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Abstract

Local coordinate frame (LCF) is a key component de-
ployed in most 3D descriptors for invariant representations
of 3D surfaces. This paper addresses the problem of attach-
ing a LCF to non-rigidly deforming objects, in particular
humanoid surfaces, with the application of recovering cor-
respondences between the template model and input data
for 3D human motion tracking. We facilitate this by extend-
ing two current LCF paradigms for rigid surface matching
to the non-rigid case. Such an adaptation is motivated by
the assumption that interpolating locally rigid movements
often amounts to smooth globally non-rigid deformations.
Both approaches leverage spatial distributions, based on
signed distance and principal component analysis, respec-
tively. Furthermore, we advocate a new strategy that in-
corporates multiple LCF candidates. This way we relax
the requirement of perfectly repeatable LCFs, and yet still
achieve improved data-model associations. Ground truth
for non-rigid LCFs are synthetically generated by inter-
polating locally-rigidly transformed LCFs. Therefore, the
proposed methods can be evaluated extensively in terms of
repeatability of LCFs, robustness on estimating correspon-
dences, and accuracy of final tracking results. All the ex-
periments demonstrate the benefits of the proposed methods
with respect to the state-of-the-art.

1. Introduction

Top-down human motion tracking is the process of re-
covering temporal evolutions of humanoid template sur-
faces using visual information, such as image silhouettes or
3D points. Due to its recent success in marker-less human
motion capture (mocap), the field of applications ranges
from computer vision [9] and computer graphics [24] to
medical imaging [13]. In the 3D domain, input data is rep-
resented either by visual hulls from the 3D reconstruction,
or by point clouds obtained from range sensors. The track-
ing process generally consists of two steps. One first esti-

(a) correspondences estimation

(b) different ref. vector candidates

Figure 1: Coupled with forests as learning techniques, our
LCF approach provides plausible correspondences as in (a).
The invariance are achieved by considering multiple refer-
ence vectors that result in multiple LCFs as shown in (b).

mates the correspondences between the data and the model
as in Fig. 1(a). Given the estimated data-model associa-
tions, the template surface is deformed and fit to the ob-
served 3D points accordingly.

When the input data is severely deformed with respect
to the available template, discovering correspondences be-
tween them is not a trivial task. Several approaches [9, 22]
employ machine learning strategies, e.g. random forests [3],
to learn off-line from the training data, and then identify
correspondences directly on-line during tracking. In order
to learn with 3D meshes, the local geometry of each vertex
has to be described in advance. In the Graphics community,
several descriptors [1, 4, 21] have been designed for generic
deformable shape matching purposes. However, the com-
putational overhead as well as the sensitivity to noisy data,
which is common in visual observations, prevent them from
being applied for 3D human tracking. On the other hand, a
different class of 3D descriptors has been developed in the
Vision community, such as [6, 14, 15, 19, 23, 25] , with the
goal of matching rigid surfaces in noisy point clouds. One
essential trait of these methods is the employment of Lo-
cal Coordinate Frames (LCF): by attaching a LCF to each
point or vertex and describing the local neighborhood with
respect to the LCEF, feature representations can be invariant
to rotations. The efficacy of this strategy is recently con-
firmed again in [9], where they represent meshes in vol-
umes and apply regression forests to discriminatively dis-



cover dense correspondences. In this case, LCFs play the
role of selecting neighboring voxels adaptively. Ideally,
a good LCF is supposed to follow whatever transforma-
tions the meshes undergo, namely, as co-variant as possi-
ble, such that the consequent representations are as invari-
ant as possible. Nevertheless, misalignments are inevitable.
To dense data-model associations in human tracking, one
has to properly handle the trade-off between efficient-but-
loosely-attached LCFs and complex-but-repeatable LCFs.

In this aspect, the contribution of this paper is three-fold:
firstly, we exploit the assumption that surfaces tend to de-
form smoothly in space, and, as a result, dense non-rigid
deformation can be largely approximated by an ensemble
of locally rigid motions [5]. Thus, we explore LCF meth-
ods used for rigid surface matching and adapt them for non-
rigid humanoid surfaces, attaining more stable LCFs than
the one in [9]. Secondly, we incorporate multiple LCFs re-
sulting from distinct reference vectors as in Fig. 1(b) and
propose a more reliable representation that yields more ac-
curate correspondences. Finally, to evaluate our methods,
we again leverage the locally rigid approximation and gen-
erate ground truth LCFs for non-rigid humanoid meshes by
means of blending techniques.

2. Related work

This paper aims at developing a LCF-based approach
used for correspondence estimation in 3D human motion
tracking. In the following, the previous work is therefore
briefly reviewed and discussed from the two different per-
spectives of LCFs and 3D human motion tracking.

2.1. Local Coordinate Frame

LCFs are usually proposed with their 3D descriptor
counterparts. Here, we provide an overview, whereas a
comprehensive review and evaluation is available in [16].
Constructing a LCF consists in defining three orthonormal
vectors as [z, y, z] axes. To this end, the local geometry has
to be taken into account, involving all neighboring points p;
(hereinafter referred to as support) that lie within a sphere
of a certain radius centered at the feature point p. Cur-
rent approaches can be broadly classified into eigenvalue-
decomposition-based [14, 23], which establish three axes
at once, and methods that identify them one by one sepa-
rately [6, 9, 16, 17, 25].

The first category relies on computing the Principal
Component Analysis (PCA) or EigenValue Decomposition
(EVD) of the local spatial distribution of points. In [14], a
covariance (or scatter) matrix is constructed as:

k
=Y (pi-p)pi—p), (1)
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where p’ is the centroid of k£ 4 1 support points p;. Later

in [23], the centroid p’ is replaced with the feature point p
itself for higher efficiency. The contribution of each sup-
port point p; to the covariance matrix is also weighted by
its Euclidean distance to p. The three axes are provided
by the three normalized eigenvectors obtained from scat-
ter matrix decomposition. Conventionally, the one with the
largest eigenvalue (principal direction) is defined as the x
axis, while the one with the smallest eigenvalue is consid-
ered as the z axis. One of the major issue of these methods
is that EVD defines only the directions of the axes but not
their signs, which have to be disambiguated with additional
efforts. For instance, the sign of z axis is usually the one
that yields positive inner product with the surface normal n.

Another family of work defines three axes individu-
ally [6, 9, 16, 17, 25]. Typically, y axis is attained as z X x
to keep the orthogonality constraint. z axis is either the
surface normal vector itself [9], the averaged surface nor-
mal [25] across the 5-ring neighborhood, or the normal of a
fitted plane within a smaller support [6, 16, 17], where the
signs are again disambiguated by considering surface nor-
mals. More efforts are devoted to facilitate a stable x axis.
Some approaches [9, 16, 25] rely on higher order informa-
tion (normals or curvatures) to identify prominent geome-
try and determine the orientations of x axis. Instead of high
order information which is prone to be noisy in visual 3D
data, [6, 17] considers the signed distances of each support
point to the tangent plane defined by z axis, and yields more
repeatability as demonstrated in [17].

2.2. Correspondences in human motion tracking

Different strategies exist for the correspondence task.
Assuming close initializations, some approaches [5, 8, 20]
discover the associations by spatial proximity and then re-
fine the correspondences by iterating between the associa-
tion step and the parameter estimation step. These genera-
tive approaches can be regarded as the extensions of Itera-
tive Closest Point (ICP) algorithm [2]. Since in the track-
ing scenario, observations in successive frames usually lie
in vicinity, these methods often initialize using the previ-
ous frames, and the results are satisfactory if the proximity
assumption holds. Nonetheless, they also inherit the short-
comings of ICP, which are the slow convergence (because
of its iterative nature), and the error accumulation (due to
the heavy dependency on the previous outcome).

In contrast, discriminative approaches [9, 12, 22] utilize
formerly observed meshes as training data off-line, in order
to quickly establish the associations on-line. They make
use of machine learning techniques such as randomized
trees [9, 22] or Support Vector Machine [12]. Since the pre-
dictions are made frame-wise, they are in general less prone
to drift. However, as a downside shared among all learning
frameworks, they tend to fail on the unseen input data. In
other words, the pool of training meshes is suggested to be



sufficiently large to include all possible deformations.

Note anyway that these two strategies are actually com-
plementary to each other. One can always initialize dis-
criminatively in each frame and then refine the results gen-
eratively with a few ICP iterations, as shown in [18] and [9]
for 2.5D point clouds and full 3D visual hulls, respectively.
In this work, we are particularly interested in [9] because it
has demonstrated reasonably good correspondences using
features that deploy LCFs for non-rigid surfaces.

3. Method
3.1. Preliminaries and Overview

We first provide a overview of [9] and then outline our
method. A human surface is denoted as M = (M, 7),
where M = {x,})*;, C R3 are the locations of vertices
v, and T defines the triangles. To attach a LCF for each
vertex v, Huang et al. consider its normal n,, as z axis, and
search for a reference vector in a local cuboid to establish
x axis. Formally, the surface is first voxelized into a volu-
metric field N : Q3 C R® — R3, where each voxel v holds
either a unit-length normal n averaged from the containing
triangles, or a number indicating inside or outside:

+e if lies outside surfaces
n € [-1,+1]% if overlap with surfaces (2)
—€ if lies inside surfaces.

N(v) =

A vertex v is first mapped to a voxel v, !, by discretization
of the space. We consider a cubic support of neighbors cen-
tered on the voxel v,,, S C (13, as depicted in Fig 2(a). A
surface voxel v is selected based on the following criteria:

v = arg max (CZ—I— N(vv)TN(v)) . 3)

where d is the distance between v, and v, normalized with
respect to the size of cuboids. The projection of (Vv — v)
onto the plane define by n,, is then taken as x axis of the
LCEF. Finally, the y axis is obtained as z X z.

We retain the volumetric framework to keep the prop-
erty of organized data, i.e., accessing spatial neighbors sim-
ply by indexing without iteratively parsing the triangles like
nearest neighbor search. We also consider n, as z axis,
and obtain y axis as z x z. Differently, we pay more at-
tention on the characteristic voxel/vector for x axis. Eq. 3
favors the voxel that is far from the center voxel v,,, and yet
holds least normal changes. As an important trait of our ap-
proach, since it is well known that higher order information,

'With a slight abuse of notations, in the remainder of this paper, v refers
only to voxels that overlap with meshes (intersected with either vertices or
triangles), since the other two cases, inside and outside, are both not of our
interest. In particular, v, refers to voxels containing mesh vertices.

Figure 2: (a) visualizes the volumetric framework. Green:
voxel v, mapped by the current vertex v; pink: cuboid
neighborhood; red line: normal vector. (b) The LCF method
in [9] and EVD involve all the surface voxels (cyan) within
the cuboid, whereas (c) SignDist. considers only those ly-
ing on the border. Best viewed in colors and in pdf.

e.g. normals and curvatures in visual 3D data, are particu-
larly noise prone, we resort to rely on robust zeroth-order
information such as spatial distributions.

3.2. LCF Proposals

Analogous to what proposed in [9], the state-of-the-art
methods in the field of LCFs for rigid matching of 3D
meshes and point clouds mainly rely on the neighboring
points within a local support [6, 14, 15, 17, 23]. As re-
viewed in Section 2, the way they leverage spatial distri-
butions can in general be classified into two categories:
(1) EigenValue-Decomposition (EVD) [14, 15, 23], and (2)
signed distance (SignDist.) [6, 17]. In the following, we
propose an adaptation of both classes of methods to volu-
metric representations, so to be able to use them within the
human motion tracking framework.

EVD. Methods within this class define the LCF as the
principal directions of the point distribution within the sup-
port. Since the z axis is already defined, we project all the
Ny, support surface voxels v onto the plane defined by n,,
denoted as v. This way the resulting vectors defining the
principal directions lie naturally on the zy plane. It is given
by the normalized eigenvectors of the covariance matrix:

1

2 =
STN, -1

Y@= v)(¥—v,)T, 4)

veS

where S is the projection of all surface voxels falling within
the support. The centroid of S is replaced with the voxel
v, itself to speed up the computation, without decreasing
much repeatability as in [23]. The eigenvector of largest
eigenvalue is chosen as x axis. Note that at this point, the
sign of the z axis is not uniquely determined, due to the
inherent ambiguity of the sign of the eigenvectors obtained
from the EVD process [23]. Because of this, the computed
LCF might flip 180° along the z axis. Later in Sect. 4, we
will propose a specific feature to tackle this undesired effect,
so to make the overall approach invariant to such ambiguity.



SignDist.  This class of approaches look for a discerning
point within the support. As contrasted in Fig. 2(b-c), the
search involves typically only the peripheral points v lying
on the intersection of the cuboid border and the surface, un-
like EVD-based method where all points contribute to the
covariance matrix. The discernibility is defined as the max-
imum signed distance to the tangent plane [6].

We propose to adapt this idea to volumetric representa-
tions as follows:

Vv = arg max ((\7 — vU)TnU) . (5)
ves

where S is the intersection of the surface and the border of
local cuboids. The z axis is the projection of the vector di-
rected from v, towards v. Note that there is no guarantee
that the discerning point v from Eq. 5 is always repeatable:
in particular, if different directions yield similar values of
the signed distance, the x axis will be ambiguous, hence
the resulting LCFs could rotate about the z axis. Purposely,
we incorporate such an ambiguity in our new proposed fea-
tures to make our method robust to this phenomenon, as
explained in the next section.

4. Learning with multiple LCFs

As shown later in Section 5.2, the presented volumet-
ric adaptations of EVD (Eq. 4) and signed distance (Eq. 5)
generally yield a higher repeatability than the LCF origi-
nally employed in [9], despite the ambiguity associated to
the x axis of both approaches highlighted in the previous
section. Recall that the employment of LCFs is to introduce
invariance to 3D rotations of the deployed features, so as
to make the subsequent learning tasks easier. In these re-
gards, as intuitively easy to understand, computing locally
defined features which are not rotation invariant might have
a detrimental influence on learning.

However, a perfectly repeatable LCF is not only in-
tractable but also unnecessary. Conventionally, people pur-
sue repeatability to a certain extent, and let the learning al-
gorithms deal with the noise resulting from misalignments.
On the contrary, we persist in the ability of being invariant,
not through a stable LCF but via the derived representations
itself. Specifically, our main idea is, instead of devising a
robust x axis, to consider all possible distinctive candidates
- this yielding multiple LCFs associated to the same voxel -
and aggregate the corresponding feature values by averag-
ing them. This way we reduce the noise left for the learning,
and thereby increase the overall robustness of the method.
In the remaining of this section, we take the task in [9] as an
example, and demonstrate how to learn with multiple LCFs.

4.1. Learning framework

The task is to learn a mapping Y : Q3 — R that takes a
vertex voxel v, as input, and regress to a 3D point Y (v,),

3
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Figure 3: Signed distances in the local neighborhood. When
subject changes the pose, the shape of the profile remains
roughly unchanged, but presents a phase shift. See text for
more explanations. Best viewed in colors and in pdf.

denoted as y,. The mapping has a co-domain R?, but the
range Y (v, ) is only a 2-manifold subspace defined by the
vertex positions on a template surface. Such a mapping fa-
cilitates correspondence search between input meshes and
the template, because y, implies the locations of possible
matches of v on the template. Using regression forests [7],
the mapping is learned in advance with many voxelized
meshes that share the same topology.

We follow the features in [9], describing the local geom-
etry of each voxel v, by looking at their neighbors, repre-
sented by an offset pair ) = (01, 02) € Q3x3. To achieve
pose invariance, the neighbors have to be aligned to a LCF,
namely, orienting ) with a rotational matrix R defined by
the three axes of LCFs. The feature vector f(v,;R(%)))
takes the adjusted neighbors as parameters, and consider
their dot product of normals, the subtraction of volumet-
ric field N within local cuboids, and other operations in
different feature channels. During training, at each branch
node, many pairs of ¢ are randomly generated, aligned to
LCFs, and each channel of the resulting feature vectors f
are thresholded. Among all the combinations of neighbors
1, channel indices, and thresholding values, the one that
maximizes the information gain are saved. The trees keep
growing recursively until stopping criteria are met. We refer
interested readers to [7] and [9] for the theories of regression
forests, and more explanations on the feature f, respectively.

4.2. Averaged representation

The ambiguity of the x axis in both the EVD as well as
sign distance case leads to different LCFs, rotating around
the z axis (i.e. the vertex normal n,). Obviously, each LCF
results in a different pair of neighbors R(7}), and hence a
different feature vector f. Here, we first recall the source
of ambiguities for x axis as analyzed in Subsection 3.2, and
then propose a way to incorporate them systematically into
the averaged feature f'.
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Table 1: Sequences used in our experiments. Depending on
the evaluation tasks, we apply different error measures. A:
deviated angle. B: repeatability score as defined in [17]. C:
vertex index for correspondences.

EVD. The major concern of EVD-based methods is that
the sign of the principal component is ambiguous. For this
reason, every time we compute a feature vector f, we con-
sider two LCFs, obtained by using the same x axis but with
opposite signs, i.e. x7 and z~. In turn, this results in the
computation of two feature vectors f* and f~. The final
representation is the average of the two: ' = (f* +f7) /2.
In this way, we only require the direction of the x axis to be
repeatable, while we are completely independent from pos-
sible ambiguities about its sign.

SignDist.  In this class of methods, the x-axis ambiguity
stems from the variations of discerning points in the neigh-
borhood. When described as the Point Signature [6], the
profile of local geometry varies since the object move non-
rigidly. Still, it is worthwhile taking a closer look.

Fig. 3(a) shows a subject in two poses, where we select
several vertex correspondence pairs, highlighted in squares
with different colors. Fig. 3(b) further depicts the profiles
of these pairs in yellow (left mesh) and red (right mesh)
curves, respectively. One can see that when the subject de-
forms, the shapes of signatures remain largely similar, but
with a phase shift. The essence of SignDist-based method
is to identify the shifts, and reflect them on the rotations of
x axes along z axes. Nevertheless, as signatures appear to
be noisy, it is difficult to capture the shifts solely depending
on the voxel element yielding the global maximum of Eq. 5.

The possible remedy is, besides the voxel v yielding the
global maximum, to take into account also voxels yielding
the highest local maxima of the signed distance function,

i.e. a set of local maximizers {\Afi }z‘L:r In our implementa-
tion, such set is computed by retaining all border voxels
whose signed distance is, after non-maxima suppression,
above a certain threshold, up to a maximum number of L
elements. Given such a set of local maximizers, includ-
ing the global one, and the corresponding feature vectors f*
computed from the associated LCFs, the final feature is then

obtained as: )
!/ 7
' = 7 % f (6)

(a) original configuration

(b) deformed configuration

Figure 4: Ground truth LCFs are generated synthetically. A
LCEF is first computed in the original configuration in (a).
When the mesh deforms, the new LCF is the linear combi-
nation of the predicted LCFs from the neighboring patches.

In this way, if the majority of maximizers are repeatable in
presence of noise, the computed feature vector will also be
repeatable, independently from their relative order.

5. Experimental results

In this section, we evaluate our approach under two as-
pects. First, we verify the repeatability of the proposed
LCF methods by measuring how much they deviate from
the ground truth. Secondly, we demonstrate the benefits of
averaged LCF features for 3D human motion tracking by
measuring how much they improve the correspondence task
between input data and the template surface. The profiles of
our sequences are summarized in Table 1.

5.1. Ground truth generation

Due to the lack of ground truth LCFs from real vi-
sual data, we resort to synthetic transformations. For each
method to be evaluated, we first compute a LCF for each
vertex on the reference mesh MY, denoted as LC'F° and
depicted in Fig. 4(a). The mesh is then animated with a
data-driven patch-based approach [5], and the goal is to see
if the newly obtained LCFs follow such transformations.
This deformation framework models global non-rigidness
as a sparse set of control bases called patches that move lo-
cally rigidly. The animation is done by tracking with real
visual hulls as input, so that we have realistic deformations.

Specifically, a mesh is decomposed into several small
patches. Each patch & has a rigid body motion (Ry, ty).
When the mesh MY deforms into M, the new vertex posi-
tion is the linear combination of its transformed location and
all the predictions from the neighboring patches N}, visu-
alized as dot circles in Fig. 4(b). The final position of each
vertex is determined by interpolating their predicted loca-
tions from the neighboring patches, where the coefficients
oy, encode the desired physical property and are normalized
to sum up to 1. More details can be found in [5]. The at-
tached LC F° follows the same operations:

LCF, =R, LCF°, 7
LCF' = Z asLOF,. (8)
SEkUNk
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Figure 5: Error reported by the three evaluated LCF methods with varying cuboid sizes, measured in degrees. Left vertical

axes: error of x axes; right vertical axes: error of z axes.

In Eq. 7, it is rotated according to either its own rigid
body motion, or those from the neighboring patches. In
Eq. 8, multiple predictions, e.g. blue LCFs in Fig. 4(b),
are blended to yield the final local coordinate frame LC'F’
(all axes normalized to unit length), which is considered as
ground truth in our experiments.

5.2. LCF Repeatability

We compute our LCF methods, i.e. EVD (Eq. 4) and
SignDist (Eq. 5), for all vertices on M?, and check respec-
tively their discrepancies to the ground truth LC' F’ by com-
puting cosine scores as in [16]. Fig. 5 shows the results in
degrees for each sequences, aggregated by averaging across
every frame. For z-axes, all the approaches yield consis-
tently low errors regardless the radius of the cuboid. For
x-axes, on the other hand, the differences are more obvi-
ous. We see that the error suggests a monotonous decreas-
ing trend when the support gets larger. EVD has relatively
poor performance with small radius, due to the fact that the
support is insufficient to fully characterize the local point
distributions. SignDist. shares the same concern in small-
est cuboid size 7, but the error drops faster than EVD and
attains most of the time the best results also with respect
to [9]. In the remainder of this section, we always use the
largest cuboid size 15 for comparisons and analysis.

We also apply the repeatability score A in [17], which
is defined as the number of points whose cosine scores are
higher than a certain threshold 74, measured in percent-

age and averaged across every frames in the sequence. The
scores in varying thresholds are presented in Fig. 6. It ac-
tually reflects the angle errors in Fig. 5 faithfully. SignDist.
attains better (S1 and S2) or comparable (S3) repeatability
compared with [9]. This confirms that spatial distributions
are more reliable in 3D data than higher order information
such as normals used in [9]. On the other hand, we notice
that EVD does not always present such a merit (S3), which
is worth further investigation.

To understand why EVD performs badly in S3, we look
into the cosine scores for xz-axes, and plot the histogram in
Fig. 7(a). One can clearly see that a considerable portion
of vertices have scores less than —0.8, presenting a bimodal
distribution. This indicates that EVD method indeed suf-
fers from the sign-ambiguity and explains the low repeata-
bility score. It verifies the motivations of averaged repre-
sentation in Section 4, whose effectiveness is demonstrated
in the next sub-section. For SignDist, the similar problem
also exists but, as indicated in Fig. 7(b), is much less se-
vere. In Fig. 8, we visualize for each vertex of a 3D mesh
taken from the test sequences the angle error of z-axes in
colors and show the distribution of cosine scores for each
method. Overall, we can qualitatively observe how both
SignDist. and EVD attain in average better cosine scores
than [9]. Interestingly, while SignDist. has a more scattered
error, EVD shows a more piece-wise distribution (compare,
e.g., the left leg with the right leg), this highlighting the pre-
viously discussed disambiguation problem affecting EVD-
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Figure 6: Repeatability scores A on three subjects in varying thresholds 7'4. Cuboid size: 15.
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Figure 7: The distributions of cosine scores of x axes for
two different methods on Hammer and Cutting.

based LCFs. In addition, the plotted cosine distributions in
Fig. 8 again confirm the aforementioned discussions.

5.3. Correspondences prediction

In addition to previous results, we investigate how dif-
ferent LCF strategies influence surface matching in terms
of accuracy of the retrieved correspondences. The task is to
find correspondences between input meshes and the refer-
ence template MY, For each subject, we learn separate re-
gression forests using 3 LCF methods (length of cuboid side
15): Huang et al. [9], SignDist. (Eq. 5), and EVD (Eq. 4)
respectively. For the latter two cases, we also consider the
proposed extensions to averaged representation. To draw a
fair comparison, all the other parameters remain the same:
20 trees, 15000 testing neighbor pairs ¢ at each branch
node, and maximum tree depth 20. We consider the ani-
mated meshes M? as input data, where ground truth vertex
indices are available. The error measure here is the geodesic
distances on template surfaces MO,

If the geodesic distance between the estimated and
ground truth vertex indices is lower than a certain thresh-
old, we consider it as a correct match. Fig. 9 shows the
percentage of right matches in varying thresholds. We high-
light half of the length of lower arms in orange dashed line
for better interpretation of the estimated correspondences.
Two observations can be remarked. First of all, among the

3 approaches, SignDist. always yields more than 90% of
matches that falls within the range of half of lower arms
and achieve best results. Secondly, the averaged represen-
tations are consistently better than their counterparts. These
observations confirm that the proposed LCF methods im-
prove the state-of-the-art and furthermore, the strategy of
averaged LCF results in more invariant representations, and
hence better matching accuracy.

Although Heat Kernel Signature (HKS) [21] and Wave
Kernel Signature (WKS) [1] are rarely used for human mo-
tion tracking, as a complement to our results above, we any-
way evaluate them on our data since they are common base-
lines for generic deformable surface matching. We extract
HKS/WKS descriptors for all vertices on the input mesh,
and look on the reference surface for the vertex that has the
closest signature in the feature space. The results are pre-
sented in Fig. 10. Clearly, our method (averaged SignDist.)
attains better accuracy. The qualitative prediction results
are also shown in Fig. 11. One sees that, as expected, HKS
performs poorly on noisy data, whereas our method (av-
eraged SignDist.) again achieves visually more plausible
correspondences than HKS and [9]. We remark that the
comparisons with HKS/WKS here is only to help one in-
terpret how good the reported numbers are in the context of
shape matching, not to draw thorough comparisons. We ap-
ply user-specific forests as decision mechanisms, whereas
for HKS/WKS it is only nearest neighbor search.

Last but not least, since the end application is human
mocap, we evaluate the tracking results as well. Given the
data-model associations from the forests trained with dif-
ferent LCF approaches, we deform the template surfaces
using the method similar to [10]. Differently, we do not
run ICP refinements, so as to see the direct impact of corre-
spondences in the end results. The metric is the silhouette
overlap error that measures the discrepancy between the de-
formed reference surfaces and the silhouettes. As reported
in Fig. 12, the averaged LCF method always yield lower er-
rors than their counterparts. Moreover, both presented LCF
methods improve the tracking compared to the LCF in [10].
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Figure 9: Comparison of the correspondence error from dif-
ferent LCF strategies for all subjects.

6. Conclusion

In this paper, we propose a method attaching LCFs to
non-rigidly deforming surfaces, with the goal to facilitate
correspondence tasks in 3D human motion tracking. The
non-rigidness of human motions is approximated as the in-
terpolations of several locally-rigid motions. We then adapt
two LCF paradigms for rigid surface matching to the non-
rigid case. In addition, we incorporate the sources of unre-
peatability in learning, and present a more invariant repre-
sentation, sparing the efforts of devising robust LCFs and
yet maintaining the descriptiveness of features. Ground
truth LCFs are also produced locally rigidly. Our meth-
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Figure 10: Comparison of the correspondence error from
various descriptors for all subjects.
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Figure 11: Visual comparisons of correspondences.
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Figure 12: Comparisons of tracking error on Jumping. The
table shows the averaged silhouette overlap error across all
frames and all cameras. Image resolution: 1920 x 1080.

ods are thereby evaluated thoroughly, and the experiments
suggest that the proposed LCFs attain higher repeatability
than the state-of-the-art approaches, the new representations
from multiple LCFs yield improved correspondences than
their counterparts, and, in turn, better tracking results.
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