

4th International Workshop on Video Event Categorization, Tagging and Retrieval (VECTaR), in conjunction with ECCV 2012

Recognizing Actions Across Cameras by Exploring the Correlation Subspace

Chun-Hao Huang, Yi-Ren Yeh, and Yu-Chiang Frank Wang Research Center for IT Innovation, Academia Sinica, Taiwan

Oct 12th, 2012

- Introduction
- Our Proposed Framework

Learning Correlation Subspaces via CCA

Domain Transfer Ability of CCA

SVM with A Novel Correlation Regularizer

- Experiments
- Conclusion

Introduction

• Our Proposed Framework

Learning Correlation Subspaces via CCA

Domain Transfer Ability of CCA

SVM with A Novel Correlation Regularizer

- Experiments
- Conclusion

Representing an Action

• Spatio-temporal interest points

[Laptev, IJCV, 2005]

- Actions are represented as high-dim vectors.
- Bag of spatio-temporal visual word model.
- State-of-the-art classifiers (e.g., SVM) are applied to address the recognition task.

[Dollár et al., ICCV WS on VS-PETS, 2005]

Cross-Camera Action Recognition

Colored: labeled data Hollowed: test data

 Models learned at source views typically do not generalize well at target views.

Cross-Camera Action Recognition (cont'd)

Target view

One branch of transfer learning

Colored: labeled data Hollowed: test data Gray: unlabeled data

- An unsupervised strategy:
- ✓ Only unlabeled data available at target views.
- They are exploited to learn the relationship between data at source and target views.

Approaches based on Transfer Learning

- To learn a common feature representation (e.g., a joint subspace) for both source and target view data.
- Training/testing can be performed in terms of such representations.
- How to exploit <u>unlabeled data</u> from *both* views for determining this joint subspace is the key issue.
- Previous approaches:
 - 1. Splits-based feature transfer [Farhadi and Tabrizi, ECCV '08]
 - Requires frame-wise correspondence
 - 2. Bag of bilingual words model (BoBW) [Liu *et al.*, CVPR '11]
 - > Considers each dimension of the derived representation to be equally important.

Introduction

Our Proposed Framework

Learning Correlation Subspaces via CCA

Domain Transfer Ability of CCA

SVM with A Novel Correlation Regularizer

• Experiments

Conclusion

Overview of Our Proposed Method

Requirements of CCA

unlabeled actions observed by **both** cameras

Colored: labeled data Hollowed: test data Gray: unlabeled data

......: unlabeled data pairs (observed at both views)

Learning the Correlation Subspace via CCA

- CCA aims at maximizing the correlation between two variable sets.
- Given two sets of *n* centered unlabeled observations :

$$\mathbf{X}^{s} = \begin{bmatrix} \mathbf{x}_{1}^{s}, \dots, \mathbf{x}_{n}^{s} \end{bmatrix} \in \mathbb{R}^{d_{s} \times n} \quad \text{and} \quad \mathbf{X}^{t} = \begin{bmatrix} \mathbf{x}_{1}^{t}, \dots, \mathbf{x}_{n}^{t} \end{bmatrix} \in \mathbb{R}^{d_{t} \times n}$$

CCA learns two projection vectors u^s and u^t, maximizing the correlation coefficient ρ between projected data, i.e.,

$$\max_{\mathbf{u}^{s},\mathbf{u}^{t}} \rho = \frac{\mathbf{u}^{s^{\top}} \mathbf{X}^{s} \mathbf{X}^{t^{\top}} \mathbf{u}^{t}}{\sqrt{\mathbf{u}^{s^{\top}} \mathbf{X}^{s} \mathbf{X}^{s^{\top}} \mathbf{u}^{s}} \sqrt{\mathbf{u}^{t^{\top}} \mathbf{X}^{t} \mathbf{X}^{t^{\top}} \mathbf{u}^{t}}} = \frac{\mathbf{u}^{s^{\top}} \boldsymbol{\Sigma}_{st} \mathbf{u}^{t}}{\sqrt{\mathbf{u}^{s^{\top}} \boldsymbol{\Sigma}_{st} \mathbf{u}^{s}} \sqrt{\mathbf{u}^{t^{\top}} \boldsymbol{\Sigma}_{tt} \mathbf{u}^{t}}}$$
where $\boldsymbol{\Sigma}_{tt} = \mathbf{X}^{t} \mathbf{X}^{t^{\top}}, \quad \boldsymbol{\Sigma}_{st} = \mathbf{X}^{s} \mathbf{X}^{t^{\top}}, \quad \boldsymbol{\Sigma}_{ss} = \mathbf{X}^{s} \mathbf{X}^{s^{\top}}$ are covariance matrices.

CCA Subspace as Common Feature Representation

- Introduction
- The Proposed Framework

Learning Correlation Subspaces via CCA

Domain Transfer Ability of CCA

SVM with A Novel Correlation Regularizer

- Experiments
- Conclusion

Domain Transfer Ability of CCA

- Learn SVMs in the derived CCA subspace...Problem solved?
 Yes and No!
- <u>Domain Transfer Ability</u>:
 - In CCA subspace, each dimension $\mathbf{V}_i^{s,t}$ is associated with a different ho_i
 - How well can the classifiers learned (in this subspace) from the projected *source view data* generalize to those from the *target view*?

- Introduction
- The Proposed Framework

Learning Correlation Subspaces via CCA

Domain Transfer Ability of CCA

SVM with a Novel Correlation Regularizer

- Experiments
- Conclusion

Our Proposed SVM with Domain Transfer Ability

• Proposed SVM formulation:

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{i=1}^{N} \xi_{i} - \frac{1}{2} \mathbf{r}^{\top} \operatorname{Abs}(\mathbf{w})$$

5

- s.t. $y_i\left(\left\langle \mathbf{w}, \mathbf{P}^{s^{\top}}\mathbf{x}_i^s\right\rangle + b\right) + \xi_i \ge 1, \quad \xi_i \ge 0, \quad \forall \left(\mathbf{x}_i^s, y_i\right) \in D_l^s$
 - The introduced correlation regularizer $\mathbf{r}^{\mathsf{T}} \mathsf{Abs}(\mathbf{w})$: $\mathsf{Abs}(\mathbf{w}) \equiv [|w_1|, |w_2|, ..., |w_d|] \text{ and } \mathbf{r} \equiv [\rho_1, \rho_2, ..., \rho_d]$
 - Larger/Smaller ρ_i

 \rightarrow Stronger/smaller correlation between source & target view data

 \rightarrow SVM model w_i is more/less reliable at that dimension in the CCA space.

- Our regularizer favors SVM solution to be dominant in reliable CCA dimensions (i.e., larger correlation coefficents ρ_i imply larger |w_i| values).
- Classification of (projected) target view test data:

$$f(\mathbf{x}) = \operatorname{sgn}\left(\left\langle \mathbf{w}, \mathbf{P}^{t^{\top}} \mathbf{x}^{t} \right\rangle + b\right)$$

An Approximation for the Proposed SVM

- It is not straightforward to solve the previous formulation with Abs(w).
- An approximated solution can be derived by relaxing Abs(w):

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{i=1}^{N} \xi_{i} - \frac{1}{2} (\mathbf{r} \circ \mathbf{r})^{\top} (\mathbf{w} \circ \mathbf{w})$$

s.t. $y_{i} (\langle \mathbf{w}, \mathbf{P}^{s \top} \mathbf{x}_{i}^{s} \rangle + b) + \xi_{i} \ge 1, \quad \xi_{i} \ge 0, \quad \forall (\mathbf{x}_{i}^{s}, y_{i}) \in D_{l}^{s}$

where \odot indicates the element-wise multiplication.

• We can further simplify the approximated problem as:

$$\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{d} (1 - \rho_i^2) w_i^2 + C \sum_{i=1}^{N} \xi_i$$

s.t. $y_i \left(\left\langle \mathbf{w}, \mathbf{P}^{s \top} \mathbf{x}_i^s \right\rangle + b \right) + \xi_i \ge 1, \quad \xi_i \ge 0, \quad \forall \left(\mathbf{x}_i^s, y_i \right) \in D_l^s$

- We apply SSVM* to solve the above optimization problem.
 - *: Lee et al., Computational Optimization and Applications, 2001

- Introduction
- The Proposed Framework
 - Learning Correlation Subspaces via CCA
 - Domain Transfer Ability of CCA
 - SVM with a Novel Correlation Regularizer
- Experiments
- Conclusion

Dataset

- IXMAS multi-view action dataset
 - Action videos of eleven action classes
 - Each action video is performed three times by twelve actors
 - The actions are captured simultaneously by five cameras

Experiment Setting

1/3 as labeled data: Training and testing

2/3 as unlabeled data: Learning correlation subspaces via CCA

Experimental Results

- A: BoW from source view directly
- B: BoBW + SVM [Liu *et al*. CVPR'11] •
- C: BoBW + our SVM

- D: CCA + SVM
 - E: our proposed framework (CCA + our SVM).

(%)	camera0					camera1					camera2				
	А	В	С	D	Е	А	В	С	D	Е	А	В	С	D	Е
c0	-				9.29	60.96	63.03	63.18	64.90	11.62	41.21	50.76	56.97	60.61	
c1	10.71	58.08	59.70	66.72	70.25			-			7.12 33.54 38.03 57.83 59				59.34
c2	8.79	52.63	49.34	57.37	62.47	6.67	50.86	45.79	59.19	61.87	-				
c3	6.31	40.35	44.44	65.30	66.01	9.75	33.59	33.27	46.77	52.68	5.96	41.26	43.99	61.36	61.36
c4	5.35	38.59	40.91	54.39	55.76	9.44	37.53	37.00	53.59	55.00	9.19	34.80	38.28	57.88	60.15
avg.	7.79	47.41	48.60	60.95	63.62	8.79	45.73	44.77	55.68	58.61	8.47	37.70	42.77	58.51	60.37

			camera3	5	camera4					
	А	В	С	D	Е	А	В	С	D	Е
c0	7.78	39.65	41.36	63.64	62.17	7.12	24.60	37.02	43.69	48.23
c1	12.02	35.91	39.14	48.59	54.85	8.89	26.87	22.22	44.24	49.29
c2	6.46	41.46	42.78	60.00	61.46	10.35	28.03	33.43	45.05	51.82
c3			-		8.89	27.53	28.28	40.66	41.06	
c4	9.60	27.68	34.60	48.03	48.89	-				
avg.	8.96	36.17	39.47	55.06	56.84	8.81	26.76	30.24	43.41	47.60

Effects on The Correlation Coefficient ρ

- We successfully suppress the SVM model $|W_i|$ when lower ρ is resulted.
- Ex: source: camera 3, target: camera 2, left-out action: get-up

• Recognition rates for the two models were 47.22% and 77.78%, respectively.

- Introduction
- The Proposed Framework
 - Learning Correlation Subspaces via CCA
 - Domain Transfer Ability of CCA
 - SVM with A Novel Correlation Regularizer
- Experiments
- Conclusion

Conclusions

- We presented a transfer-learning based approach to crosscamera action recognition.
- We considered the domain transfer ability of CCA, and proposed a novel SVM formulation with a correlation regularizer.
- Experimental results on the IXMAS dataset confirmed performance improvements using our proposed method.

Thank You!

