
Online Learning of Linear Predictors

for Real-Time Tracking

Stefan Holzer1, Marc Pollefeys2,
Slobodan Ilic1, David Tan1, and Nassir Navab1

1 Department of Computer Science, Technische Universität München (TUM),
Boltzmannstrasse 3, 85748 Garching, Germany

{holzers,slobodan.ilic,tanda,navab}@in.tum.de
2 Department of Computer Science, ETH Zurich, CNB G105,

Universitatstrasse 6, CH-8092 Zurich, Switzerland
marc.pollefeys@inf.ethz.ch

Abstract. Although fast and reliable, real-time template tracking using
linear predictors requires a long training time. The lack of the ability to
learn new templates online prevents their use in applications that require
fast learning. This especially holds for applications where the scene is not
known a priori and multiple templates have to be added online. So far,
linear predictors had to be either learned offline [1] or in an iterative
manner by starting with a small sized template and growing it over
time [2]. In this paper, we propose a fast and simple reformulation of the
learning procedure that allows learning new linear predictors online.

Keywords: template tracking, template learning, linear predictors.

1 Introduction

Template tracking is an extensively studied field in Computer Vision with a wide
range of applications such as augmented reality, human-computer interfaces,
medical imaging, surveillance, vision-based control and visual reconstruction.
The main task of template tracking is to follow a template in an image sequence
by estimating parameters of the template warping function that defines how the
pixel locations occupied by the template are warped to the next frame of the
image sequence. Examples for such warping functions are affine transformations
or homographies.

Most approaches to template tracking are based on energy minimization [3–
11], where the image intensity differences between template areas of two consec-
utive frames have to be minimized in terms of the template warping parameters.
In many cases, analytical derivation of the Jacobian is used in order to provide
real-time tracking capabilities. Alternative approaches to template tracking are
based on learning [1, 2, 12–17], where the relation between image intensity differ-
ences and template warping parameters is learned. While energy minimization
approaches are flexible at run-time, learning based methods have proven to allow
much faster tracking.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part I, LNCS 7572, pp. 470–483, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Online Learning of Linear Predictors for Real-Time Tracking 471

A very successful learning based template tracker was proposed by Jurie and
Dhome [1]. It is based on learning linear predictors to efficiently compute tem-
plate warp parameter updates. Thanks to extensive training, this approach is
very fast and tends to avoid local minima. The costly learning phase, however,
prohibits this method from computing templates online.

In many applications, such as simultaneous localization and mapping (SLAM),
the ability to learn new templates at run-time is crucial, since they have to
deal with data, which is not available for prior offline learning. Contrary to the
current development of methods for highly parallelized systems, which e.g. rely
on modern graphics cards, most consumer-oriented applications, especially those
placed on mobile devices, do not have such a huge processing power available.

We, therefore, propose a reformulation of the linear predictor learning step
that drastically improves the learning speed. Although this way of training brings
a small decrease in tracking robustness, it helps to improve robustness against
image noise. However, we demonstrate how the tracking robustness can be in-
creased online during tracking and how the tracking performance of the original
approach of Jurie and Dhome [1] can be achieved.

2 Related Work

Since the seminal work of Lucas and Kanade [3], a large variety of template
tracking approaches have been presented. They can be classified into three main
categories: tracking-by-detection (TBD) [18–22], energy minimization [3–11] and
learning [1, 2, 12–17]. In contrast to others, TBD-based approaches track a tem-
plate over the whole image independent from the previous position. Nonetheless,
they often require a time consuming training procedure and can hardly achieve
the processing speed of frame-to-frame tracking. Furthermore, their possible pose
space is limited.

On the other hand, the latter two categories use frame-to-frame tracking. Be-
tween them, energy minimization-based approaches are generally more flexible
at run-time while learning-based approaches enable higher tracking speed. Addi-
tionally, Jurie et al . [12] demonstrated that Linear Predictors (LPs) are superior
to Jacobian approximation and Holzer et al . [2] showed an experiment where
LPs are superior to Efficient Second-order Minimization (ESM) [11].

Tracking-by-Detection-based approaches. Özuysal et al . [18] presented a TBD-
based approach called FERNs where they extract keypoints from an image and
match them using a classification-based approach by estimating the probability
on which class the keypoints belong. However, it needs a time consuming learn-
ing stage and requires a sufficient number of visible keypoints which makes it less
useful in tracking small regions. Another approach is DTTs from Holzer et al . [19]
which builds on finding closed contours and matches them using a similar ap-
proach as the keypoint matching in [18]. Thus, this also needs a time consuming
learning stage while detection speed was reported at only 10 fps. Furthermore,
prominent advances in this field are reflected from the works of Hinterstoisser



472 S. Holzer et al.

et al . [20–22]. Their earlier works called Leopard [20] and Gepard [21] make use
of the image patch that surrounds a keypoint. These patches are then used for
matching and pose estimation. Hence, their methodology suggests that they ben-
efit from any advancement in template tracking. Moreover, although they achieve
a near real time performance, these approaches heavily rely on the repeatabil-
ity of the underlying keypoint detector. In their recent work, DOT [22] aims
to overcome the dependency on keypoint detection. It is a template matching
based approach that learns templates for every pose. Due to this, it restricts the
application space and is comparably slow in contrast to frame-to-frame tracking.

Energy Minimization-Based Approaches. Numerous approaches have followed
the work of Lucas and Kanade [3]. They consist of different update rules of the
warp function [3–8], different orders of approximation of the error function [10,
11], and occlusion and illumination change handling [5]. The different update
rules of the warp function can be classified into four types, namely, the additive
approach [3], the compositional approach [4], the inverse additive approach [5, 6],
and the inverse compositional approach [7, 8]. Among these types, the interesting
component in the inverse additive and inverse compositional approach is that it
switches the functions of the reference and current image. As a consequence, it
is possible to transfer some of the computation to the initialization phase and to
make the tracking computationally more efficient. Faster convergence rates for
larger convergence areas can be additionally obtained by using a second-order
instead of a first-order approximation of the error function [10, 11]. Lastly, Hager
and Belhumeur [5] established a method to compensate for illumination changes
and occlusions. A more detailed overview of energy-based tracking methods is
given by Baker and Matthews [9].

Learning-Based Approaches. In contrast to energy minimization approaches,
Jurie and Dhome [1] proposed a method that learns linear predictors using ran-
domly warped samples of the initial template while using the learned linear
predictors to predict the parameter updates in tracking. This simplifies the track-
ing process from the previous approach by using a matrix vector multiplication.
Here, the “Jacobians” are computed once for the whole method. Furthermore,
the same authors extended their approach to handle occlusions [12]. Other au-
thors such as Gräßl et al . [23] demonstrated how linear predictors can be made
invariant to illumination changes. In addition, to further increase accuracy in
tracking, they [13] also formulated a method on how to select the points for
sampling from the image data. Zimmermann et al . [17] use numerous small tem-
plates and track them individually. Based on the local movements of these small
templates, they estimate the movement of a large template. Holzer et al . [2]
start with a small template and grow it until a large template is constructed
online. This idea showcased a way to adapt existing linear predictors to mod-
ify the shape of a template at run-time. Mayol and Murray [16] stepped back
from linear predictors by presenting an approach that fits the sampling region
to pre-trained samples using general regression.



Online Learning of Linear Predictors for Real-Time Tracking 473

All the proposed learning approaches, however, are not able to learn large
templates online. To overcome this limitation, we introduce a learning scheme,
which is different to the one proposed by Jurie and Dhome [1] and enables online
learning of templates.

3 Background and Terminology

This section aims to introduce our notations and to summarize the fundamental
aspects of the template tracking approach proposed by Jurie and Dhome [1],
which is used in comparison to our approach as introduced in Sec. 4.

3.1 Template and Parameter Description

Without loss of generality, we define a template as a rectangular region in the
first frame of a video sequence, which defines the region of interest that we
want to track. Note that the method is not limited to rectangular regions and is
capable of dealing with arbitrary shapes. The location of the region within the
image is defined by the variable µ. In this paper, µ is an 8× 1 vector that stores
the position of the four 2D corner points of the template region in the image.
Thus, µ has to be estimated in every new frame. Furthermore, to find the image
intensities in the template, np sample points are positioned on a regular grid
instead of using all the pixels in the template region. These intensities are stored

in an np × 1 vector i, where i =
(
i1, i2, . . . , inp

)�
.

3.2 Template Tracking Based on Linear Predictors

Given a template region in a reference image, the corresponding initial parameter
values and reference image intensities are stored in µR and iR, respectively. The
template parameter values µC define the location of the template in the current
image; henceforth, tracking is done by computing µC . The value of µC depends
on the previously computed parameter values µC−1, the image intensities in the
reference image iR and the image intensities in the current image iC . Jurie and
Dhome [1] simplified this relation as:

δµ = Aδi, (1)

where δµ are the template parameter updates, δi = iC − iR and A is a linear
predictor matrix. It is important to mention that the image intensities iC are
extracted from the current image using the sample points from the previously
computed parameter values µC−1. Therefore, in order to compute the update
of the template parameters δµ, one needs to pre-compute the matrix A. In this
case, A is called a linear predictor since it establishes a linear relation between
the image differences and the parameter updates.

A is a constant matrix of size 8× np, which is computed during the learning
phase. The learning process uses nt random transformations on the reference



474 S. Holzer et al.

template, where nt is much larger than np. These transformations are small dis-
turbances δµi, i = 1, . . . , nt, to the reference parameters µR. As a consequence,
this introduces a change in the image intensities δii = ii − iR for each random
transformation. The vectors of those small disturbances to the template position
parameters are concatenated into an 8 × nt matrix Y, while the corresponding
image intensity differences are stored in an np × nt matrix H. These can be
written as Y =

(
δµ1, δµ2, . . . , δµnt

)
and H = (δi1, δi2, . . . , δint). Using Y and

H, Eq. (1) is modified and becomes:

Y = AH. (2)

Finally, A is learned by minimizing:

argmin
A

nt∑

k=1

(δµk −Aδik)
2

(3)

which results in the closed-form solution:

A = YH�
(
HH�

)−1

. (4)

This leads to an inverse-compositional tracking approach, where the parameter
updates, obtained from Eq. (1), have to be applied to the reference parameters
µR and a corresponding transformation has to be estimated. The inverse of this
transformation is then used to update the current template parameters. In our
implementation, we compute a homography to represent the current perspective
distortion.

To improve invariance to illumination changes, normalization is used on the
extracted image data by imposing zero mean and unit standard deviation. As
a consequence, zero mean makes H lose one rank and the resulting HH� rank-
deficient. In order to prevent this rank-deficiency, random noise is added to H
after normalization.

3.3 Multi-Layered Tracking

In order to make tracking more robust, we use a multi-predictor approach where
we compute nl linear predictors: A1, . . . ,Anl

. Among the linear predictors, A1

has learned large template distortions, while Anl
has learned smaller parameter

changes. Intuitively, A1 accounts for large movements of the template and the
subsequent linear predictors further refine the results of the previous predictor.
In practice, each linear predictor is utilized several times before the next level is
used. In this paper, we used nl = 5 and three iterations for each predictor.

4 Fast Learning Strategy

Considering Eq. (4), it is evident that the computation of the linear predictor
A using Jurie and Dhome [1] is time-consuming due to the pseudo-inverse of H.
This involves the inverse of an np × np matrix HH�.



Online Learning of Linear Predictors for Real-Time Tracking 475

To increase the speed, we propose to use the pseudo-inverse of Y, instead
of H, in order to generate a much faster learning process. Using this approach,
Eq. (2) leads to:

I = AHY�(YY�)−1 = AB, (5)

where B = HY�(YY�)−1 is an np × 8 matrix; henceforth, to learn A, we
compute:

A = (B�B)−1B�. (6)

The pseudo-inverse is applied differently in Eqs. (5) and (6), since for matrix Y,
the rows are linearly independent while for matrix B, the columns are linearly
independent; and therefore, computing it the same way leads to a rank-deficient
inversion in one of the two cases [24].

It is noteworthy to mention that the computation of the matrixA involves two
matrix inverse, but both YY� and B�B are 8×8 matrices. However, computing
the inverse of two 8× 8 matrices is much faster in comparison to computing the
inverse of an np×np matrix. In fact, YY� can be precomputed. Therefore, only
a single 8× 8 matrix has to be inverted online.

Since the linear mapping denoted by the linear predictor should never encode
fixed offsets, we normalize Y such that each parameter has zero mean and unit
standard deviation; while de-normalizing δµ when solving Eq. (1) in tracking.
It is interesting to note that unlike the normalization used in Sec. 3.2 to obtain
invariance on changes in lighting conditions, this normalization does not generate
a rank-deficient matrix YY� because the normalization is applied on the rows
of Y. The difference in performance using normalized and unnormalized Y is
shown in Sec. 5.

Moreover, solving Eq. (4) in the approach of Jurie and Dhome [1] actually
corresponds to approximating Y by orthogonally projecting it on H. On the
other hand, solving Eq. (6) in our approach approximates H by orthogonally
projecting it on Y. Given that we project H on Y, all noise outside of the low-
rank space represented by Y has no effect; while in case of Jurie and Dhome,
the noise has more effect. This makes their approach more sensitive to noise. We
also prove this in our experiments.

Updating Linear Predictors. Hinterstoisser et al . [20] showed that new training
samples can be added to a linear predictor even after learning by making use
of the Sherman-Morrison formula. It relies on the original way of computing
linear predictors as A = YH�(HH�)−1 and efficiently updates the inverse
S = (HH�)−1. In contrast to this, our method does not compute for S in the
learning phase as Jurie and Dhome [1] do. We propose to derive S from an
existing linear predictor A using Eq. (4):

A = YH�(HH�)−1 = YH�S = DS, (7)

where D = YH� is an 8 × nt matrix. From this, S can be computed using the
pseudo-inverse of D:

S = D�(DD�)−1A. (8)



476 S. Holzer et al.

In this computation, we are using the matrix inverse of DD�. Again, this is
an 8× 8 matrix and can be inverted very fast.

Sec. 5 shows that updating S by adding training samples using the Sherman-
Morrison formula helps to further improve the tracking performance. The update
is done by:

Ŝ =
(
S−1 + δint+1δi

�
nt+1

)−1

= S− Sδint+1δi
�
nt+1SI

1 + δi�nt+1Sδint+1

, (9)

where δint+1 is a vector of image value differences obtained from a new random
transformation applied to the sample points. Note that before computing the
updated linear predictor using Eq. (7), we also have to update the matricesH and
Y by concatenating them with the new training samples. For the normalization
of the parameter differences, we use the normalization as applied to the original
learning.

5 Experiments

In this section, we evaluate our proposed approach for efficient learning of linear
predictors by comparing it to the original learning approach proposed by Jurie
and Dhome [1] and the iterative approach of Holzer et al . [2]. These compar-
isons are done using two kinds of evaluation – timing and accuracy. The former
shows the difference in learning and tracking times; while the latter involves the
computation of tracking robustness with respect to different types of motion as
well as its sensitivity to noise. Additionally, we also compare the accuracy of our
approach to the non-linear method of Benhimane et al . [11]. Moreover, we show
several qualitative results from real video sequences. They show the algorithm
used on a mobile phone for learning and tracking a single template as well as
handling multiple templates. This demonstrates the need for fast learning in
unknown environments.

All the algorithms are implemented in C++. For the implementation of Holzer
et al . [2], we used the binaries provided by the authors; while the implementation
of Benhimane et al . [11] is from the publicly available binaries1. The evaluation
of these algorithms are conducted using a notebook with a 2.26 GHz Intel(R)
Core(TM)2 Quad CPU and 4 GB of RAM, where only one core is used for the
computation.

5.1 Computational Complexity

In the first evaluation we investigate the computational complexity of our ap-
proach in contrast to the approach of Jurie and Dhome [1] and Holzer et al . [2].
Our algorithm is divided into three parts – learning linear predictors, tracking
using the learned linear predictors and updating the linear predictors while track-
ing. This section mainly focuses on the amount of time that each part requires
to finish in relation to the number of sample points used.

1 See version 0.4 available at http://esm.gforge.inria.fr/ESM.html

http://esm.gforge.inria.fr/ESM.html


Online Learning of Linear Predictors for Real-Time Tracking 477

0 200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

template size [sample points]

le
ar

ni
ng

 t
im

e 
[m

s]

Jurie and Dhome
ALPs
our approach

0 200 400 600 800 1000
0

25

50

75

100

125

150

template size [sample points]

sp
ee

d−
up

 in
 le

ar
ni

ng
 t

im
e

our appr. vs. Jurie and Dhome
our appr. vs. ALPs

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

template size [sample points]

tr
ac

ki
ng

 t
im

e 
[m

s]

Jurie and Dhome / our approach
ALPs

(a) (b) (c)

Fig. 1. (a) Comparison of the necessary learning time with respect to the number
of sample points used within the template for the approach proposed by Jurie and
Dhome [1], by Holzer et al . [2] (referred as “ALPs”) and our approach. (b) The cor-
responding speed-up in learning obtained by our approach. (c) The tracking time per
frame with respect to the number of sample points used for the template.

0 500 1000 1500
0

1

2

3

4

5

6

7

number of update samples

up
da

te
 t

im
e 

[s
]

0 500 1000 1500
76

78

80

82

84

86

88

number of update samples

su
cc

es
s 

ra
te

 [
%

]

(a) (b)

Fig. 2. (a) The time necessary to update an existing tracker with respect to number
of update samples. This update can be performed in parallel with tracking. (b) The
corresponding improvement in success rates with increasing number of updates.

Learning. Our main contribution is reflected on the learning time. We show in
Fig. 1 (a) that, as the amount of sample points increases, the time required for
learning using our approach increases much slower in comparison to the approach
of both, Jurie and Dhome [1] and Holzer et al . [2]. This difference is emphasized
in Fig. 1 (b) where it is evident that for templates with more than 800 sample
points (e.g. 30× 30), our approach is more than two orders of magnitude faster,
i.e. almost 120 times faster, than Jurie and Dhome [1] and more than 50 times
faster than the approach of Holzer et al . [2].

Tracking. Both the original approach [1] and our approach have similar tracking
time because the time needed to de-normalize the parameter updates in our
approach is negligible. Furthermore, the measure of tracking time per frame with
respect to template size in Fig. 1 (c) demonstrates that our approach can easily
reach frame rates higher than 1000 fps even with large templates. In contrast
to Holzer et al . [2], their method is slightly slower and the necessary time for
tracking increases faster as the template size increases. In comparison to this,
the non-linear approach of Benhimane et al . [11] takes about 10 ms for tracking
the same template.



478 S. Holzer et al.

Updating. The updating process is a way of adding new training samples to
a learned linear predictor during tracking. Fig. 2 (a) shows the time necessary
to update an existing tracker with respect to the number of update samples,
where the number of update samples corresponds to the number of random
transformations applied to the template. Note that this is the same template
as used for the initial learning. This result illustrates that by adding a small
number of training samples at each time, we can keep the computational cost
low while improving the performance of the tracker over time. In Fig. 2 (b),
we show an exemplary improvement of tracking robustness when updating the
linear predictors with a specific number of update samples. Sec. 5.2 discusses
more on the tracking robustness in updating.

5.2 Robustness

In this section, we analyze the influence of our learning approach on the robust-
ness of tracking with respect to different movements and different levels of noise.
We measure accuracy by finding the correct location of the template after induc-
ing random transforms to several test images. The images used in the evaluation
are taken from the Internet (see supplementary material2). Moreover, the random
transforms include translation, rotation, scale andviewpoint change.Using the test
images and random transforms, tracking is considered successful if the mean pixel
distance between the reference template corner points and the tracked template
corner points, that is back-projected into the reference view, is less than 5 pixels.
Hence, robustness ismeasuredas thepercent of successfully tracked templates after
applying several random transforms to each test image. For measuring the robust-
ness in relation to noisewe corrupted the imagewithnoise sampled fromaGaussian
distribution before applying the random transform.

At this point, it is important to mention that the goal of this type of evaluation
is to generate more accurate comparison with the ground truth measurements.
Indeed, there are other methods of testing such as using markers on real scenes to
find the camera motion. However, this approach includes markers that generate
its own error and limit the amount of motion available for testing. In addition,
our evaluation also has the benefit of control which means that it is done by
changing only variables that are being tested while keeping the others constant
throughout the experiment. We can also specify the amount of change to fairly
evaluate at which value the algorithm failed.

Here, we compare our approach to the methods of Jurie and Dhome [1], Holzer
et al . [2], and Benhimane et al . [11]. For our approach, we considered three
different cases:

– Unnormalized: we do not normalize the parameter differences;
– Normalized: we normalize the parameter differences before learning the

linear predictors and de-normalize them during tracking; and,
– Updated: we normalize the parameter differences and update the linear

predictors with 1000 training samples before performing the experiments.

2 The supplementary material, which includes the images used for evaluation as well as
videos, can be found at http://campar.in.tum.de/Main/StefanHolzer.

http://campar.in.tum.de/Main/StefanHolzer


Online Learning of Linear Predictors for Real-Time Tracking 479

0 20 40 60 80
0

20

40

60

80

100

viewing angle [°]

su
cc

es
s 

ra
te

 [
%

]
Jurie and Dhome
ALPs
ESM
our normalized
our unnormalized
our updated

0 0.5 1 1.5 2
0

20

40

60

80

100

scale

su
cc

es
s 

ra
te

 [
%

]

Jurie and Dhome
ALPs
ESM
our normalized
our unnormalized
our updated

(a) Viewing Angle (b) Scale

0 10 20 30 40 50
0

20

40

60

80

100

translation [px]

su
cc

es
s 

ra
te

 [
%

]

Jurie and Dhome
ALPs
ESM
our normalized
our unnormalized
our updated

−100 −50 0 50 100
0

20

40

60

80

100

rotation angle [°]

su
cc

es
s 

ra
te

 [
%

]

Jurie and Dhome
ALPs
ESM
our normalized
our unnormalized
our updated

(c) Translation (d) In-plane Rotation

Fig. 3. Comparison of the approach of Jurie and Dhome [1], Holzer et al . [2] (referred as
“ALPs”), Benhimane et al . [11] (referred as “ESM”), as well as our approach with and
without normalization, and with updated predictors. We consider four different types
of motions as specified. The success rate indicates the percent of successful estimation
of the applied motions.

Given the learned linear predictor of a test image, the experiment starts by
applying a random transform to the image and use the linear predictor to track
this movement. This transform includes translation, rotation, scale and viewing
angle. Therefore, after imposing several random transforms to a set of images,
robustness is measured as the percent of successful estimation of the applied
motions. For the evaluation with respect to noise, we corrupted the test image
with Gaussian noise before applying the random transforms. Unless otherwise
stated, the experiments are applied on templates of size 150 × 150 pixels with
18× 18 sample points, and the initial learning of the linear predictors use 3 · 18 ·
18 = 972 training samples; while for the non-linear approach of Benhimane et
al . [11], we use the complete template without subsampling.

Normalization of parameter differences. As we mentioned in Sec. 4, normalizing
the parameter difference matrix Y before learning is important for our approach.
To emphasize this, we included the results of the unnormalized approach in
Fig. 3. It clearly shows that the unnormalized approach is not suitable for track-
ing. In contrast to that, the normalized approach gives results which are close to
the original approach while the updated approach gets even closer to the results
of Jurie and Dhome [1]. On the other hand, the outcome from Holzer et al . [2]
also shows that it performs similarly well as Jurie and Dhome [1]. All the learn-
ing based approaches, except for the unnormalized version of our approach, give
superior results compared to the non-linear approach of Benhimane et al . [11].



480 S. Holzer et al.

100 200 300 400 500 600 700 800
0

20

40

60

80

100

num of sample points

su
cc

es
s 

ra
te

 [
%

]

Jurie and Dhome
our normalized
our updated

100 200 300 400 500 600 700 800
0

20

40

60

80

100

num of sample points

su
cc

es
s 

ra
te

 [
%

]

Jurie and Dhome
our normalized
our updated

100 200 300 400 500 600 700 800
0

20

40

60

80

100

number of sample points

su
cc

es
s 

ra
te

 [
%

]

Jurie and Dhome
our normalized
our updated

100 200 300 400 500 600 700 800
0

20

40

60

80

100

num of sample points

su
cc

es
s 

ra
te

 [
%

]

Jurie and Dhome
our normalized
our updated

(a) Viewing Angle (b) Scale (c) Translation (d) Rotation

Fig. 4. Comparison of the success rate in tracking with respect to the number of
sample points for the approach of Jurie and Dhome [1], as well as our approach with
normalization and with updated predictors.

Number of samples points. In Fig. 4, we compare the tracking robustness in re-
lation to the number of sample points. It is important to note that all the results
show similar behavior across different transformations. Our normalized approach
replicates the results of Jurie and Dhome [1] when the number of sample points
per template is above 325. In all the results, the updated approach does not lose
tracking robustness and performs consistently equal to the original approach.

Updating. Fig. 2 (b) depicts the change in robustness when we add new train-
ing samples to a learned linear predictor with normalization during tracking.
In this experiment, we applied several random translations of approximately 30
pixels on the set of test images. After applying the updated linear predictors
to the transformed images, we checked how often the translation was correctly
estimated. This was done for linear predictors updated with different numbers
of update samples, where the number of update samples is the number of ran-
dom transformations applied to the template. The results show that tracking
robustness increases as the number of update samples increases. We also show
in Fig. 3 that updating brings the tracking performance closer to the original
learning approach of Jurie and Dhome [1].

Sensitivity to Noise. A comparison among the different methods with respect to
noise sensitivity is presented in Fig. 5. This experiment corrupts the input image
by Gaussian noise with zero mean and varying standard deviation. After that,
we impose a small translation to the corrupted image and measure the accuracy
of the tracker for each algorithm. The noise parameter in Fig. 5 corresponds
to the standard deviation of the Gaussian noise and the image intensity of the
uncorrupted image ranges from 0 to 255.

While our approach had a slightly worse tracking robustness for large motions
as shown in Fig. 3, we illustrate in Fig. 5 (a) that the tracking robustness of our
approach outperforms the original approach in terms of sensitivity to noise. An
evidence for this is shown in Fig. 5 (b) where we analyze the average distance
between the reference template corner points and the predicted template corner
points that is back-projected into the reference view. Based on the figure, the
prediction error of Jurie and Dhome [1] is smaller compared to our approach for
small noise levels, but rapidly increases as the level of noise increases. Contrary
to this, our approach has a higher error if no or only a small amount of noise is



Online Learning of Linear Predictors for Real-Time Tracking 481

0 50 100 150 200
0

20

40

60

80

100

noise

su
cc

es
s 

ra
te

 [
%

]

Jurie and Dhome
our normalized
our updated

0 50 100 150 200
0

5

10

15

20

noise

er
ro

r 
[p

x]

Jurie and Dhome
our normalized
our updated

(a) (b)

Fig. 5. Comparison of our approach to the approach of Jurie and Dhome [1] with
respect to sensitivity to noise in tracking. (a) shows the success rate for different noise
levels. (b) shows the average error in the predicted corner points of the template.

present, but the error increases slower when more noise is added. For a discus-
sion on why our approach is less sensitive to noise in comparison to Jurie and
Dhome [1], refer to Sec. 4.

It is noteworthy that being less sensitive to noise is an advantage in environ-
ments with bad lighting conditions, e.g. at night when the signal-to-noise ratio of
cameras usually decreases. This is especially the case for cameras used in mobile
devices.

5.3 Application: Tracking on a Mobile Phone

Due to the high efficiency of learning and tracking using the proposed approach,
it is optimally suited for applications running on mobile devices. In order to
demonstrate this, we implemented it on a mobile phone with a 1.2 GHz dual core
processor and 1 GB of RAM. Note that we only used a single core for learning
and tracking, and that we directly used our implementation without optimizing
it for the special processor technology used in mobile phones. Sample images of
tracking using a mobile phone are shown in Fig. 6, and a video that demonstrates
the learning and tracking can be found in the supplementary material.

Exemplary learning times for [1] are approximately 18000 ms for a template
with 16×16 sample points, whereas our approach needs only approximately 350
ms. Therefore, our approach is more than 50 times faster than the approach of
Jurie and Dhome [1], but more importantly, allows interactive applications to
start tracking almost immediately. For tracking, both approaches need about 2.5
ms per frame for a template with 16× 16 sample points.

5.4 Application: Tracking of Multiple Templates Simultaneously

In Fig. 7, we demonstrate the simultaneous tracking of multiple templates. The
first row in this figure shows the tracking of three templates on a mobile phone
while the second row demonstrates tracking of a large number of templates and
shows that the use of multiple templates helps to handle occlusions. Because of
the fast learning characteristic of our approach, we are able to learn such a large
number of templates online. This can be useful for a SLAM and similar systems
where a patch-based reconstruction of a scene is performed.



482 S. Holzer et al.

Fig. 6. Tracking on a mobile phone. The upper row shows tracking a non planar surface
while the lower row shows tracking a planar scene.

Fig. 7. Learning and tracking of multiple templates. The upper row shows tracking of
multiple templates on a mobile phone while the lower row shows tracking of a large
number of templates on a standard PC. This helps to handle occlusions.

6 Conclusion

We introduced an efficient method for online learning of linear predictors for
real-time template tracking by reformulating the original learning procedure
presented by Jurie and Dhome [1]. This removes the time consuming inversion
of large matrices and dramatically reduces the learning time. In addition, our ap-
proach yields tracking results comparable to those of the standard approach while
sensitivity to image noise is reduced. Furthermore, the robustness in tracking
can be increased by adding new training samples to an already learned tracker.
Lastly, we demonstrated the usefulness of the proposed learning approach in a
tracking application for mobile devices, where online learning is necessary.

References

1. Jurie, F., Dhome, M.: Hyperplane approximation for template matching. PAMI
(2002)

2. Holzer, S., Ilic, S., Navab, N.: Adaptive linear predictors for real-time tracking. In:
CVPR, San Francisco, CA, USA (2010)



Online Learning of Linear Predictors for Real-Time Tracking 483

3. Lucas, B., Kanade, T.: An Iterative Image Registration Technique with an Appli-
cation to Stereo Vision. In: International Joint Conference on Artificial Intelligence
(1981)

4. Shum, H.Y., Szeliski, R.: Construction of panoramic image mosaics with global
and local alignment. IJCV (2000)

5. Hager, G., Belhumeur, P.: Efficient region tracking with parametric models of
geometry and illumination. PAMI (1998)

6. Cascia, M., Sclaroff, S., Athitsos, V.: Fast, reliable head tracking under varying
illumination: An approach based on registration of texture-mapped 3d models.
PAMI (2000)

7. Dellaert, F., Collins, R.: Fast image-based tracking by selective pixel integration.
In: ICCV Workshop of Frame-Rate Vision (1999)

8. Baker, S., Matthews, I.: Equivalence and efficiency of image alignment algorithms.
In: Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA,
USA (2001)

9. Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework. IJCV
(2004)

10. Malis, E.: Improving vision-based control using efficient second-order minimization
techniques. In: ICRA (2004)

11. Benhimane, S., Malis, E.: Homography-based 2d visual tracking and servoing. In-
ternational Journal of Robotics Research (2007)

12. Jurie, F., Dhome, M.: Real time robust template matching. In: BMVC (2002)
13. Gräßl, C., Zinßer, T., Niemann, H.: Efficient hyperplane tracking by intelligent

region selection. In: Image Analysis and Interpretation (2004)
14. Parisot, P., Thiesse, B., Charvillat, V.: Selection of reliable features subsets for

appearance-based tracking. Signal-Image Technologies and Internet-Based System
(2007)

15. Matas, J., Zimmermann, K., Svoboda, T., Hilton, A.: Learning efficient linear pre-
dictors for motion estimation. In: Computer Vision, Graphics and Image Processing
(2006)

16. Mayol, W.W., Murray, D.W.: Tracking with general regression. Journal of Machine
Vision and Applications (2008)

17. Zimmermann, K., Matas, J., Svoboda, T.: Tracking by an optimal sequence of
linear predictors. PAMI (2009)

18. Özuysal, M., Fua, P., Lepetit, V.: Fast Keypoint Recognition in Ten Lines of Code.
In: CVPR, Minneapolis, MI, USA (2007)

19. Holzer, S., Hinterstoisser, S., Ilic, S., Navab, N.: Distance transform templates for
object detection and pose estimation. In: CVPR (2009)

20. Hinterstoisser, S., Benhimane, S., Navab, N., Fua, P., Lepetit, V.: Online learning
of patch perspective rectification for efficient object detection. In: CVPR (2008)

21. Hinterstoisser, S., Kutter, O., Navab, N., Fua, P., Lepetit, V.: Real-time learning
of accurate patch rectification. In: CVPR (2009)

22. Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P., Navab, N.: Dominant orientation
templates for real-time detection of texture-less objects. In: CVPR (2010)

23. Gräßl, C., Zinßer, T., Niemann, H.: Illumination Insensitive Template Matching
with Hyperplanes. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781,
pp. 273–280. Springer, Heidelberg (2003)

24. Penrose, R.: A generalized inverse for matrices. In: Proceedings of the Cambridge
Philosophical Society (1955)


	Online Learning of Linear Predictors for Real-Time Tracking
	Introduction
	Related Work
	Background and Terminology
	Template and Parameter Description
	Template Tracking Based on Linear Predictors
	Multi-Layered Tracking

	Fast Learning Strategy
	Experiments
	Computational Complexity
	Robustness
	Application: Tracking on a Mobile Phone
	Application: Tracking of Multiple Templates Simultaneously

	Conclusion


