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Abstract. We present a novel transfer learning approach to cross-camera
action recognition. Inspired by canonical correlation analysis (CCA), we
first extract the spatio-temporal visual words from videos captured at
different views, and derive a correlation subspace as a joint representa-
tion for different bag-of-words models at different views. Different from
prior CCA-based approaches which simply train standard classifiers such
as SVM in the resulting subspace, we explore the domain transfer ability
of CCA in the correlation subspace, in which each dimension has a dif-
ferent capability in correlating source and target data. In our work, we
propose a novel SVM with a correlation regularizer which incorporates
such ability into the design of the SVM. Experiments on the IXMAS
dataset verify the effectiveness of our method, which is shown to outper-
form state-of-the-art transfer learning approaches without taking such
domain transfer ability into consideration.

1 Introduction

Action recognition has been an active research topic for researchers in the areas
of computer vision and image processing. However, in practical scenarios, one
typically needs to deal with multiple cameras with different lighting, depression
angle, etc. conditions. Moreover, actions of interest might not be seen by a par-
ticular camera in advance, and thus no training data for that action is available.
Therefore, it is expected that most existing single-view action recognition ap-
proaches cannot be easily extended for cross-view action recognition due to poor
generalization [1].

While some researchers proposed to extract view-invariant representations
for cross camera action recognition (e.g., [2, 3]), transfer learning [4] has recently
been applied to address this problem [5, 6]. The purpose of transfer learning is
to transfer the knowledge observed from one or few source domains to the target
domain, so that the task in the target domain (e.g., predicting the action of
interest captured by a new camera) can be solved accordingly.

Based on canonical correlation analysis (CCA) [7], we present a transfer
learning based approach (via CCA) for cross camera action recognition. Our
method aims at determining a correlation subspace as a shared representation
of action models captured by different cameras. However, the correlation between
the projected source and target view data will be different in each dimension of
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Fig. 1. The scenario of cross-camera action recognition. Note that instances in circles
and triangles are actions captured by the source and target view camera, respectively.
Our approach aims at utilizing labeled training data (colored circles) at the source view
and unlabeled data pairs (in gray) from both views for recognizing unseen actions (in
white) at the target view.

this subspace, depending on the corresponding correlation coefficient. Therefore,
we need to take such domain transfer ability into consideration when designing
the classifier in this joint subspace. We propose a novel SVM formulation, which
incorporates such ability into classification in the joint subspace, so that the
unseen actions at the target view can be projected and recognized accordingly.
As shown in Figure 1, we focus on the scenario of using labeled data captured
by the source camera for training (i.e., colored instances in Figure 1), and no
training data is available at the target view. The unlabeled instance pairs (shown
in gray in Figure 1) are collected from both views for transfer learning purposes
([5, 6] also have this requirement). Later in our experiments, the effectiveness of
our proposed method will be verified.

2 Related Work

2.1 Action Recognition

One can divide existing works on action recognition into two categories: human
body modeling and action representation [8]. The former aims at tracking joints
of human body model and recognizing actions by predicting poses [9], while the
latter utilizes spatial and temporal information for recognizing the associated
action (e.g., spatiotemporal curvatures of 2D trajectories [2] or space-time vol-
umes [10]). Inspired by the use of bag-of-words models for image classification,
researchers also advocate the extraction of spatio-temporal descriptors [11, 12]
for constructing the corresponding bag-of-words model for recognition. In such
cases, actions are thus described by histograms of visual words.

2.2 Cross-View Action Recognition

For cross camera/view action recognition, only labeled instances collected by one
or multiple source view cameras are available for training. Since both training
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and test data at the target view cannot be seen in advance, this scenario makes
cross-view action recognition very challenging. Some researchers aim at designing
view-invariant representation [2, 3]. Alternatively, one can approach this problem
as solving a matching task according to the quality of recovered geometry [13].

Recently, transfer learning has attracted the attention from researchers, and
it has been successfully applied to cross-camera action recognition. The goal of
transfer learning is to first learn a model to distinguish between different actions
using training (labeled) data Ds

l from the source view domain X s ∈ Rds . Once
this model is observed, transfer learning aims at mapping this model into the
target view domain X t ∈ Rdt by utilizing unlabeled instance pairs (Ds

u,Dt
u) col-

lected by cameras at both source and target views. Generally, these approaches
focus on determining a shared representation for both views when representing a
data instance. For example, Farhadi and Tabrizi [5] propose to learn split-based
features for source-view frames based on local data structure. They convert such
features to the corresponding frames at the target view, so that actions at the
target view can be encoded and recognized accordingly. However, their method
requires the assumption that the local data structures at two domains are con-
sistent, which might not be practical. Li and Zickler [14] characterize the source
and target domains as two points on a Grassmann manifold, and they take the
sampled points between them (along the geodesic) as the shared feature rep-
resentation. Their approach considers data in different feature spaces lie on a
low-dimensional manifold, and thus implicitly assumes their local structures are
similar. Besides the implicit assumption of similar local structures for both do-
mains, another concerns for the above methods is the requirement of ds = dt,
i.e., the feature dimensions of source and target domains must be the same,
which also limits their practical uses. Recently, Liu et al. [6] advocate to con-
struct a bilingual codebook as a shared feature representation for both domains.
With unlabeled data collected from both domains, their approach learns a shared
codebook for two views in terms of a bipartite graph, and the bilingual words
are obtained by spectral clustering. Although this approach does not require
similarities of local data structure and allows features dimensions of the two
views to be different, the shared feature attributes are considered to be equally
important, which may not be preferable if the (shared) features extracted from
each domain have uncoordinated contributions.

3 Our Proposed Method

3.1 Learning Correlation Subspace via CCA

The idea of applying transfer learning for cross-view action recognition is to
determine a common representation (e.g., a joint subspace) for features extracted
from source and target views, so that the model trained from the source-view
data can be applied to recognize test data observed at the target view. Among
existing methods [15, 5, 16, 6], canonical correlation analysis (CCA) is a very
effective technique. It aims at maximizing the correlation between two variable
sets [15, 16] and thus fits the goal of this work.
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Fig. 2. Transfer learning via CCA [15]. Note that Ps and Pt are the projection matrices
derived by CCA.

For the sake of completeness, we briefly review CCA as follows. Given two
sets of n centered unlabeled observations Xs = [xs

1, . . . ,x
s
n] ∈ Rds×n and Xt =

[xt
1, . . . ,x

t
n] ∈ Rdt×n (xs

i ∈ Ds
u and xt

i ∈ Ds
u) in source and target views re-

spectively, CCA learns the projection vectors us ∈ Rds and ut ∈ Rdt , which
maximizes the correlation coefficient ρ:

max
us,ut

ρ =
us>Σstu

t√
us>Σssus

√
ut>Σttut

, (1)

where Σst = XsXt>, Σss = XsXs>, Σtt = XtXt>, and ρ ∈ [0, 1]. As sug-
gested by [16], us in (1) can be solved by a generalized eigenvalue decomposition
problem:

Σst(Σtt)
−1Σ>stu

s = ηΣssu
s. (2)

Once us is obtained, ut can be calculated by Σ−1tt Σstu
s/η. In practice, regular-

ization terms λsI and λtI need to be added into Σss and Σtt to avoid overfitting
and singularity problems. As a result, one solves the following problem instead:

Σst(Σtt + λtI)−1Σ>stu
s = η(Σss + λsI)us. (3)

Generally, one can derive more than one pair of projection vectors {us
i}di=1 and

{ut
i}di=1 with corresponding ρi in a descending order (i.e., ρi > ρi+1). Thus,

the source (target) view data Xs (Xt) projected onto us (ut) will lie in the
correlation subspace X c ∈ Rd, which is spanned by {vs,t

i }di=1.
Figure 2 shows a CCA example for cross-view action recognition. Given data

of three action classes in source and target views (X s and X t), CCA determines
projection matrices Ps = [us

1, . . . ,u
s
d] ∈ Rds×d and Pt = [ut

1, . . . ,u
t
d] ∈ Rdt×d.

Once the correlation subspace X c ∈ Rd is derived, unseen test data at the target
view can be directly recognized by the model trained from the source view data
projected onto X c.

3.2 Domain Transfer Ability of CCA

As discussed in Section 3.1, unseen test at the target view can be first projected
onto the CCA correlation subspace X c, and thus the model learned from the
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source view data at this subspace can be applied for recognition. It is worth
repeating that each dimension vs,t

i in this subspace is associated with a different
correlation coefficient ρi; the higher ρi is, the closer the projected data from
different domains are. It is obvious that, a better domain transfer ability is
resulted for the dominant dimensions vs,t

i with larger ρi, and thus one should
take such ability into consideration when designing a classification model in this
correlation subspace.
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Fig. 3. Projecting source and target view instances from the IXMAS dataset into
different correlation subspaces using projection vectors with different ρ.

Figure 3 illustrates this issue by projecting source and target view data onto
different 2D correlation subspaces, in which one subspace is associated with (vs,t

i

and vs,t
i+1) with higher ρ, and the other one is constructed by (vs,t

j and vs,t
j+1) with

smaller ρ values. The dash lines represent the classifier learned from projected
source view data (since no labeled data in the target domain is available). From
Figure 3(a), we see that the location of projected source and target data with
the same label are close to each other, since the two basis vectors correspond to
larger ρ values. On the other hand, as shown in Figure 3(b), the distributions of
projected source and target view data are different due to a lower ρ. As a result,
the classifier learned from projected source view data (i.e., the dash lines) cannot
generalize well to the projected target view ones. In other words, poorer domain
transfer ability will result in increased recognition error, even the classifier is
well designed using the projected source view data.

To overcome such limitations for CCA in transfer learning, we advocate the
adaptation of the learning model based on the domain transfer ability. Based
on the formulation of support vector machine (SVM), we propose a new SVM
formulation which takes such ability into account, and it can be applied to
address cross-view recognition.

3.3 The Proposed SVM Formulation

Generally, if the ith feature attribute exhibits better discrimination ability, the
standard SVM would produce a larger magnitude for the corresponding model
(i.e., a larger |wi|). As discussed earlier, transfer leaning via CCA does not take
the domain transfer ability into account when learning the classifiers in the
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correlation subspace and thus degrades the recognition performance. To address
this problem, we introduce a correlation regularizer and propose a novel SVM
formulation which integrates the domain transfer ability and class discrimination
in a unified framework. Due to the introduction of such ability, the generalization
of our SVM for transfer leaning will be significantly improved.

The proposed SVM solves the following problem:

min
w

1

2
‖w‖22 + C

N∑
i=1

ξi −
1

2
r>Abs(w) (4)

s.t. yi(〈w,Ps>xs
i 〉+ b) + ξi ≥ 1, ξi ≥ 0, ∀(xs

i , yi) ∈ Ds
l ,

where Abs(w) ≡ [|w1|, |w2|, . . . , |wd|] and r ≡ [ρ1, . . . , ρd] is the correlation vec-
tor in which each element indicates the correlation coefficient of CCA for each
projection dimension. Note that only labeled source domain data xs

i ∈ Ds
l is

available for training (not target domain data), and yi is the associated class
label. Parameters C and ξ are penalty term and slack variables as in the stan-
dard SVM. We have Ps>xs

i as the projection of source domain data xs
i onto

the correlation subspace Xc. The proposed term r>Abs(w), which is introduced
for model adaptation based on CCA, can be regarded as a similarity measure
for r and w. More precisely, a smaller correlation coefficient ρi would enforce
the shrinkage of the corresponding |wi|, and thus suppresses the learned model
along the ith CCA projection vector; on the other hand, a larger ρi favors the
contribution of the associated |wi| when minimizing (4).

Since it is not straightforward to solve the minimization problem in (4) with
Abs(w), we seek the approximated solution by relaxing the original problem into
the following form:

min
w

1

2
‖w‖22 + C

N∑
i=1

ξi −
1

2
(r� r)>(w �w) (5)

s.t. yi(〈w,Ps>xs
i 〉+ b) + ξi ≥ 1, ξi ≥ 0, ∀(xs

i , yi) ∈ Ds
l ,

where � indicates the element-wise multiplication. We can further simplify (5)
as:

min
w

1

2

d∑
i=1

(1− ρ2i )w2
i + C

N∑
i=1

ξi (6)

s.t. yi(〈w,Ps>xs
i 〉+ b) + ξi ≥ 1, ξi ≥ 0, ∀(xs

i , yi) ∈ Ds
l .

We refer to (6) as our proposed SVM formulation. Recall that 0 < ρi < 1 in
CCA, so that the convexity of the proposed objective function is guaranteed. It
can be seen that, depending on the derived correlation coefficients, the formu-
lation in (6) is effectively weighting each component of the regularization term
accordingly. As a result, this modified SVM automatically adapt the derived
classification model w based on the domain transfer ability of CCA, and thus
it exhibits better generalization in recognizing projected unseen test data in the
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correlation subspace (as confirmed by our experiments). The decision function
for classifying unseen test data at target domain is shown as follows:

f(x) = sgn (〈w,Pt>xt〉+ b), (7)

where Pt projects the input test data xt from the target domain onto the cor-
relation subspace Xc.

4 EXPERIMENTS

4.1 Dataset and Experiment Settings

We consider the IXMAS multiview action dataset [3] which contains action
videos of eleven action classes. Each action video is performed three times by
twelve actors, and the actions are synchronically captured by five cameras, as
shown in Figure 4. For a fair comparison with recent works such as [6], we ex-
tract descriptors defined by [11] and describe each action video as a group of
spatio-temporal cuboids (at most 200). For each view these cuboids are quan-
tized into N = 1000 visual words. As for data partition, we randomly choose
two thirds of the video instances in each class as unlabeled data, and the rest are
labeled data for training purposes. We follow the leave-one-action-out strategy
as [6] did, which means we consider only one unseen action class at the target
view to be recognized, and we exclude all instances of that class at both views
when selecting the unlabeled data. The regularization terms λs and λt in (3) are
both empirically set as 50. Instead of using a predetermined dimension number
d (as [16] did), we select vs,t

i with the corresponding correlation coefficient ρi
above 0.5 for spanning the correlation subspace, and only the labeled data pro-
jected from the source view to this subspace are used for training. We repeat the
above setting for each action class of interest, and report the average recognition
performance in Figure 5.
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Fig. 4. Example actions of the IXMAS dataset. Each row represents an action at five
different views.
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4.2 Discussions

To compare our performance with other approaches, we consider the methods
of direct prediction using classifiers learned at the source view (i.e., standard
BoW without transfer learning), the bag-of-bilingual-words (BoBW) model pro-
posed in [6], and CCA [15]. We note that, the above three approaches apply the
standard SVM after deriving the feature representation for training/testing. To
argue that our SVM can be extended to other methods based on joint feature
representations, we also consider a variant of BoBW [6]; more specifically, we
first compute the correlation between the source and target view data in terms
of the derived BoBW, and apply our SVM with the correlation regularizer using
the associated correlation coefficients (i.e., BoBW + our SVM in Figure 5).

A B C D E F A B C D E F A B C D E F
cam0 9.29 60.96 63.03 63.18 63.23 64.90 11.62 41.21 50.76 56.97 56.67 60.61
cam1 10.71 58.08 59.70 66.72 65.40 70.25 7.12 33.54 38.03 57.83 61.97 59.34
cam2 8.79 52.63 49.34 57.37 58.33 62.47 6.67 50.86 45.79 59.19 59.60 61.87
cam3 6.31 40.35 44.44 65.30 61.87 66.01 9.75 33.59 33.27 46.77 48.43 52.68 5.96 41.26 43.99 61.36 63.74 61.36
cam4 5.35 38.59 40.91 54.39 51.52 55.76 9.44 37.53 37.00 53.59 49.24 55.00 9.19 34.80 38.28 57.88 57.88 60.15
avg. 7.79 47.41 48.60 60.95 59.28 63.62 8.79 45.73 44.77 55.68 55.13 58.61 8.47 37.70 42.77 58.51 60.06 60.37

-
-

camera0 camera1 camera2

-

A B C D E F A B C D E F
cam0 7.78 39.65 41.36 63.64 57.37 62.17 7.12 24.60 37.02 43.69 42.22 48.23
cam1 12.02 35.91 39.14 48.59 46.92 54.85 8.89 26.87 22.22 44.24 41.36 49.29
cam2 6.46 41.46 42.78 60.00 61.31 61.46 10.35 28.03 33.43 45.05 46.11 51.82
cam3 8.89 27.53 28.28 40.66 41.01 41.06
cam4 9.60 27.68 34.60 48.03 45.51 48.89
avg. 8.96 36.17 39.47 55.06 52.78 56.84 8.81 26.76 30.24 43.41 42.68 47.60

camera4

-
-

camera3

Fig. 5. Performance comparisons on the IXMAS dataset. Note that each row indicates
the source view camera (for training), and each column is the target view camera
for recognizing the unseen action class. We consider the methods of A: BoW without
transfer learning [11], B: BoBW [6], C: BoBW + our SVM, D: CCA + linear SVM
[15], E: CCA + nonlinear SVM, and F: our proposed framework (CCA + our SVM).

From Figure 5, we see that the method without transfer learning (i.e., columns
A) achieved the poorest results as expected. While the BoBW model (columns
B) and the approach of CCA (columns D) remarkably improved the performance
by determining a shared representation for training/test, the use of our SVM for
BoBW (columns C) produced comparable or better results than the simple use
of BoBW did, and the integration of CCA with our proposed SVM (columns
F) achieved the best performance. Comparing the results shown in columns C
and F, although our SVM taking the correlation of the source and target view
data was able to improve the recognition performance, it would still be desirable
to derive such correlation from a correlation-based transfer learning approach
such as CCA. This explains why our approach combining CCA and imposing
the resulting correlation coefficient into the proposed SVM formulation achieved
the best recognition performance.

We further investigate the effectiveness of the proposed SVM over the stan-
dard one in terms of domain transfer ability. Figure 6(a) and (b) show the aver-
aged value |wi| of each attribute in the standard and our SVM models using the



Title Suppressed Due to Excessive Length 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12

(a) (b)

Fig. 6. Comparisons of the averaged |wi| values: (a) standard SVM and (b) our pro-
posed SVM. The horizontal axis indicates the index of the dimension in the correlated
subspace (arranged according to the associated correlation coefficients in a descending
order). The vertical axis shows the associated |wi| values. The recognition rates for the
two SVMs on recognizing the action “get-up” are 47.22% and 77.78%, respectively.

IXMAS dataset, respectively. From Figure 6(a), we see that the standard SVM
aims at separating data the in the correlated subspace without considering the
domain transfer ability (i.e., the correlation between projected data), and thus
we still observe prominent |wi| values at non-dominant feature dimensions (i.e.,
the 11th dimension). On the other hand, in Figure 6(b), our proposed SVM sup-
presses the contributions of non-dominant feature dimensions in the correlated
subspace, and thus only results in large |wi| values for dominant feature dimen-
sions. The actual recognition rates for the two models were 47.22% and 77.78%
for the action “get-up.” Such a significant recognition improvement verifies that
the leaning and enforcement of domain transfer ability of our proposed SVM
model are preferable for transfer learning based cross-view action recognition.
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Fig. 7. Average recognition rates at different target views for each action category.

Figure 7 compares the recognition performance of each action for different
target views. As expected, we observe that the transfer of recognition models is
more challenging for certain actions/views (e.g., cross-arms, wave, etc. actions
only with movements of arms). In general, camera 4 (top view) obtains the
lowest recognition rate, and it is mainly due to the ambiguity between different
torso-associated actions observed at this view.
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5 Conclusions

We proposed a transfer learning based approach to cross-camera action recogni-
tion. By exploring the correlation subspace derived by CCA using unlabeled data
pairs of source and target view data, we presented a novel SVM formulation with
a correlation regularizer. The proposed SVM takes the domain transfer ability
into consideration when designing the classifier at the correlation subspace. As
a result, only projected and labeled training data from the source view are re-
quired when designing the classifier in the resulting subspace (i.e., no training
data at the target view is needed). Experimental results on the IXMAS dataset
confirmed the use of our proposed framework for improved recognition, and we
verified that our approach outperformed state-of-the-art transfer learning algo-
rithms which did not take such domain transfer ability into consideration.
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