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Abstract. Synthesizing MR imaging sequences is highly attractive for
clinical practice, as often single sequences are missing or of poor quality
(e.g. due to motion). Naturally, the idea arises that a target modality
would benefit from multi-modal input. However, existing methods fail to
scale up to non-aligned image volumes with multiple modalities, facing
common drawbacks of complex multi-modal imaging sequences. We pro-
pose a novel, scalable and multi-modal approach called DiamondGAN.
Our model is capable of performing flexible non-aligned cross-modality
synthesis and data infill, when given multiple modalities or any of their
arbitrary subsets, learning structured information in an end-to-end fash-
ion. We synthesize two MRI sequences with clinical relevance (i.e., dou-
ble inversion recovery (DIR) and contrast-enhanced T1 (T1-c)), recon-
structed from three common MRI sequences. In addition, we perform
multi-rater visual evaluation experiment and find that trained radiolo-
gists are unable to distinguish our synthetic DIR images from real ones.

1 Introduction

In clinical practice, imaging datasets often consists of high-dimensional image
volumes, with multiple imaging protocols and repeated scans at multiple time
points. Given the multiplicity of possible sequence parameters, protocols largely
vary according to the scanner and imaging center, hindering their comparability.
This often leads to repeated exams or severely limits the clinical information that
can be drawn from those MRI studies. Particularly in the case of multiple sclero-
sis, longitudinal comparisons of MRI studies are the main reason for treatment
decisions while lesion quantification tools require complete identical modalities
at multiple time points. Potentially cross-modality image synthesis technique
can resolve those obstacles through efficient data infilling and re-synthesis.

Recently, generative adversarial networks (GANs) have been applied in trans-
lating MRI sequences, positron emission tomography (PET) and computed to-
mography (CT) images. Most of them are one-to-one cross-modality synthesis
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approaches, for example, PET-CT [1], CT-MRI [16], MRI sequences translation
[4]. Recent multi-modal synthesis method [13] has limited scalability because the
input modalities are required to be uniform and spatially aligned. Although there
are several multi-domain translation algorithms [9,3] in the computer vision com-
munity, these approaches design one-to-multiple domain translation but do not
model the multiple-to-one domain mapping. Especially in medical images syn-
thesis, multiple-to-one cross-modality mapping is highly relevant as proprietary
information of individual and non-aligned modalities is probably synergistic.

There are three main challenges in the scenarios of multi-modal cross-modality
medical image synthesis: 1) the input modalities are assumed to be not spatially-
aligned because registration methods for aligning multiple modalities may fail,
limiting the applicability of conventional regression approaches. 2) input modal-
ities may be missing due to different clinical settings between centers, thus a
traditional regression-based data infill would be restricted to the smallest uni-
form subset or rely on iterative data infill methods. 3) existing approaches have
limited scalability, e.g. in a Cycle-GAN [17] setting, one would therefore have to
train individual models for possible combinations of the input modalities.

Contributions 1) We propose DiamondGAN, a unified multi-modal generative
adversarial network that learns the multiple-to-one cross-modality mapping among
non-aligned modalities using only a pair of generators and discriminators, train-
ing effectively with a multi-modal cycle-consistency loss function. 2) We pro-
vide both qualitative and quantitative results on two clinically-relevant MRI
sequences synthesis tasks, showing DiamondGAN’s superiority over baseline
models. 3) We present the results of extensive visual evaluation, performed by
fourteen experienced radiologists to confirm the quality of synthetic images.

2 Methodology

2.1 Multi-Modal Cross-Modality Synthesis

Given an input set of n modalities: X = {xi|i = 1, ..., n} and a target modality
T. Our goal is to learn a generator G that learns mappings from multiple input
modalities to one target modality. We assume that 1) all the modalities, i.e., X
and T, are not spatially-aligned because it is rather difficult to obtain strictly
spatially-aligned images as mentioned in Section 1; 2) the input modalities can
be any subset of X, denoted as X’ during the training and inference stages as
some modalities of a subject may be missing in clinical practice.

We enforce G to be capable of translating any subset X’ into a target modal-
ity T using a condition c which indicates the presence of the input modalities,
i.e., G(X’, c) → T. This condition handles the missing modality issue and makes
it a scalable model in both the training and the inference stages. We further in-
troduce a multi-modal cycle-consistency loss to handle the ”non-aligned modal-
ities” issues among the input and output. Fig. 1 illustrates the main idea of
our proposed approach. We regularly generate the condition c and the corre-
sponding multi-modal data Xc of all possible combinations, so that G learns to
flexibly translate the arbitrary multi-modal input. As mentioned in the caption
of Fig. 1, we use an availability condition to serve as an indicator of the input
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Fig. 1: Left: The high-level idea behind our DiamondGAN, which is capable of
learning mappings between any subset of multiple input modalities (X ) to a
target modality in a single model. This mapping represents a diamond-shape
topology. Right: Overview of DiamondGAN. It consists of two modules, a pair
of discriminators D and a pair of generators G. (a) D1 and D2 learn to distin-
guish between real and synthetic images from multi-modal input and the target
output respectively. (b) G1 takes both multi-modal input and the condition
as input and generates a target modality. The condition c is a binary vector:
c = {c1, c2, ..., cn}, where ci = 0 or 1 indicates the corresponding input modal-
ity as available (1) or not (0). It is spatially replicated and concatenated with
the input image in the feature-map level. (c) G2 tries to generate the origi-
nal modalities from the synthetic target modality given the original availability
condition.

modalities. It is spatially replicated to the image size (1×H ×W ) and is a part
of the two-stream network input. In the case of 3 modalities as the input, the
condition c = [1, 1, 1] would indicate that every input modality is given.

Multi-Modal Reconstruction Loss We aim to train G to guarantee that
synthetic target modality preserves the content of its input modalities. The in-
put modalities are assumed to be not spatially aligned or not from the same
subject as mentioned above. In this situation, the traditional cycle loss [17] as
well as the regression loss [7] would fail to tackle with the multi-modal and
non-aligning issues. To alleviate the two problems, we extend the traditional
cycle-consistency loss [17] to a multi-modal one. Specifically, we concatenate the
source modalities into a multi-channel input and define a multi-channel output
as the target modality. We then simultaneously train two generators G1 : X → T
and G2 : T → X in a cycle-consistency fashion. Please note that the output tar-
get modality is with multiple channels which correspond to the input modalities.
The loss function of the generator is defined as:

Lrec = EX,T,c[||X −G2(G1(X, c), c)||1 + ||T −G1(G2(T, c), c)||1] (1)

Adversarial Loss To make the generated images indistinguishable from real
images, we adopt an adversarial loss:

Ladv = EX,T {log [D1(X) ·D2(T )]}
+EX,T,c{log [(1−D2(G1(X, c))) · (1−D1(G2(T, c)))]}

(2)



where G1 generates a target modality G1(X, c) conditioned on the presence of
input modalities X, while D1 tries to distinguish between real input modalities
and generated ones. Similarly, G2 generates the original input modalities G2(T,
c) conditioned on the presence of original input modalities X and D2 tries to
distinguish between real target modality and generated target one. The genera-
tors try to minimize this objective, while the discriminators try to maximize it.

Full Objective The objective functions to optimize D and G respectively are

LD = −Ladv; LG = Ladv + λrecLrec (3)

where λrec is the hyper-parameter that balances the reconstruction loss and
adversarial loss.

2.2 Implementation

Two-Stream Network Architecture To leverage the information from both
input modalities and corresponding availability conditions, we build a two-stream
network architecture based on the popular encoder-decoder network [8]. It takes
the multi-modal images and condition as two inputs and merges them in the fea-
ture level. This network contains stride-2 convolutions, residual blocks [6] and
fractionally-strided convolutions (1/2 stride). We use 6 blocks for the input size
of N × H ×W , where N , H and W are the number of modalities, height and
width of the images respectively. The input images and availability conditions
pass through two encoders and are merged in the last feature layer before the
decoder. PatchGANs [8] is used for the discriminator network, which classifies
the patch features maps to real or fake, instead of using a fully-connected layer.

Training Details We apply two recent techniques to stabilize the training
of the model. First, for Ladv (Eq. 2), we replace the negative log likelihood
objective by a least-squares loss [12]. Second, to reduce the model oscillation [5],
we update the discriminators using a history of generated images rather than the
ones produced by the latest generators, as proposed in [14]. Thus we put the 25
previously generated images in an image buffer. We set λrec = 10 in Equation
3 for all the experiments. We use the Adam solver [10] with a batch size of
5. All networks were trained from scratch with a learning rate of 0.0002 and
for 20 epochs. When given n input modalities, for each epoch the parameters in
both generator and discriminator are updated for 2n-1 times given 2n-1 training
subsets of input modalities excluding empty set.

2.3 Expert Rating and Evaluation Protocol

Quantitative evaluation of generated images in terms of standard scores for errors
and correlation remains a debatable task [2]. Additionally, the evaluation with
common metrics such as PSNR and MAE [15] would not tell us to whether the
algorithm captures clinically relevant small substructures. Therefore, we strive to
get experts’ estimates of the image quality. We design a multi-rater quality evalu-
ation experiment. Neuro-radiologists rated the images in a browser-application.



In each trial, they were provided with two images. On the left side, one real
source image of a T1 or Flair images is presented. On the other side, a paired
image of the target modality is shown which is either a real image or a generated
one. The displayed paired images were randomly chosen in the pool of generated
images and real images. This particular setup enables the experts to identify
very small inconsistencies or implausibilities between the two images immedi-
ately. For evaluation, the doctors were asked to rate the plausibility of the image
on the right based on the real image on the left. To rate the plausibility, they
were asked to assign a 6-star rating, where 6 stars denoted a perfectly plausible
image and 1 star a completely implausible image. The images were presented in
280 trials. The sequence of trials was randomized across participants.

3 Experiments

Datasets Dataset 1 consists of 65 scans of patients with MS lesions from a
local hospital, acquired with a multi-parametric protocol, which includes co-
registered Flair, T1, T2, double inversion recovery (DIR) and contrast-enhanced
T1 (T1-c) after skull-stripping. The first three modalities are common modalities
in most MS lesion exams. DIR is a MRI pulse sequence, which suppresses signal
from the cerebrospinal fluid and the white matter, enhancing the inflammatory
lesion. T1-c is a MRI sequence which requires a paramagnetic contrast agent
(usually gadolinium) that reduces the T1 relaxation time and thereby increases
the signal intensity. Synthesizing DIR and T1-c is of clinical relevance because it
can substantially reduce medical costs. We mainly report our result on Dataset
1. Additional Dataset 2 is used for demonstrating our approach can work on
multiple datasets with incomplete and non-aligned modalities. It is a part of the
public MICCAI-WMH dataset [11], and includes 40 subjects with two modalities
(Flair and T1). 2D axial slices are used for training the network. All the slices
are cropped or padded to a uniform size of 240 × 240 and intensity values are
rescaled to [-1, 1].

Reconstructing DIR and T1-c from Common Modalities We perform
two image synthesis tasks on two clinically-relevant MRI sequences (DIR and
T1-c), using three common modalities (i.e., Flair, T1 and T2). We separate the
Dataset 1 into a training set, a validation set and a test set, resulting in 30 scans
(2015 slices for each modality) for training and 35 scans for testing (2100 slices
for each modality). To obtain the optimal hyper-parameters of the model, we
use 5 out of the 30 training scans as a validation set. A common approach for
quantitative evaluation of medical GAN images is to calculate relative errors and
signal to noise ratio between the synthetic image and the real image [15]. Table
1 shows the results of peak signal-to-noise ratio (PSNR)and mean absolute error
(MAE) by comparing the synthetic images and real T1-c and DIR images. For
the synthetic DIR and T1-c images, we report the highest PSNR and the lowest
MAE for a combined T1+T2+Flair input to our model. In the DIR synthesis
experiment, the listed scores of using multiple inputs to our GAN are comparable
(MAE 0.058-0.065). Whereas, the scores for single inputs are substantially worse
(MAE 0.073-0.084). For the T1-c synthesis task, we find that any combination
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Fig. 2: Samples of synthetic T1-c and DIR images given the combination of
T1, T2 and Flair modalities. Difference images are generated and visualized in
heat maps. Our generated images preserve the tissue contrast and the anatomy.
However, we find more differences in synthetic DIR images than in synthetic T1-
c ones, especially around the brain boundary. This could be due to the alignment
error by registration methods.

of multi-modal inputs involving the T1 modality (MAE 0.045-0.048) results in
better scores compared to other input. This indicates that our model successfully
extracts the relevant information, as T1-c is essentially a T1 scan with a contrast
enhancing agent. For comparison, we use CycleGAN [17] to perform one-to-one
cross-modality synthesis, the best results of CycleGAN were listed in Table. 1.
For DIR synthesis, using Flair images as the input of CycleGAN achieves the
highest PSNR and lowest MAE while for T1-c, using T1 as the input gets the
best performance. The proposed model outperforms CycleGAN in both tasks.
We further replace a part of the training Flair and T1 images in Dataset 1 with
images from Dataset 2 (totally 794 images for each modality) and we find the
result on same testing set is comparable to using the original Dataset 1.

Rating Experiment by Fourteen Experts Fourteen neuro-radiologists wiht
median 5+ years of professional experience participated and each of them eval-
uates 210 synthetic images and 70 original images. The 210 synthetic images
are generated enforcing 6 different input conditions in which each condition in-
cludes 35 samples. The rating results of the 14 raters are averaged and the
box plots of the results are shown in Figure 3. For the synthesis of T1-c im-
ages, we found that three multi-modal combinations (i.e., T1, T1+Flair and
T1+T2+Flair) gave comparable results, while the ones based solely on a Flair
were consistently rated as implausible. The plausibility of DIR images synthe-
sized with T1+T2+Flair input was rated in average 0.83 star higher than that
with solely T1 input. This is plausible as the DIR is a complex sequence con-
taining proprietary information, its synthesis thus benefits from multiple input



Table 1: Quantitative evaluation of our generated images compared to the real
DIR and T1-c images. We evaluate using PSNR and the mean absolute error
(MAE) across 2100 testing images. Results show that the generated images ben-
efit from a multi-modal input. ↑ indicates that the higher value corresponds to
better image quality.

.
DIR PSNR↑ DIR MAE↓ T1-c PSNR↑ T1-c MAE↓

CycleGAN [17] 17.34 0.068 20.36 0.045

DiamonGANT1 15.46 0.084 20.21 0.048
DiamonGANT2 15.99 0.073 19.34 0.054
DiamonGANFlair 16.16 0.078 17.15 0.068
DiamonGANT1+T2 17.41 0.065 20.75 0.046
DiamonGANT2+Flair 18.58 0.059 19.78 0.051
DiamonGANT1+Flair 18.02 0.062 20.40 0.047
DiamonGANT1+T2+Flair 18.63 0.058 20.86 0.045

Fig. 3: Box plots showing the rating scores of synthetic images and real ones for
T1-c modality on the left and DIR modality on the right. The means are shown
as black numbers. DiamondGAN achieves comparable plausibility levels for the
DIR modality.

sources. For the synthetic images with T1+T2+Flair input, the experts assigned
an identical rating to the synthetic and original images (4.54 stars vs 4.7 stars).

We conduct Wilcoxon rank-sum tests on the paired rating scores of synthetic
and real images from 14 raters on 6 conditions which results in 6 pairs of 14
observations. Results show that the pair of rating scores on synthetic DIR im-
ages by T1+T2+Flair input and real DIR images are not significantly different
(p-value = 0.1432) while all other pairs are significantly different (p-values <
0.0001). This demonstrates that trained radiologists are unable to distinguish
our synthetic DIR images from real ones. Furthermore, the experts ratings for
the individual conditions of synthetic images are in agreement with the metri-
cal evaluation in Table 1. For T1-c synthesis, the PSNR and MAE scores are
consistently good when T1 modality is fed to DiamondGAN.

4 Conclusion and Discussion

This work introduces a novel approach for medical image synthesis using multi-
ple non-aligned modalities, along with an extensive multi-rater experiment and



statistic tests. This multi-modal approach allows us to mine the structured in-
formation inside the existing extensive MRI sequences. Pathological evaluation
is the ultimate goal of this work. Our approach is evaluated by clinical part-
ners who contribute the datasets. We compared synthetic DIR sequence with
conventional FLAIR sequence in the detection task of MS lesions in a cohort
study. We show that the synthetic DIR images capture modality specific diag-
nostic features, reaching comparable results with real DIR images in detection
MS lesions. The results demonstrate that DiamondGAN which synthesizes DIR
sequence, has the potential to reduce medical costs.
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