TrackWithOcclusionHandling (

in Image I, in/out TemplateParameters µ)
Compute homography Tµ from µ.
for layer = 1→ 3 do

for each template i of this layer do
Compute µi from homography Tµ.
Track (I, µi) (see Alg.1).
Compute homography Ti from µi.

end for
Combine pose estimates Ti to Tlayer (Sec. 5.2)
if Tlayer is valid (Sec. 5.2) then

Tµ ← Tlayer.
end if

end for
Detect occlusions (Sec. 5.3).
Adapt top-layer template (Sec. 5.4).

performed on a 2.66 GHz Intel(R) Core(TM)2 Quad CPU
with 8 GB of RAM, where only one core is used for the
computations.

In all of the experiments the maximum random per-
turbation applied for learning the linear predictors is set
to 21 pixels except for the comparison with NoSLLip,
where we slightly increased the perturbation by 10%
since this sequence contains very large motions.

The probably most important results for this section
are shown in Fig. 10, where we demonstrate that our
ALPs method gives similar tracking results as the ap-
proach proposed by Jurie and Dhome [11].

6.1.1 Comparison with Jurie-Dhome Approach

6.1.1.1 Computational Complexity of Learning:
In Fig. 7 we show computation times for learning the
linear predictors with respect to different template sizes.
We compare our ALPs method, shown in red and blue,
with the standard approach of Jurie and Dhome [11], de-
picted as a green curve in Fig. 7(a). For our approach we
distinguish between two cases. In the first case, shown
as a red curve, the computation of the linear predictor is
done iteratively from scratch. In this case we start with
a small initial template, which size is equal to the size
of an extension template of Fig. 4. Such a small template
is then grown until the specified size is reached. The
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Fig. 7. Comparison of the computation time necessary
for learning a linear predictor using the Jurie-Dhome [11]
(JD) approach (green) and using ALPs (red and blue).
(a) For the latter case we distinguish between learning
the predictor from scratch (red) and adding only one
extension subset (blue) at a time. Learning from scratch
means that we consider the entire time necessary to build
up the template of the specified size. (b) Computation
times for template extension and reduction, when one
extension subset is added at a time. The blue curve
corresponds to the blue curve at (a).

obtained results clearly reveal that the adaptive learning
of the linear predictor, which starts with the small sized
template, is much more efficient than learning a linear
predictor for the fixed size template. This proves that our
approach can also be used for efficiently learning of a lin-
ear predictor for templates of a fixed size, starting from
small templates and adapting their linear predictors until
the desired template size is reached. In the following
experiments for ALPs we always use this procedure
for creating the linear predictors for a template. In the
second case, shown as a blue curve and labeled as
ALP extension, we show the time necessary to add one
extension template. This is a typical case during online
tracking, where the template is grown step by step. As
to be expected, adding the extension template does not
significantly increase computation time, when changing
the template size. In Fig. 7 (b) we show computation
times for the extension and reduction of templates. Note
that the necessary time to grow or reduce the template by
an extension template consisting of four sample points
is around 0.05s for initial templates of sizes around 600
sample points, whereas computation from scratch would
need over 1s using ALPs and more than 6s when using
the approach of Jurie and Dhome [11].

6.1.1.2 Robustness: To evaluate the robustness of
our approach, we compare the tracking success rate
of our approach with that of the standard approach
proposed by Jurie and Dhome [11] for different template
sizes and with respect to changes in translation (Fig. 10
(a)), in-plane rotation (Fig. 10 (b)), viewing angle (Fig. 10
(c)), and scale (Fig. 10 (d)). In addition we compare ALPs
to Jurie and Dhome in respect to noise and different
number of random transformations used for learning.
The results are shown in Fig. 9. The robustness is mea-
sured using the tracking success rate. The accuracy is
measured using the maximum mean template corner er-
ror. That is, after each tracking experiment the resulting
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Fig. 8. Comparison of the success rates with respect
to different displacements and template sizes. (a) Per-
formance of ESM vs. ALPs. (b) Performance of ESM for
further displacements.
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Fig. 9. Comparison of the success rates of ALPs and
linear predictors of Jurie and Dhome(JD) with respect to
different levels of noise and different template sizes. (a)
Success rates of ALPs using 1000 random warpings and
(b) using 2000 random warpings.

template position is warped onto the original frame and
the corner with the highest error is selected and used
to compute the mean error. A template is considered
as successfully tracked, if the maximum corner error is
below 5 pixels.

For all of the experiments, we use synthetic im-
ages, corrupted by noise and warped according to
the specific experiments. Noise is added according to
In(x) = I(x) + ε, with ε ∈

[
−αIrange/100, αIrange/100

]
,

and α = 5 for all experiments. An exception is the noise
experiment, where different levels of noise were applied.
Irange specifies the possible range of image values, e.g.
Irange = 255 holds for image values between 0 and 255.
In all of the experiments we also add a random displace-
ment in the range of [−5, 5] pixels, with the exception of
displacement experiments, and a random change in the
view-point angle ranging between [−5◦, 5◦], again with
the exception of the view-point angle experiments.

The results show that both approaches, the standard
Jurie-Dhome approach as well as ALPs, yield similar
success rates. The only exception is the sensitivity to
noise, where the Jurie-Dhome approach performs bet-
ter than ALPs. This performance difference, however,
can be reduced by increasing the number of random
warpings used for the learning of linear predictors, as
demonstrated in Fig. 9 (b).

6.1.2 Comparison with ESM
To demonstrate the usefulness of learning-based ap-
proaches, we compare our approach with the analytical
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Fig. 10. Comparison of the success rate of ALPs and JD linear predictors with respect to changes in translation (a), in-
plane rotation (b), viewing angle (c), and scale (d). In all four cases the results of both approaches are approximately
equal.

Method Frame-rate Loss-of-locks Error
[fps] [-/-] [%]

NoSLLiP 16.8 20/1799 1.8
ALPs 96.7 10/2299 1.2

TABLE 1
Comparison between the tracking results of NoSLLiP

(Matlab implementation) given in [17] and results
obtained using ALPs (C++ implementation) using the

PHONE sequence.

method called ESM of Benhimane and Malis [10]. This
approach minimizes the energy function using a second
order approximation. In Fig. 8 we compare the success
rate of the ESM tracking to that of ALPs regarding differ-
ent magnitudes of displacements and different template
sizes. Our learning-based approach clearly outperforms
ESM, especially for larger template sizes.

6.1.3 Comparison with NoSLLiP
We also compare ALPs to the approach of Zimmermann
et al. [17] using the PHONE sequence provided by the
authors. Example images of the tracking are shown in
Fig. 11. The comparison between the tracking results
of [17] and those obtained using ALPs are shown in
Table 1. Although the number of provided images is
larger than the number of images used by Zimmermann
et al. [17], we still obtain a better loss-of-locks count. The
given error values are relative to the upper edge of the
template. A frame is counted as loss-of-lock if one of the
template corners has an error larger than 25%. Note that
the template is reduced, when it partially goes out of
sight and enlarged again as it becomes visible again (see
Fig. 11).

6.1.4 Usefulness of larger templates
As shown in Figures 8, 9 and 10, the success rates in-
crease with increasing template sizes. The only exception
are changes in the in-plane rotation angle, where the
success rate reaches a maximum for templates with a
size of approximately 100 to 200 sample points.

6.1.5 Qualitative Evaluation
In Fig. 1, 11 and 12 we show different image sequences,
which demonstrate the processing of the proposed ap-
proach. In Fig. 1 and 12 we start with templates of

size 10 by 10 sample points and iteratively grow them
by adding the neighboring extension template with the
highest quality. In Fig. 12 we demonstrate the use of
multiple templates. In Figures 1 and 11 we track the
templates, reduce them if they partially go out of sight
and grow them back to the original size when their
hidden parts become visible again.

6.2 Occlusion-Aware Tracking

In this section we compare our occlusion-aware track-
ing presented in Sec. 5 with different state-of-the-art
linear predictor based tracking approaches in terms of
robustness and accuracy with respect to different types
of motion using ground truth data. This is done both in
the case of the presence of occlusions and without them.
Additionally, we show several qualitative results from
real video sequences. All of the experiments are again
performed on a 2.26GHz Intel(R) Core(TM)2 Quad CPU
with 4 GB of RAM, where only one core is used for the
computation.

The robustness is again measured using tracking suc-
cess rate and accuracy is computed using the maxi-
mum mean template corner error as explained in Sub-
sec. 6.1.1.2 on robustness. For all ground truth exper-
iments, we again use synthetic images, corrupted by
noise and warped according to the specific experiments
as already described in Subsec. 6.1.1.2. In this case the
size of the templates used for all ground truth experi-
ments is 16 × 16 sample points. The tracking speed for
such a template is approximately 45 frames per second.

The probably most important results for this section
are shown in Fig. 15, where we demonstrate that our
multi-layered approach gives better tracking results in
presence of occlusion compared to the approach of Jurie
and Dhome [12].

6.2.1 Experiments without Occlusion

In Fig. 13 we compare our multi-layered ALP approach
of Sec. 5 with the ALP approach proposed in Sec. 4.
For the ML-ALPs approach we distinguish between the
one as described in Sec. 5 (’Robustified ML-ALPs’) and
the one without the use of the transformed versions of
the top layer template as described in Sec. 5.1 (’ML-
ALPs’). The results show that in most cases both versions
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Fig. 11. Result images of the phone sequence, which is provided by Zimmermann et al . [17]. Note that the template
is reduced if it goes out of the image and grown again if it once again becomes visible.

Fig. 12. Iterative growing of two independent templates.
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Fig. 13. Results of the comparison between the ML ALPs approach and the ALPs approach with respect to different
types of motion without occlusion. The first row shows the tracking success rate and the second row the corresponding
mean maximum corner errors.

perform better than ALPs. Only the accuracy of ALPs is
sometimes better in case of large motion.

In Fig. 14 we compare ML-ALPs (’ML-ALPs’) with the
approach of Jurie and Dhome (’ML-JD’) [12]. To evaluate
our method we do not use the transformed versions
of the top layer template as described in Sec. 5.1 in
order to present a fair comparison with the multi-layered
approach of Jurie and Dhome [12]. The results show
that our approach performs better than the one of Jurie
and Dhome [12] with respect to robustness as well as
accuracy.

6.2.2 Experiments with Occlusion

In Fig. 15 we compare our ML ALPs approach with the
one of Jurie and Dhome (’ML-JD’) [12] in the presence of
occlusions. Again, we do not use multiple transformed
versions of the top layer template for the sake of fair
comparison. The results show that our approach per-

forms better than the approach of Jurie and Dhome [12]
with respect to robustness as well as accuracy. The only
exception is the view-point angle experiment, where
ML-JD gives better accuracy for large occlusion and
better robustness for large occlusion and small motion.
Note also that the results of the approach of Jurie and
Dhome [12] with respect to changes in the view point
angle are stable for varying amounts of occlusion.

6.2.3 NoSLLiP with Occlusion

In this section we compare ML-ALPs to the approach of
Zimmermann et al. [17] using the MOUSEPAD sequence,
which contains occlusion and is provided by the authors.
Example images of the tracking are shown in Fig. 16.
The comparison between the tracking results of [17] and
those obtained using ML-ALPs are shown in Table 2. The
given error values are relative to the upper edge of the
template. A frame is counted as loss-of-lock if one of the
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Fig. 14. Results of the comparison between the ML ALPs approach and the ML approach of Jurie and Dhome [12]
with respect to different types of motion without occlusion. The first row shows the tracking success rate and the
second row the corresponding mean maximum corner errors.
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Fig. 15. Results of the comparison between the ML ALPs approach and the approach of Jurie and Dhome [12] with
respect to different types of motion with occlusion. The first row shows the tracking success rate and the second row
the corresponding mean maximum corner errors.

Method Frame-rate Loss-of-locks Error
[fps] [-/-] [%]

NoSLLiP 18.9 13/6935 1.5
ML-ALPs 17.2 1/6945 2.1

TABLE 2
Comparison between the tracking results of NoSLLiP

(Matlab implementation) given in [17] and results
obtained using ML-ALPs (C++ implementation) using the

MOUSEPAD sequence.

template corners has an error larger than 25%.

6.2.4 Qualitative Evaluation
Fig. 16 and 17 demonstrate the performance of the
proposed method on different image sequences. Fig. 16
shows several cases of partial occlusion, caused by a
hand and a pen moving through the template from
one side to the other. Fig. 17 shows a paper with a
rectangular hole moving over a background surface. In

this case the initially learned template, which includes
the backround visible through the hole, is removed
automatically when moving.

7 CONCLUSION

In order to support the dynamic change of the template
shape, we introduce an efficient method for adapting
linear predictors use for real-time template tracking .
Our method allows both, the enlargement and reduction
of the template size. We demonstrate that our ALPs
approach can also be used to efficiently learn linear
predictors for templates of a fixed size. In this case
we start from small templates and adapt their linear
predictors until the desired template size is reached.
This results in much shorter learning time compared
to the standard approach of Jurie and Dhome [11].
The efficiency of the presented approach derives from
the special computation of the matrix inverse. In the
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Fig. 16. Tracking with occlusions. Upper two rows: The upper left image shows the initially learned template. The
other images show the template when occluded by a hand and when occluded by a pen which is moving through the
template, both while the camera is moving. In both cases the shape of the template is automatically adapted according
to the present occlusions. Lower row: The left image shows the initially learned template. The template is tracked over
time, where occlusion occures at the end of the sequence.

Fig. 17. Tracking a template with a hole inside. The first image shows the template on a white background to show
the hole in the middle. The second image shows the background. In the right image the template is learned with the
background image. In the remaining images the template tracking results are shown. Note that the background behind
the hole is changing, thus the hole is removed from the template and does not disturb the tracking.

standard approach the inverse has to be recomputed
from scratch after each change of the template size. In
contrast, our approach updates the matrix according to
the change in the template shape.

In this context we also introduce a robust method
for detecting and handling occlusions. The multi-layer
approach enables tracking of a template in the case of
the abrupt occurence of occlusions. Early detection of
incoming occlusions is necessary to adapt the top layer
template before it is occluded, so that occlusion is pre-

vented. The use of multiple transformed versions of the
top layer template significantly increases the robustness
with respect to large motions.

We demonstrate that our ALPs yield tracking results
comparable to those of the standard approaches, while
learning is much faster, and that the occlusion-aware
tracking yields superior tracking results with respect to
robustness and accuracy.
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