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{huangc,slobodan.ilic,navab}@in.tum.de, edmond.boyer@inria.fr

Abstract

This paper considers human tracking in multi-view set-
ups and investigates a robust strategy that learns online key
poses to drive a shape tracking method. The interest arises
in realistic dynamic scenes where occlusions or segmenta-
tion errors occur. The corrupted observations present miss-
ing data and outliers that deteriorate tracking results. We
propose to use key poses of the tracked person as multiple
reference models. In contrast to many existing approaches
that rely on a single reference model, multiple templates
represent a larger variability of human poses. They provide
therefore better initial hypotheses when tracking with noisy
data. Our approach identifies these reference models online
as distinctive keyframes during tracking. The most suitable
one is then chosen as the reference at each frame. In addi-
tion, taking advantage of the proximity between successive
frames, an efficient outlier handling technique is proposed
to prevent from associating the model to irrelevant outliers.
The two strategies are successfully experimented with a sur-
face deformation framework that recovers both the pose and
the shape. Evaluations on existing datasets also demon-
strate their benefits with respect to the state of the art.

1. Introduction

Marker-less human motion capture consists in tracking
human shape and pose using visual information. This has
become an important research area with many applications
in motion analysis or digital content production. Perhaps
the most widespread approach to solve this problem is to
deform a pre-defined reference surface so as to fit data de-
rived from image observations, e.g. silhouettes or 3D points.
This model-based strategy has demonstrated a good success
over the past few years [6, 11, 12, 15, 18, 21], because of its
ability to enforce strong consistencies over time through the
prior models of shape and deformation.

However, this strategy still relies on the assumption that
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Figure 1. Our approach recovers the shape and the pose of the
subject despite missing data (top row) and outliers (bottom row)
whereas other approaches (top: [6] and bottom: [17] + [18]) fail.

image observations are complete and relevant, i.e. they do
not describe another shape. In practice, it appears to be dif-
ficult to maintain such assumption when considering more
realistic dynamic scenarios and with fewer constraints on
the capture environment. As shown in Fig. 1, top row, back-
ground subtraction is often erroneous with the consequence
of missing data, e.g. the missing arm. Another type of er-
rors occurs when image observations describe a shape that
is not in consideration, and can therefore mislead the sur-
face as well, e.g. the chair in Fig. 1 bottom row. Our aim
is to propose an alternative strategy that better handles such
situations and hence contributes to the general objective of
unconstrained human motion tracking in real environments.

Our framework is inspired by keyframe-based methods,
e.g. [20] in camera/object tracking, and by non-sequential
surface registration methods [4, 14]. In these works the
tracking task is eased by reducing the discrepancy between
the model and the input data to be matched. We exploit a
similar idea that consists in having multiple reference shape
models that can be fit to the observations. Numerous exist-
ing approaches rely on a one-fit-all strategy where a single
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reference model is deformed to fit to all observations. This
strategy is likely to fail when observations describe a shape
significantly different from the model, due to the presence
of missing data or outliers. Instead, we propose to build a
set of reference models called keyframes, which correspond
to several representative shapes and poses that have been
explored during tracking. They are identified online using
mean-shift clustering and without the need for offline pre-
processing. At each frame, the best keyframe is chosen as
the reference model. We combine this strategy with a robust
surface deformation method. Comparisons with the state-
of-the-art confirm the advantages of this approach with real
and inaccurate data.

This paper has several contributions. First we introduce
the notion of keyframes in 3D human motion tracking, and
further propose a keyframe-based tracking framework that
updates the keyframe pool incrementally. Second, a new
outlier rejection method is presented with the benefit of high
integrability into previous probabilistic surface deformation
framework. Both contributions increase the robustness and
significantly limit the impact of missing data and outliers.
To evaluate our method, we recorded new sequences that
include static outliers. To the best of our knowledge, none
of the current public dataset presents such feature.

2. Related work

Existing methods that track human poses and shapes
generally express the problem as maximum a posteriori
(MAP) estimation which involves a data term modeling the
likelihood of the estimation and a regularization term mod-
eling the adequacy to the prior information. Methods differ
then by the input data and the assumed prior knowledge.

2.1. Data term

Data terms measure how well the model explains the ob-
servations. In general, silhouettes, point clouds, and photo-
metric information are considered for this purpose.

Silhouettes. Many approaches deform the model such
that the contour of the projected surface coincides with
the contour of the observed silhouettes, e.g. [7, 11, 18, 21].
In [11], Gall et al. consider also photometric information
to establish 3D-2D model-data correspondences. Later
in [15], additional image segmentation information are
used to differentiate multiple interacting subjects. In these
works, silhouette overlap error is often regarded as a stan-
dard error measure, which is sensible only when silhouettes
are accurate and fully describe shapes. Also note that dis-
tances in 2D images do not necessarily reflect distances in
3D and small errors along the silhouette contour can cor-
respond to large distances in 3D. As a result, some authors,
e.g. [6,12] advocate for considering 3D points as input data.

Point clouds. Given a set of points reconstructed from
multiple silhouettes, i.e. [9, 10], some authors first estimate
correspondences between the model and the 3D observa-
tions, and then deform the model accordingly. Although
the reconstruction suppresses artifacts resulting from 2D
noise, it also introduces new errors, such as missing body
parts or fake geometry elements like ghost limbs. To ro-
bustly track in the presence of outliers, Huang et al. [12]
train a linear support vector machine (SVM) that classifies
the input data into different body parts. Outliers are then
rejected based on the posteriors given by the SVM classi-
fier. This approach depends heavily on the classifier, and
is time-consuming since the SVM must be trained at each
frame. In [6], Cagniart et al. model outliers as an additional
component of a Gaussian Mixture Model (GMM) equipped
with a uniform distribution defined a priori. The adjustment
of this distribution is however difficult and has a strong in-
fluence on the results. We propose a more robust outlier
rejection that does not depend on user defined parameters.

2.2. Regularization term

Evolving a surface with discrete observations is ambigu-
ous by nature and some prior information on the model
is usually required. This information varies from genera-
tive spatial shape models to discriminative models that are
learned from already known shapes and poses.

Spatial shape models. Several works employ Laplacian
coordinates [16] to preserve local shapes, e.g. [11,18], while
others define a rigidity term that serves similar purposes,
e.g. [5]. Note that all these methods refer to a single static
reference shape to constrain local deformations. This refer-
ence shape model is usually in rest pose and built prior to
the tracking [6, 7, 21]. However, the observations can sig-
nificantly deviate from the reference model along time. The
shapes and poses that were already recovered during track-
ing can help in that respect, which motivates the multiple-
keyframe tracking framework presented in this paper.

Learned deformation models. A few works also make
benefit from pre-collected information to help the tracking.
They seek to learn the possible deformations in advance to
regularize the results. In a non-sequential strategy, Budd
et al. [4] and Klaudiny et al. [14] assume that the com-
plete input sequence is available beforehand and they find
the best order to traverse it using a minimum spanning tree
algorithm. Duveau et al. [8] propose a supervised learn-
ing strategy that regularizes the results based on the learned
distribution in a latent parameter space. These methods re-
quire a pre-processing step either to build a shape-similarity
tree from the input sequence [4, 14], or to learn a low-
dimensional representation from the gathered motion train-
ing data [8, 19].
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Figure 2. (a-c): reference model. (d): observations. (a) is a sur-
face with Nv vertices. In (b) the surface is decomposed into Np

patches. (c) shows a rigged skeleton with Nj joints, and the asso-
ciations between vertices and joints. (d) is a point cloud with Ny

points. Typically, Nv ≈ 4K, Np ≈ 150, Nj = 15, and Ny ≈ 9K.

Our multiple-keyframe approach also exploits temporal
information. As opposed to the mentioned approaches, we
learn the reference models online in an unsupervised man-
ner and do not require any preliminary step. Note anyway
that our framework could also take advantage of already
tracked sequences and generate the keyframe pool offline.

3. Overview
In this section we state our problem and give an overview

of the proposed method. At every time frame t, a point
cloud Yt = {yti}i=1:Ny

is reconstructed from silhouettes
using EPVH [9]. yti is a 6D vector that contains 3D spa-
tial coordinates y and normal coordinates. The goal is to
deform a reference model such that it fits the observations
Y . Our model comprises a reference triangle surface and
an intrinsic skeleton. We adopt the patch-based model pro-
posed in [5], where vertices are grouped intoNp patches, as
shown in Fig. 2(b). Our skeleton is a tree structure of Nj

nodes (3D joints) and the root is set at the pelvis, as shown
in Fig. 2(c). The skeleton is rigged into the mesh using
Pinocchio [2], which gives the associations between ver-
tices v and joints j. Deformations are parameterized with
respect to: (i) the shape of the surface; (ii) the pose of the
skeleton. The shape parameters Θ = {(Rk, ck)}k=1:Np

are the orientation and position pair for each patch k and
encode the deformation of the reference mesh model. The
pose parameters J = {xj}j=1:Nj are the 3D joint positions
of the skeleton. Given the parametrization, the problem is
formulated as the maximization of the joint probability dis-
tribution of the data and model:

max
Θ,J

P (Y,Θ,J ). (1)

This above distribution can be decomposed into P (Y|Θ) ·
P (J |Θ) · P (Θ), which represents respectively the likeli-
hood of the shape given the observations, the probability of
the pose given the shape, and the prior knowledge on shape
deformations. Hence Eq. 1 can be rewritten as:

min
Θ,J

[Er(Θ) + Ebone(Θ,J )− ln P (Y|Θ)], (2)
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Figure 3. Illustration of multi-keyframe advantages. (a) reference
surface of Skirt [11] as the first keyframe. (b) second keyframe
identified at t = 95. At t = 102, the left arm is missing in the
observations, as in Fig. 1. Using (a) as the reference yields (c)
while using (b) yields (d).

where Er(Θ) = − lnP (Θ) is the rigidity energy in [6] and
Ebone(Θ,J ) = − lnP (J |Θ) is the bone-binding energy
in [12], both of which behave like regularization terms. The
likelihood P (Y|Θ) is similar to [6] and uses Gaussian Mix-
ture Model (GMM) where every patch explains every ob-
servations yi according to:

P (yi|Θ) =

Np+1∑
k=1

ΠkP (yi|zi = k,Θ). (3)

zi is the latent variable for each yi: zi = k means that yi is
generated by the mixture component associated with patch
k. Πk = P (zi = k|yi,Θ) represents the probability that
patch k explains observation yi. For each patch, when the
closest vertex vki with a compatible normal vector exists,
the likelihood that yi is generated by the k-th component is
modeled as a multivariate Gaussian with a mean located at
the position xvk

i
of vki and isotropic variance; otherwise the

likelihood is a negligible number ε:

P (yi|zi = k,Θ) =

{
N (yi|xvk

i
, σ2) if vki exists

ε otherwise.
(4)

Solving Eq. 2 yields both the pose and the shape. In
[6], the tracking over a complete sequence is achieved by
deforming the model on a frame-by-frame basis. That is,
using (Θt−1,J t−1) as the initialization to solve Eq. 2 at
frame t. To increase the robustness of this framework with
respect to missing data and outliers better, we propose two
methods that improve the deformation prior P (Θ) (Sec. 4)
and the likelihood P (Y|Θ) (Sec. 5), respectively.

4. Multiple keyframe tracking framework
The rigidity energy Er(Θ) enforces neighboring patches

to keep the original local configurations they have on the
reference model, usually the shape at a given time t (e.g.
t = 0). However, such local configurations do not always
match with the current frame. This is particularly critical
with missing data since patches without close observations
tend to keep a possibly wrong prior reference configuration,
as illustrated in Fig. 3.



Algorithm 1 Keyframe-based human motion tracking
1: F ← {0}, Ψ← {(Θ0

0,J 0)}
2: Overall shape parameters Θt

0 ← {(I, c0
k)}k=1:Np

.
3: for t in timeFrames do
4: Choose the reference model fref based on Yt.
5: Θt−1

fref
← Θt−1

0 ∗ (Θfref
0 )−1

6: With (Θt−1
fref

,J t−1) as initialization, solve Eq. 2 to
obtain (Θt

fref
,J t).

7: Θt
0 ← Θt

fref
∗Θfref

0

8: if new keyframe detected then
9: Update F and Ψ.

10: end if
11: end for

Therefore, to effectively handle missing data, we intro-
duce a framework that exploits multiple reference models
or keyframes. While already used in image tracking [20],
keyframes have not yet, as far as we know, been applied to
3D human motion tracking problems. Multiple keyframes
correspond to different instances of a shape that better rep-
resent the shape variability than a single pose at a given
frame t. Our framework learns online keyframes and, at
each frame, selects the best one as the reference model to
be fitted to the observations. Let F = {fm}m=1:nf

denote
the keyframe pool where fm is the frame index and nf is the
total keyframe number, and let Ψ = {(Θfm

0 ,J fm)}m=1:nf

denote the corresponding parameter set. Our keyframe-
based tracking method is summarized in Alg. 1, where
Θf

0 corresponds to the accumulated rotation and translation
from t = 0 to t = f , and (Θf

0 )−1 represents the inverse
transformation. Allowing for different reference models en-
ables different prior knowledge to be taken into account in
the rigidity energy Er(Θ). Two crucial steps in Alg. 1 are:

• Line 4: how to select the best reference model from the
keyframe pool?

• Line 8: when to add a new keyframe in the pool?

We tackle the former issue with shape dissimilarity and the
latter with key pose detection. More details are elaborated
in the following two subsections.

4.1. Keyframe detection

We first explain how new keyframes are added (i.e.
Line 8 in Alg. 1). The essence of the multiple keyframe
strategy lies in its ability to identify and record, during
tracking, new local patch configurations. When the ob-
served shape takes a pose at t that is very different from
the reference pose, it is worth considering adding a new
keyframe corresponding to frame t. Such analysis can be
performed offline if knowledge on the shape poses is avail-
able prior to tracking. However, we consider here the more

ℝ42 
# clusters: 1 
t : 6 

0 

6 

# clusters: 2 
t : 9 

0 5 8 6 

# clusters: 2 
t : 8 ℝ42 ℝ42 

0 

6 6 

0 

(a)  (b)  (c)  

only 5 instances  
remain 

Figure 4. Illustration of Algorithm 2. (a): time frame t = 6,
F = {0}, and flast = 0. (b): t = 8, F becomes {0, 6}, and
flast becomes 6. (c): t = 9, F = {0, 6}, and flast = 6. Only 5
instances (9− 6 + 2) are left for mean-shift.

generic situation with little prior knowledge and where
keyframes are detected online during tracking.

Pose descriptor. In order to incrementally identify dis-
tinctive poses, the previously-obtained skeleton poses J are
explored. For each new pose J t, the pelvis of the skele-
ton is aligned to the global origin. The 3D coordinates of
the remaining 14 joints are then concatenated to form a 42-
dimensional human body pose vector v. Aligning the pelvis
to the origin cancels the global position and similar poses
at different locations get similar representations. Here the
skeleton is not rotated into a canonical direction and v still
encodes orientation, which may not be a desirable attribute.
We address this issue later. Similar poses yield vs that are
close in R42 whereas different poses correspond to vs that
are distant. Using this descriptor, we cast the key pose de-
tection as a clustering problem in R42. In this scenario, the
number of clusters is supposed to be the output of the clus-
tering technique and not a prior knowledge. Hence mean-
shift clustering naturally appears as a well adapted solution.

Mean-shift based key pose detector. Assume nf
keyframes are already identified. Intuitively, there should
be also nf clusters of poses. When a new pose vector v
is obtained, mean-shift is performed and returns a number
of clusters nc. If nc = nf , the number of clusters has not
changed and we proceed to the next frame. If nc = nf + 1,
it means that the shape pose has changed enough to justify
a new cluster of poses. In general, poses in the same clus-
ter also distribute closely in the time domain. Hence, start-
ing from the current frame and going backward, the transi-
tion frame t̃ where the new cluster starts is determined (e.g.
t̃ = 6 in Fig. 4(b)) and added as a new keyframe to F ; its
pose (Θt̃

0,J t̃) being added to Ψ. Fig. 4 illustrates this prin-
ciple, where flast is the last element included in the keyframe
set. The algorithm is sketched in Alg. 2, where Line 3 to 9
correspond to Line 8 to 10 in Alg. 1.

Note that, in general, t̃ 6= t but t̃ < t, which means that
new keyframes are created online with some delay. For ex-



Algorithm 2 Mean-shift-based key pose detector
1: Compute the bandwidth. Last keyframe flast ← 0
2: for each new incoming pose J t do
3: De-pelvis the skeleton to obtain vt ∈ R42.
4: De-pelvis all J f in Ψ and obtain VF = {vf}.
5: Do mean-shift clustering on {vflast+1 . . .vt} ∪VF .
6: if the number of clusters = nf + 1 then
7: Add transition frame t̃ to F and (Θt̃

0,J t̃) to Ψ.
8: flast ← t̃
9: end if

10: end for

ample, in Fig. 4(b), frame at t = 6 is detected as a keyframe
with a 2 frame delay since in Fig. 4(a), v6 is still in clus-
ter no. 1. When a new keyframe at t̃ is added, all the pose
vectors before t̃, except the existing keyposes, are left out
for further clustering (e.g. see Fig. 4(c)). This brings two
advantages: first, the number of poses considered for clus-
tering, i.e. (t−flast +nf ), is significantly reduced compared
to the full set of poses; second, if a pose re-appears during
tracking, the new collected vt is very likely to be clustered
with existing keyframes, avoiding this way the occurrence
of duplicated keyframes.

Mean-shift bandwidth. One concern with Alg. 2 is the
bandwidth of mean-shift. A small bandwidth leads to many
clusters while a large bandwidth gives few clusters. Since
the intrinsic scale of the pose variation varies among se-
quences, an automatic way to determine this bandwidth
is desirable. We achieve this using virtual pose vectors.
Specifically, the de-pelvised skeleton model at t = 0 is ro-
tated for 360◦ with steps of 10◦, creating Ns = 36 virtual
pose vectors accordingly. Although they map to different
points in R42, it is reasonable to cluster them together since
they actually correspond to a single pose. We thus compute
all
(
Ns

2

)
pairwise distances and set the bandwidth as the half

of their maximum. This way we ensure that they converge
to the same mode with mean-shift. Recall that when a pose
vector v is built from the estimated skeleton J , only the po-
sition is canceled but not the orientation. Using the above
bandwidth, we expect pose vectors that differ only by a ro-
tation to be clustered together hence canceling the rotation
as well. More analysis on the influence of the bandwidth
are presented in the experiment section.

4.2. Choosing the best keyframe

Given a new set of observations Y , the problem is now to
determine the best keypose in F to be matched to these ob-
servations (Line 4 in Alg. 1). When the shape associated to
such a keypose is close to the observed shape Y , it simpli-
fies the estimation of the shape parameters and reduces the
chances to fall in local minima. Therefore, we apply a shape

similarity criterion to select the best keypose. This criterion
uses shape histograms [1] to describe 3D shapes and the L2

distance between normalized histograms as the dissimilar-
ity measure [13]. The keyframe that presents the smallest
dissimilarity with Y is chosen as the reference frame.

5. Patch-based outlier modeling
Besides missing data, sometimes point clouds contain

false segmented foreground as the chair in Fig. 1 bottom
row. In order to be robust to such outliers, care must
be taken when designing the likelihood function P (Y|Θ).
Note that the association of an observation yi to a patch,
i.e. Eq. 4, applies only for zi = k ∈ [1, Np] and that
zi = Np + 1 is a special case introduced to model the
outliers yi that are not explained by any patch. However,
there is no physical outlier patch in the model to be asso-
ciated to. In [6], Cagniart et al. use a uniform distribution
to model P (yi|zi = Np + 1,Θ) which basically assumes a
certain proportion of the observations to be outliers and re-
quires therefore some ad-hoc knowledge. Here we present
a patch-based outlier modeling technique that takes into ac-
count spatial information and is based on the fact that the
observations at frame t usually lie in the vicinity of the es-
timated surface at frame t− 1.

Before modeling the general outlier event zi = Np + 1,
we first consider the outlier event just for patch k, denoted
asOk. The likelihood between yi andOk can be interpreted
as how “bad” yi is explained by patch k. Since Eq. 4 ex-
presses how well patch k explains yi under shape parameter
Θ, we define the likelihood P (yi|Ok,Θ) as:

P (yi|Ok,Θ) ≡ 1− P (yi|zi = k,Θ)

=

{
1−N (yi|xvk

i
, σ2) if vki exists

1− ε otherwise.
(5)

Eq. 5 also expresses, given shape parameter Θ and from the
point of view of patch k, how likely yi is to be an outlier.
Checking over all patches how poorly they explain yi, and
assuming independence between Ok, we can approximate
the overall outlier likelihood as:

P (yi|zi = Np + 1,Θ) ≈
Np∏
k=1

P (yi|Ok,Θ). (6)

From Eq. 6, we see that observations that are well explained
by patches can not be outliers, where [6] considers equal
chances for each observation to be an outlier. Fig. 5 illus-
trates this strategy. Fig. 5(a) and (b) shows the reference
model represented in patches and body parts respectively.
In [12], Huang et al. train a linear SVM on Fig. 5(b) ob-
tained at t− 1 to classify Yt into different rigid body parts,
as shown in Fig. 5(c). Chair observations are classified as



Sequence Views Frames Outlier Mis. data Err. metric Keyframe pool Bandwidth Compared approaches

Skirt [11] 8 720 -
√

A 0, 95, 198 0.31 [6], [11] (1st stage)
Dance [11] 8 574 -

√
A 0, 201 0.41 [6], [11] (1st stage)

Basketball [6] 8 1330 dynamic
√

- 0, 29 0.41 -
Fighting [15] 12 500 dynamic

√
B 0, 20, 59, 74 330.25 -

WalkChair 9 148 static
√

A & C 0, 32, 54 0.50 [6], [12], [17] + [18]
HammerTable 9 93 static - A & C 0, 21 0.44 [6], [12], [17] + [18]
SideSit 9 97 static - C 0, 21 0.50 [6], [12], [17] + [18]

Table 1. Sequences used for evaluation. We apply three different error measures, depending on the provided ground truth. A: silhouette
overlap error. B: distances in R3 between makers and associated vertices. C: distances in pixels with annotated joint positions.
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(e)  

(c)  
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Figure 5. Comparison of outlier rejection in [12] (c-d) and ours
(g-h). (a-b): reference surface colored in patches and body parts,
respectively. (c): point cloud classified into body parts using the
SVM trained on (b) from the previous frame, as suggested in [12].
(d): corresponding outlier likelihood from SVM. (e-f): two exam-
ples of Eq. 5. (g): point cloud colored based on Eq. 6. (h): points
with outlier likelihood higher than 0.5 are colored in red.

body parts because of the linear assumption of SVM. If we
consider the SVM output for the outlier likelihood, as in
Fig. 5(d), we cannot distinguish between chair and human
observations. However, our patch-based outlier modeling is
able to assign high values to chairs, as in Fig. 5(g), and to
identify them by simple thresholding.

Optimization We follow the optimization framework in
[6, 12] which alternates between estimating associations,
i.e. Eq. 3, and solving for the model parameters, i.e. Eq. 2.
These two steps correspond to the E-step and the M-step in
the Expectation-Maximization framework [3]. The advan-
tage of our outlier strategy is that it easily integrates into this
method. In practice, outliers are not removed once and for
all with hard thresholding, but Eq. 6 is substituted in Eq. 3.
This means that outliers are estimated during the EM opti-
mization, and that there is no need to add any other sophis-
ticated learning-based method to improve outlier rejection.

6. Experiment results
The method was evaluated on 4 publicly available se-

quences as well as on 3 new sequences: WalkChair, Ham-

Cagniart [6] Gall [11] Prev. ours
Skirt 7283 6900 7466 6715

Dance 7881 7600 fail 6940
Table 2. Average silhouette overlap error with different ap-
proaches. Image resolution: 1004× 1004. Note that comparisons
with [11] concern only their first stage results. Prev. are the results
obtained when using the previous frame as the reference model.
See Supplementary Material for more discussion.

merTable, and SideSit that contain static occlusions. These
sequences were recorded with 9 cameras at 1000 × 1000
resolution. The occlusion objects are considered as fore-
ground by the background subtraction and they remain in
silhouettes and hence appear in the resulting point cloud ob-
servations, as shown in Fig. 8(c) and (d). We manually an-
notate the joint positions in 5 cameras to evaluate the poses
of the skeleton. Due to the lack of realistic dynamic 3D sur-
face ground truth, we use silhouette overlap error to evaluate
the shape parameter estimation. If the occlusion objects are
separated from the human body in silhouettes, we manually
remove them and consider only the human parts as ground
truth. These sequences are available at the 4D Repository1.
To draw fair comparisons with other approaches, we do not
refine the surfaces with silhouettes after tracking. These 7
sequences serve different purposes in the experiments and
we summarize them in Table 1. Results are analyzed with
respect to missing data and outliers, both qualitatively and
quantitatively. In all the presented experiments, both the
multiple keyframes strategy and the outlier rejection mech-
anism were used.

6.1. Robustness to missing data

Skirt and Dance demonstrate the effectiveness of the
multiple keyframe strategy. The average silhouette overlap
error for these sequences is shown in Table 2. In [11], Gall
et al. refine the shape using silhouettes as a second stage of
their method. Such refinement could fail if occlusion ob-
jects are close to the subject and appear in the silhouettes
(e.g. Fig. 1 bottom row). We thus compare to their first
stage results only. In WalkChair, missing data can be ob-
served when the arms are too close to the torso. With the
shape at t = 0 as the reference model result in Fig. 6(a) are

1http://4drepository.inrialpes.fr/

http://4drepository.inrialpes.fr/


(a)  (c)  (b)  

Figure 6. Results of frame t = 119 in WalkChair, with and with-
out multiple keyframe strategy. Black dots are the observed point
cloud where right arm gets merged into the torso. (a): estimated
shape using surface at t = 0. (b): estimated shape at t = 32. (c):
estimated shape using (b) as the reference surface.

obtained. The right arm stays in its configuration at t = 0
since not enough observations support the patches on the
arm. Using another keyframe, as in Fig. 6(b), as the refer-
ence yields better result as shown in Fig. 6(c).

The influence of the mean-shift bandwidth. We report
here on the influence of the mean-shift bandwidth on key
pose detection and on the final tracking results. Tests were
conducted on Skirt, HammerTable, and Fighting with vary-
ing bandwidths. Results on the keyframe numbers as well
as on the corresponding errors are depicted in Fig. 7(a-c).
The first two sequences were chosen for the repeating ac-
tions and the third one for its different numerical scale,
see Fig.7(d). In general, small bandwidths lead to more
keyframes (green curves) and it appears that the errors (blue
curves) also decline as the bandwidth decreases. However,
small bandwidths have higher chances to identify tracking
failures as keyframes and therefore accumulate errors. This
explains why the error slightly rises when the bandwidth
gets really small. We noticed that due to the different nu-
merical scales, resulting from different recording setups,
there is no fixed bandwidth that guarantees the best perfor-
mance over the three sequences. This indicates that manu-
ally fixing the bandwidth is difficult. However, our strategy
considers the numerical scale of the sequence and adjusts
the bandwidth accordingly. This provides optimal or close
to optimal performance (red dots). Note also that in Skirt,
the subject raises up both arms and slowly rotates herself for
a while, which leads to many similar poses only differing in
orientations. As a result of our approach to cancel rotations,
and the way we perform mean-shift with VF , duplicate key
poses do not occur. Keyframe pools of all testing sequences
are shown in the Supplementary Material.

6.2. Robustness to outliers

Static outliers. WalkChair, HammerTable and SideSit
were used to demonstrate the robustness to outliers. Our ap-
proach was compared with [6], [12] and the tracking frame-
work proposed by Straka et al. ( [17]+ [18]). The silhou-
ette overlap error as well as the discrepancies between the

WlkChr. HmmrTbl.
Cagniart [6] 18482 fail
Huang [12] 18063 fail
Straka [17, 18] 12219 17285

ours 6803 3593
Table 3. Average silhouette overlap error of WalkChair (WlkChr.),
and HammerTable (HmmrTbl.) from different approaches.

WlkChr. HmmrTbl. SideSit
Huang [12] 24.6± 10.7 fail 75± 40

Straka [17, 18] 20.6± 22.0 64.2± 53.9 84.4± 59.3

ours 15.9± 6.3 10.1± 3.0 19.3± 7.9
Table 4. Average joint 2D re-projection error in pixels of
WalkChair (WlkChr.), HammerTable (HmmrTbl.), and SideSit.
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Figure 7. (a-c): performance and the number of keyframes v.s.
bandwidth. (d): the heights of the subjects in 3 sequences. Blue
curves are the corresponding error (left y-axis) while green curves
represent the number of keyframes (right y-axis). (a): Ham-
merTable. (b): Skirt. (c): Fighting. See text for more details.

projected skeletons and the manually annotated joint po-
sitions in 5 cameras were measured. As reported in Ta-
ble 3 and Table 4, our method attains consistently lowest
errors in both pose and shape estimations. It is worth not-
ing that in HammerTable, around 41% of the observations
are not from the human subject, but we still get decent re-
sults (see Fig. 8(c) and (d)). We notice also that when the
occlusions are closely touching the subject, it confuses the
method in [17] that deforms the skeleton model according
to the observed skeletal graph in the point cloud, and thus
the shape adaptation [18] cannot improve significantly the
results. Please refer to the Supplementary Material and the
accompanying video for more comparisons.

Dynamic outliers. Due to the lack of public datasets with
dynamic outliers, we evaluate our approach with two multi-
subject sequences where we track only one subject and con-
sider the others as outlier observations. For Basketball, the
human subject is tracked against the ball observations. For
Fighting, the subject with markers is tracked and the ob-
servations from the other subject are considered as outliers.
The results are shown in Fig. 8(a) and (b). First we con-



(b)  (a)  

(c)  

(d)  

Figure 8. Results of (a) Fighting, (b) Basketball, (c) SideSit, and
(d) HammerTable. Black dots represent the observed point clouds.

firm that without the outlier rejection strategy presented in
Sec. 5, the method in [6] fails with this experimental setting,
which is expected since it also fails to track against static
outliers as in Table 3. Following the metric in [15], our
approach attains 40.95 mm of average vertex position er-
ror with a standard deviation of 15.34 mm over 500 frames.
Although the corresponding error in [15] is 29.61 mm and
25.50 mm, respectively, we would like to point out that
their task is different from ours. Our objective is to ro-
bustly track in noisy environment whereas [15] simultane-
ously track two surfaces. Every observations is, in this case,
associated to a patch or a vertex, and thus outliers are not to
be considered. We observe anyway that, despite the pres-
ence of strong dynamic outliers (i.e. the ball and the second
subject), our approach still provide reasonable results.

Acknowledgment. We would like to thank Matthias
Straka from TU Graz for providing experimental results on
their methods as well as valuable discussions.

7. Conclusion
We present an approach that captures human perfor-

mances from multi-view video without markers. Consid-
ering realistic cases, we propose a multiple-keyframe-based
tracking framework that uses mean-shift clustering to up-
date a keyframe set online. A patch-based outlier modeling
method is also presented to identify outliers more efficiently
and effectively. Combining these two techniques into a sur-
face deformation framework increases the robustness and
enables the estimation of human shape and poses against
missing data and outliers. The reliability of the proposed
method is confirmed by the experiments on various public
sequences as well as newly recorded sequences. Future di-

rections include alleviating the requirement for background
subtraction by considering photometric information.
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