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Abstract. Using Linear Predictors for template tracking enables fast
and reliable real-time processing. However, not being able to learn new
templates online limits their use in applications where the scene is not
known a priori and multiple templates have to be added online, such
as SLAM or SfM. This especially holds for applications running on low-
end hardware such as mobile devices. Previous approaches either had to
learn Linear Predictors offline [1], or start with a small template and
iteratively grow it over time [2]. We propose a fast and simple learning
procedure which reduces the necessary training time by up to two orders
of magnitude while also slightly improving the tracking robustness with
respect to large motions and image noise. This is illustrated in an ex-
haustive evaluation where we compare our approach with state-of-the-art
approaches. Additionally, we show the learning and tracking in mobile
phone applications which demonstrates the efficiency of the proposed
approach.

1 Introduction

Template tracking is an extensively studied field in Computer Vision with a wide
range of applications such as augmented reality, human-computer interfaces,
medical imaging, surveillance, vision-based control and visual reconstruction.
The main task of template tracking is to follow a template in an image sequence.
This is done by estimating the parameters of the template warping function
that defines how the pixel locations, occupied by the template, are warped to
the next frame of the image sequence. Examples for such warping functions are
affine transformations or homographies.

Recently, tracking-by-detection methods became popular since they reached
a state where they are able to track close to or at real-time performance. How-
ever, they show some limitations which we further address in Sec. 2. In frame-
to-frame template tracking, image intensity differences between template areas
of two consecutive frames have to be minimized in terms of the template warp-
ing parameters. Most of them are based on energy minimization [3–11] and in
many cases, an analytical derivation of the Jacobian is used in order to provide
real-time tracking capabilities. Alternative approaches are based on learning [1,
12–17, 2] where the relation between image intensity differences and template
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warping parameters is learned. While energy minimization is flexible at run-
time, learning based methods have proven to allow much faster tracking.

Jurie and Dhome [1] proposed a very successful learning based template
tracker which learns Linear Predictors to efficiently compute template warp pa-
rameter updates. This is very fast in tracking and tends to avoid local minima.
But, due to the computationally expensive learning phase, online-creation of
templates is hardly possible. This, however, is a crucial ability for many applica-
tions that have to deal with data which is not available for prior offline learning.
Some examples for such applications are Simultaneous Localization and Map-
ping (SLAM) and Structure from Motion (SfM). We address this limitation by
introducing a more efficient learning procedure for creating Linear Predictors.
This not only improves the learning speed drastically, but also brings a small
improvement in robustness of tracking with respect to large motions and image
noise.

The remainder of the paper is structured as follows: first, we discuss related
work on template tracking (Sec. 2) and introduce the original approach of Jurie
and Dhome (Sec. 3). This is followed by a detailed description of our approach
(Sec. 4) and an extensive quantitative testing (Sec. 5.1 and Sec. 5.2). Finally,
we demonstrate that the proposed approach can be used for efficient template
learning and tracking on mobile phones, as well as applications similar to SLAM
where multiple templates are being tracked simultaneously (Sec. 5.3).

2 Related Work

The existing template tracking approaches can be categorized in mainly three
different sets of methods: tracking-by-detection (TBD) [18–22], template track-
ing based on energy minimization [3–11, 23, 24], and methods that utilize learn-
ing [1, 12–17]. While tracking-by-detection methods are able to track a template
over the whole image independent of the previous position, they hardly achieve
the processing speed of frame-to-frame tracking. Additionally, they often re-
quire a time consuming training procedure and are limited in their possible pose
space. For frame-to-frame tracking, energy minimization-based approaches are
generally more flexible at run-time by allowing fast creation and modification of
templates, while learning-based approaches enable higher tracking speed. Look-
ing at tracking performance, it has been shown in the past that learning-based
approaches outperform methods based on energy minimization. Jurie et al . [12]
demonstrated that Linear Predictors are superior to Jacobian approximation
and Holzer et al . [2] showed an experiment where Linear Predictors are superior
to Efficient Second-order Minimization (ESM) [11]. We further fortify the latter
by showing additional comparisons in Sec. 5.2.

Tracking-by-Detection-based approaches. Some of the most prominent work on
patch-based TBD was recently proposed by Hinterstoisser et al . [18–20]. Their
former two methods, called Leopard [18] and Gepard [19], use the patch around
detected keypoints for matching and pose estimation. While these methods en-
able near real-time performance, they heavily rely on the repeatability of the
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underlying keypoint detector. Additionally, they apply template tracking ap-
proaches for pose refinement, which means that these approaches also benefit
from advances in template tracking. To overcome the dependency on keypoint
detectors, they proposed a template matching based approach (DOT) [20]. How-
ever, this requires to learn templates for every possible pose, which restricts the
application space and makes it comparably slow in contrast to frame-to-frame
tracking. Özuysal et al . (FERNs) [22] extract keypoints and match them using
a classification-based approach by estimating the probability on which class the
keypoints belong to. Although this gives real-time performance, it includes a
time consuming learning stage and needs a sufficient number of keypoints visi-
ble. This makes it less useful to track small regions. Holzer et al . (DTTs) [21]
proposed a detection based approach which builds on finding closed contours
and matches them using a similar approach as [22] used for keypoint matching.
However, this includes a time consuming learning stage and detection speed was
reported at 10 fps only.

Energy minimization-based approaches. Numerous approaches have followed the
work of Lucas and Kanade [3]. They consist of different update rules of the warp
function [3, 5, 6, 4, 7, 8], handling of occlusions and illumination changes [5], as
well as considering different orders of approximation of the error function [10,
11]. The different update rules of the warp function can be classified into four
types, namely, the additive approach [3], the compositional approach [4], the
inverse additive approach [5, 6] and the inverse compositional approach [7, 8],
where the inverse approaches switch the roles of the reference and current image.
As a consequence, it is possible to transfer some of the computation to the
initialization phase, which makes the tracking computationally more efficient.
Compensation of illumination changes and occlusions was addressed by Hager
and Belhumeur [5]. Faster convergence rates as well as larger convergence areas
can be additionally obtained by using a second-order instead of a first-order
approximation of the error function [10, 11]. A more detailed overview of energy-
based tracking methods is given by Baker and Matthews [9].

Learning-based approaches. Jurie and Dhome [1] proposed a method that learns
Linear Predictors using randomly warped samples of the initial template, while
using the learned Linear Predictors to predict the parameter updates in tracking.
Here, the “Jacobians” are computed once for the whole method and a param-
eter update is computed using a simple matrix multiplication. More details on
this are given in Sec. 3.2. The same authors extended their approach to handle
occlusions [12]. Invariance to illumination changes was introduced by Gräßl et
al . [25]. They [13] also formulated a method on how to select the points for sam-
pling from image data to further increase accuracy in tracking. Zimmermann et
al . [17] use numerous small templates and track them individually. Based on
the local movements of these small templates, they estimate the movement of
a large template. Holzer et al . [2] start with a small template and grow it until
a large template is constructed online. This idea showcased a way to adapt ex-
isting Linear Predictors to modify the shape of a template at run-time. Mayol



4 Stefan Holzer, Slobodan Ilic, David Tan, Nassir Navab

(p0, p1) (p2, p3)

(p4, p5)(p6, p7)

template

sample point

Fig. 1. A template is represented by a set of regularly placed sample points. Its pose
is parameterized using its four corner points.

and Murray [16] stepped back from Linear Predictors by presenting an approach
that fits the sampling region to pre-trained samples using general regression.

All the proposed learning approaches, however, are not able to learn large
templates online. To overcome this limitation, we introduce a learning scheme,
which is different to the one proposed by Jurie and Dhome [1] and enables online
learning of templates.

3 Tracking Framework

Our proposed template tracking approach is based on the work of Jurie and
Dhome [1]. While we introduce a new learning method in Sec. 4, the tracking
stage itself stays the same as in [1]. Therefore, we first introduce our notations
and review the method proposed by Jurie and Dhome [1].

3.1 Template and Parameter Description

Without loss of generality, we consider a w × h template with an area of ns =
w · h pixels within an image. Instead of using the full-resolution template, we
apply a uniform subsampling as shown in Fig. 1 to obtain a grid of np sample
points. However, neither the approach of Jurie and Dhome [1] nor our approach
is restricted to this sample point arrangement or rectangular shapes.

The pose of the template is described using the parameter vector µ. Within
this paper, we use a homography to represent the current perspective distortion
of a planar template and parameterize it using the four corner points of the
template. This leads to an 8-dimensional vector µ = (p0, p1, p2, p3, p4, p5, p6, p7)>

(see Fig. 1). Note that our approach is not limited to this type of transformations
and can be easily adapted to any other parameterizable template deformation.

3.2 Template Tracking based on Linear Predictors

The goal of template tracking is to follow a reference template over a sequence
of images. This reference template is defined by an initial parameter vector µR
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that corresponds to the location of the template in the reference image, and a
vector iR = (iR,1, iR,2, · · · , iR,np

)> that corresponds to the image intensity at
the sample points of the template.

Assuming that the reference template is located in the first frame of a video
sequence, the location of the sample points is defined by the initial parameter
vector µR while the parameter vector µC defines the location of the template
in the current image. Henceforth, tracking is done by computing µC . The basic
approach for this is to first compute a vector δi = iC − iR of image differences
and then to use this to compute a parameter update δµ which accounts for the
present pose difference. Note that the vector iC stores the image values extracted
from the current image and is extracted by computing the sample point locations
using the template pose µC−1 of the previous image frame.

Instead of explicitly minimizing an error function, e.g . by iteratively solving
a first- or second-order approximation of the function, Jurie and Dhome [1] use
a learned matrix A (also called as Linear Predictor) to compute δµ based on
the vector δi as:

δµ = Aδi. (1)

In order to compute δµ, one needs to precompute the matrix A. This is done
by collecting a set of nt random transformations, where nt is significantly larger
than np, together with its corresponding image difference vectors. These random
disturbances δµi and image difference vectors δii are then combined in two
matrices Y =

(
δµ1, δµ2, . . . , δµnt

)
and H = (δi1, δi2, . . . , δint

). Using these
matrices, Eq. (1) can be written as:

Y = AH (2)

which solves for A using a closed-form solution:

A = YH>
(
HH>

)−1
. (3)

In practice, we normalize the extracted image data with zero mean and unit
standard deviation. This increases the robustness against illumination changes.
Note that, to prevent HH> from being rank-deficient due to the zero mean of
the data, we have to add random noise to the obtained image value difference
vectors.

3.3 Multi-Layered Tracking

For improved tracking performance, we use a multi-predictor approach where
multiple Linear Predictors A1, . . . ,Anl

are learned for one template. Among
these, A1 is trained for large distortions and the subsequent ones for smaller
distortions. Intuitively, A1 accounts for large motions but is less accurate, while
Anl

can handle only small template motions but has improved accuracy. During
tracking, each Linear Predictor is utilized several times before the next level is
used. Within this paper, we use nl = 5 and three iterations for each predictor.
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4 Efficient Predictor Learning using Dimensionality
Reduction

As we show in Sec. 5.1, the original approach for learning Linear Predictors as
proposed by Jurie and Dhome [1] is very time consuming and not applicable for
learning on the fly. Therefore, we propose a simple yet powerful way of learning
Linear Predictors that is much faster than [1]. The main idea behind our new
learning approach is to compress the image difference vectors δii before using
them to learn the Linear Predictor matrix. By reducing the dimensionality of
δii from np to nr, the size of HH> gets reduced to nr × nr and therefore, the

necessary matrix inversion (HH>)−1 becomes less computational expensive.
We propose to reduce the dimensionality of δii by using Discrete Cosine

Transform (DCT). This transform is known to give good results for compress-
ing image data by removing DCT coefficients that correspond to high frequen-
cies. Keeping only low-frequency information makes it well-suited for template
tracking, since high-frequency information tends to de-stabilize tracking. In the
following, we first introduce the 2-dimensional DCT, then show how we apply
it on the 1-dimensional vectors δii which are sampled from the 2-dimensional
templates. Mathematically, the 2-dimensional DCT U of a k × k matrix V is:

U = DCT(V) = CVC> (4)

where the elements of the matrix C are defined as:

Ci,j =

√
αi

k
cos

[
π(2j + 1)i

2k

]
(5)

with

αi =

{
1 if i = 0,
2 otherwise.

(6)

After transforming δii as δîi = DCT(δii), we form Ĥ =(δî1, δî2, . . . , δînt). How-
ever, since we reshaped the samples from a 2D template into a vector, Eq. (4)
can not be directly applied to δii. Therefore, we create an np×np matrix WDCT

which maps the difference δii of the sampled vectors directly to their DCT coun-
terparts δîi. Assuming that the vector δii is reshaped from the 2D matrix Vi

written as δii = reshape(Vi), we compute WDCT as:

WDCT =
(
b1,b2, · · · ,bnp

)
(7)

where bm = reshape(CBmC>) and Bm is a matrix with all elements set to 0
except for the m-th element which is set to 1. By setting a single element to 1,
the set of matrices {B1, . . . ,Bnp

} are a base of the image space of the template
and the set of vectors {b1, . . . ,bnp} are the DCT projections of this base. This
way, we can directly compute the 2-dimensional DCT of our image difference
vectors as:

δîi = WDCT δii ⇒ Ĥ = WDCTH. (8)
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In relation to the original learning formula in Eq. (3), we reformulate this by
using the relation:

H = (WDCT )−1Ĥ. (9)

Thus, we subsitute H from Eq. (9) to Eq. (2) and solve for the Linear Predictor
matrix A as follows:

AW−1
DCT Ĥ = Y

AW−1
DCT = YĤ

> (
ĤĤ

>)−1
AW−1

DCTWDCT = YĤ
> (

ĤĤ
>)−1

WDCT

A = YĤ
> (

ĤĤ
>)−1

WDCT (10)

To reduce the necessary computational load, we apply a dimensionality reduction

by defining an nr × np submatrix W
(nr)
DCT with nr < np, such that the necessary

matrix inversion is no longer applied to an np × np matrix but rather to an
nr × nr matrix. The final Linear Predictor is then computed as:

A(nr) = YĤ
(nr)>

(
Ĥ

(nr)
Ĥ

(nr)>
)−1

W
(nr)
DCT . (11)

with Ĥ
(nr)

= W
(nr)
DCTH. We show in Sec. 5.1 that by keeping nr small, the

learning time for large templates is significantly reduced. Moreover, depending
on the size of nr, the reduction in learning even increases tracking robustness.

5 Experiments

In this section, we evaluate our approach for efficient learning of Linear Predic-
tors, as proposed in Sec. 4, by comparing it to the original learning approach
proposed by Jurie and Dhome [1], the iterative approach of Holzer et al . [2]
which is also referred to as Adaptive Linear Predictors (ALPs), as well as the
approach of Benhimane et al . [11] known as Efficient Second-order Minimization
(ESM). For the comparison, we use two kinds of evaluation – timing and track-
ing performance. The former shows the difference in learning and tracking times
(see Sec. 5.1); while the latter involves the computation of tracking robustness
with respect to different types of motion as well as its sensitivity to noise (see
Sec. 5.2). Finally, we demonstrate the usefulness of fast template learning using
tracking on mobile devices (see Sec. 5.3).

All algorithms used in this experiment are implemented in C++. For our
approach, we consider three different instances where the difference is in the
number of DCT coefficients used for learning. Specifically, we use varying DCT
coefficients with values of 25, 49, and 81. The evaluation of Holzer et al . [2]
is performed using binaries kindly provided by the authors while the approach
of Benhimane et al . [11] is evaluated using publicly available binaries1. The

1 See version 0.4 available at http://esm.gforge.inria.fr/ESM.html
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Fig. 2. The data set used for synthetic experiments. These images are randomly taken
from the Internet.

evaluations of these algorithms are conducted using a notebook with a 2.26GHz
Intel(R) Core(TM)2 Quad CPU and 8 GB of RAM, where only one core is used
for the computations. The images used for evaluation on synthetic data are taken
from the Internet (see Fig. 2). For all synthetic experiments, the template size is
150× 150 pixels. A template is located at the center of the image and tracking
is applied on its warped versions.

We want to emphasize that the reason for focusing on synthetic experiments
in Sec. 5.1 and 5.2 is to generate a more accurate comparison using ground
truth measurements. Using other methods of testing, such as using markers on
real scenes to find the camera motion, generates its own error and limits the
amount of motion available for testing. In addition, our evaluation also has the
benefit of control which means that it is done by changing only variables that
are being tested while keeping the others constant throughout the experiment.
Furthermore, it allows to precisely specify the amount of change to fairly evaluate
at which value the algorithm failed.

In addition to the synthetic evaluation, we also show several qualitative re-
sults from real video sequences in Sec. 5.3. These demonstrate the proposed ap-
proach used on a mobile phone for learning and tracking templates in unknown
environments.

5.1 Computational Complexity

In the first evaluation, timing is measured by counting the amount of time to
finish a specific part of the algorithm, i.e. learning and tracking. We compare
the computational complexity of our approach with the approach of Jurie and
Dhome [1] as well as Holzer et al . [2].

Learning. Our main contribution is reflected on the learning time. In Fig. 3 (a),
we evaluate the amount of time necessary for learning with respect to the num-
ber of sample points. It shows that as the amount of sample points increases,
the time required for learning using our approach increases much slower in com-
parison to the approach of both, Jurie and Dhome [1] and Holzer et al . [2]. As
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Fig. 3. Comparison of timings for the approach proposed by Jurie and Dhome [1]
(‘JD’), the approach of Holzer et al . [2] (‘ALPs’), and our approach (‘DCT-x’). (a)
Comparison of learning time. (b) Obtained speed-up of our approach with respect to
Jurie and Dhome [1]. (c) Comparison of tracking time.
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Fig. 4. Evaluation of learning time depending on the number of training samples used
for training. (a) Learning time of our approach (‘DCT-x’) in comparison to the ap-
proach of Jurie and Dhome [1] (‘JD’) and (b) the speed-up obtained by our approach
with respect to the number of DCT coefficients used for training. The experiments
were performed with a template-size of 150×150 pixels, where 22×22 sampling points
were used.

expected, using less DCT coefficients for learning decreases the necessary time.
This difference is emphasized in Fig. 3 (b) where it is evident that for templates
with more than 800 sample points (e.g . 30 × 30), our approach is more than
two orders of magnitude faster, i.e. almost 150 times faster, than Jurie and
Dhome [1] if 25 DCT coefficients are used. Using 81 DCT coefficients, it is still
approximately 70 times faster.

Fig. 4 compares the necessary learning time with the number of random
samples used for training. Reducing the number of random samples drastically
reduces the necessary time for learning Linear Predictors. Although this comes
hand in hand with a decrease in tracking performance, we show in Sec. 5.2 that
our approach is much more robust against this kind of reduction compared to
the original approach of Jurie and Dhome [1].
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Tracking. Both the original approach [1] and our approach share the same ap-
proach for tracking and therefore, have equal tracking times. Furthermore, the
measure of tracking time per frame with respect to template size in Fig. 3(c)
demonstrates that our approach can easily reach frame rates higher than 1000
fps even for templates with a high number of sample points. In contrast to Holzer
et al . [2], their approach is slightly slower and the necessary time for tracking
increases significantly faster as the template size increases. Considering a non-
linear template tracking approach, the method of Benhimane et al . [11] takes
about 10 ms for tracking the same templates.

5.2 Robustness

In this section, we measure the tracking performance by finding the correct
location of the template after inducing random transformations and noise to
several test images. These random transformations include translation, rotation
(in-plane rotation), scale and viewpoint changes (out-of-plane rotation). For the
experiments on the influence of noise, we corrupted the images with noise sam-
pled from a Gaussian distribution before applying the random transformation.

Applying these disturbances to the test images, tracking is considered suc-
cessful if the mean pixel distance between the reference template corner points
and the tracked template corner points, which are back-projected into the refer-
ence view, is less than 5 pixels. Hence, robustness is measured as the percentage
of successfully tracked templates after applying several random disturbances to
each test image.

Number of sample points. In Fig. 5, we compare the tracking robustness using
different types of transformations in relation to the number of sample points.
Here, we evaluate our approach with different numbers of DCT coefficients as
well as the approach of Jurie and Dhome [1], Holzer et al . [2], and the non-linear
approach of Benhimane et al . [11]. Hereby, the training stage as it is applied for
the methods based on Linear Predictors leads to significantly better results than
obtained using the non-linear approach of Benhimane et al . [11]. Comparing
our approach with that of Jurie and Dhome [1] reveals that our approach is
always better or comparable, except for the variant where we use only 25 DCT
coefficients. This gives slightly worse results for large changes in viewing angle
and scale. The approach of Holzer et al . [2] tends to give slightly worse results
than that of Jurie and Dhome [1]. The improvement in tracking robustness using
our approach can be explained by the fact that only low-frequency data is kept
during the compression using the DCT and high-frequency data of the template
is removed. As a result, noise and fine details, which tend to de-stabilize tracking,
are removed.

Having a look at the tracking performance when varying the number of ran-
dom transformations used for training (see Fig. 6), we see that the approach
of Jurie and Dhome [1] lacks robustness when reducing the number of training
samples while our approach still keeps high tracking performance even with re-
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Fig. 5. Comparison of tracking performance for the approaches proposed by Jurie and
Dhome [1] (‘JD’), Holzer et al . [2] (‘ALPs’), Benhimane et al . [11] (‘ESM’), and our
approach (‘DCT-x’). Four different types of motions are considered: (a) translation,
(b) in-plane rotation, (c) scale and (d) out-of-plane rotation. The experiments were
performed with a template size of 150 × 150 pixels, where 20 × 20 sampling points are
used for JD, ALPs and our approach. ESM uses the complete template. For training
we used 1200 training samples.

duced training examples. This property is useful to even further decrease the
learning time if necessary, as we showed in Fig. 4.

Sensitivity to Noise. The results presented in Fig. 7 compare our proposed ap-
proach with Jurie and Dhome [1] with respect to sensitivity to noise, where the
noise parameter specifies the standard deviation of the Gaussian noise and is with
respect to an image value range from 0 to 255. Fig. 7 (a) shows that increas-
ing the number of used DCT coefficients also increases the robustness against
noise. Using 81 DCT coefficients, we obtain a template tracking approach which
is more robust against noise than the one of Jurie and Dhome [1]. Looking at
Fig. 7 (b), we see that our approach, in general, gives a smaller mean error in
the tracking results.

It is noteworthy that being less sensitive to noise is an advantage in envi-
ronments with bad lighting conditions, e.g . at night when the signal-to-noise
ratio of cameras usually decreases. This is especially the case for cameras used
in mobile devices.



12 Stefan Holzer, Slobodan Ilic, David Tan, Nassir Navab

0 1000 2000 3000 4000 5000
50

60

70

80

90

100

Num. of training samples

su
cc

es
s 

ra
te

 [%
]

 

 

JD
DCT−25
DCT−49
DCT−81

0 1000 2000 3000 4000 5000
30

40

50

60

70

80

90

Num. of training samples

su
cc

es
s 

ra
te

 [%
]

 

 

JD
DCT−25
DCT−49
DCT−81

(a) (b)

Fig. 6. Evaluation of tracking success rate with respect to the number of training
samples. The left graph shows success rates for random translations in the range of 30
to 40 pixels while the right one shows them for random translations in the range of 35
to 45 pixels. For these experiments we used templates with 22 × 22 sample points.
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Fig. 7. Comparison of sensitivity to noise for the approach proposed by Jurie and
Dhome [1] and our approach.

5.3 Exemplary Applications on Mobile Phones

To demonstrate the efficiency of the template learning and tracking, we imple-
mented it on a standard mobile phone with a 1.2 GHz dual core processor with
1 GB of RAM. Note that we did not optimize the implementation for processor
specific technology and used only a single core for the learning and tracking.

Tracking of a Single Template In Fig. 8, we show exemplary images demon-
strating the tracking of a single template on a mobile phone. Learning times for
a single template are approximately 18000 ms for the original approach of Jurie
and Dhome [1] and about 600 ms for our proposed approach. To estimate the
learning time, we trained a template with 16×16 sample points, 16 ·16 ·3 = 768
training samples, and used 25 DCT coefficients in our approach. As a result, the
tracking takes about 2.5 ms for both approaches.
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Fig. 8. Tracking of a single template on a mobile phone.

Fig. 9. Tracking of multiple templates on a mobile phone. The most right template
shown in the first row failed during tracking and was replaced by a new template in
the second row.

Tracking of Multiple Templates Fig. 9 shows the tracking of multiple tem-
plates. This can be useful for applications like SLAM or similar systems where
a patch-based reconstruction of a scene is performed.

6 Conclusion

We proposed an efficient method for learning Linear Predictors for real-time
template tracking by making use of the Discrete Cosine Transform for dimen-
sionality reduction. This reduces the necessary computation dramatically and
enables to learn Linear Predictors at run-time. We demonstrated that the intro-
duced learning procedure leads to an improvement in handling of large motions
and image noise, and showed its usefulness for mobile applications.
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