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Abstract

In this paper, we propose a new framework for 3D track-
ing by detection based on fully volumetric representations.
On one hand, 3D tracking by detection has shown robust
use in the context of interaction (Kinect) and surface track-
ing. On the other hand, volumetric representations have
recently been proven efficient both for building 3D features
and for addressing the 3D tracking problem. We leverage
these benefits by unifying both families of approaches into
a single, fully volumetric tracking-by-detection framework.
We use a centroidal Voronoi tessellation (CVT) representa-
tion to compactly tessellate shapes with optimal discretiza-
tion, construct a feature space, and perform the tracking
according to the correspondences provided by trained ran-
dom forests. Our results show improved tracking and train-
ing computational efficiency and improved memory perfor-
mance. This in turn enables the use of larger training
databases than state of the art approaches, which we lever-
age by proposing a cross-tracking subject training scheme
to benefit from all subject sequences for all tracking situa-
tions, thus yielding better detection and less overfitting.

1. Introduction
3D visual shape tracking aims to recover the temporal

evolution of a 3D template shape using visual information.
It finds applications in many domains including computer
vision, graphics, medical imaging, and has proven success-
ful for marker-less motion capture in recent years. A stan-
dard tracking process consists in an alternation of the fol-
lowing two steps. First, finding associations from each
primitive of the observed data, e.g. 3D points acquired from
camera systems, to corresponding primitives of the template
3D surface, typically based on the proximity in Euclidean
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Figure 1: We represent 3D shapes using centroidal Voronoi
tessellations. The volumetric cells of the observations are
matched to cells of the template.

space (ICP) [5] or a feature space. Second, given such as-
sociations, recompute the pose of the template under the
constraint of a deformation model, typically based on kine-
matic skeletons [14, 20, 24, 27], or the piecewise-rigid as-
sumption [2, 8], among others.

Recently, a number of alternative approaches and en-
hancements have been explored for both stages indepen-
dently. On one hand, progress has been made in the defor-
mation stage by introducing volumetric deformation models
instead of purely surface-based ones. Thanks to its inherent
local volume preservation property, this strategy has shown
significantly improved robustness to various tracking situ-
ations, such as shape folding and volume bias of observed
shapes. On the other hand, alternatives have also been pro-
posed for the association problem by discovering them dis-
criminatively using machine learning techniques [21, 24].
This in turn yields the possibility for 3D tracking techniques
that are robust to partial tracking failure, while also improv-
ing the rate of convergence. Although surface-based fea-
tures are used in many cases to describe local shapes and
construct the associations, volumetric features have proven
to be a promising direction for 3D shape description with
surface-based templates [16], which we generalize to a fully
volumetric pipeline.
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In this paper, we propose a unified volumetric pipeline,
where the shape representation, deformation model, feature
description, and primitive association are all built on a sin-
gle volumetric representation, the centroidal Voronoi tessel-
lation (CVT) [11]. Specifically, the observed and template
shapes are all tessellated as a set of uniform and anisotropic
cells (see Fig. 1), which bring benefits at all stages and yield
a volumetric representation of regular cell shape and con-
nectivity with controllable cell complexity.

While benefiting from local volume preservation proper-
ties inherent to this representation and the associated de-
formation model, we leverage the configurations of cells
to build volumetric distance fields which we use to con-
struct our volumetric feature space. On this basis, we pro-
pose a full framework to register a template shape to an
observed shape, as two generic CVT cell sets. Because
features are expressed in the volume, the proposed method
is well suited to obtain fully volumetric detections, in turn
helping the volumetric template tracking to be more robust.
Thanks to its significantly low memory footprint, we use the
representation to propose a multi-template learning frame-
work, where large training sets can be assembled from mul-
tiple tracked action sequences for several human subjects.
Specifically, every different subject’s template is mapped to
a generic, subject-agnostic template where the actual learn-
ing takes place, to benefit all subsequent tracked subjects.
This framework consequently yields better or comparable
detection and tracking performance than current state of the
art 3D temporal tracking or tracking by detection methods.

2. Related work
3D tracking by detection. The tracking by detec-
tion strategy applied to human skeletal poses estimation
(Kinect) [22] has shown robustness to tracking failure and
reasonable convergence efficiency in real-world applica-
tions. It was first transposed to the problem of 3D shape
tracking through the work of Taylor et al. [24] and presented
similar targeted benefits, with the initial intention to substi-
tute ICP-based optimization. The method achieves this goal
by learning the mapping from input 3D points from depth
sensors, to the human template surface domain, termed the
Vitruvian manifold. This yields discriminative associations
that replace the step of proximity search in ICP-based track-
ing methods. Variants of this work have explored chang-
ing the entropy function used to train random forests from
the body-part classification entropy to the variance on sur-
face embeddings for better data separation [20], or replac-
ing surface-based features with 3D volume features com-
puted on a voxel grid in a local coordinate frame [16].
Both increase the precision by finishing convergence with
an ICP-based loop after the discriminative association stage.
All these methods are nevertheless based on surface points,
thus relying on heterogeneous shape representations, defor-

mation models, target primitives and feature spaces. Our
proposal builds a unified framework for all these purposes
and takes advantage of volumetric tracking strategies as de-
scribed below. Also, we introduce a multi-template strategy,
where a template is assigned to each subject and mapped to
a generic template, allowing to learn from all subject mo-
tions sequences for the benefit of any subsequent subject
tracking task.

3D volumetric tracking. While many visual tracking
techniques employ skeletons [14, 27] or surface-based rep-
resentations [2, 17], volume-based representations have also
been proposed to address various issues. On one hand,
topology changes or online surface reconstructions are bet-
ter handled if surfaces are implicitly represented in volumes
as e.g. truncated signed distance field (TSDF) [13, 19, 18],
with high memory cost due to regular grids storing empty
space information. On the other hand, volumetric tech-
niques have also been devised for robustness in long term
tracking, as a way to alleviate the so-called candy-wrapper
artifacts, namely, collapsing surfaces in animations. With-
out explicitly tessellating surface interiors, Zhou et al. [30]
introduce internal nodes to construct a volumetric graph and
preserve the volumes by enforcing Laplacian constraints
among them. Instead, Budd et al. [7] and De Aguiar et
al. [10] perform a constrained tetrahedralization on surfaces
to create interior edges. Allain et al. [1] generate internal
points by CVT decomposition and thereby propose a gener-
ative tracking strategy that yields high quality performance.
These techniques are nevertheless based on ICP-variants,
whereas we aim at detecting associations discriminatively.

3D features. In many cases, surface-based features are
used for recognition or shape retrieval, such as heat ker-
nel signatures (HKS) [23] and wave kernel signatures
(WKS) [3]. Both exploit the Laplacian-Beltrami opera-
tor, the extension of the Laplacian operator to surface em-
beddings. These features are nonetheless known for their
lack of resilience to artifacts present in noisy surface ac-
quisitions, especially significant topology changes. Mesh-
HoG [29] and SHOT [25] attach a local coordinate frame
at each point to achieve invariant representations and reach
better performance for noisy surfaces. More detailed re-
views can be found in [6] and [15] for triangular surfaces
and point clouds, respectively. In the context of discrimina-
tive 3D tracking, depth difference features have been used to
build random forests on depth data [22, 24]. One common
trait of the aforementioned features is that the computation
involves only surface points. Huang et al. [16] show that
features can be built based on local coordinate frames in a
regular-grid volume. However, these features are only com-
puted on surface vertices and do not address the need for
fully volumetric correspondences as proposed in our work.



3. Preliminaries and method overview
Given a volumetric domain Ω defined by a shape in R3,

CVT is a clipped Voronoi tessellation of Ω which holds the
property that the seed location of each cell coincides on its
center of mass. Cells are of regular size and shapes as in
Fig. 1. A surface is expressed as the border of Ω, i.e. ∂Ω.

Let S denote the set of all cell centroids. Both the tem-
plate shape ΩM and the observed data ΩY are expressed by
their CVT samplings, SM and SY with locations M ⊂ ΩM
and Y ⊂ ΩY using the method in [28]. We adopt a volu-
metric deformation framework [1] that groups cells into K
clusters, each having a rigid transformation Tk ∈ SE(3).
The collection of all transformations, T = {Tk}

K
k=1, en-

codes the pose of the shape. As a result, the problem
amounts to estimating the best T̂ such that the deformed
template cells M(T̂) resembles Y as much as possible.
Matching cells i ∈ SY with cells s ∈ SM is therefore an
indispensable task. To this end, each point in Y is first
mapped to the template domain ΩM , where the closest point
in M is sought as the correspondence (as represented by the
green line in Fig. 3). This mapping r : R3 → R3 is ac-
counted for by a regression forest which is learned off-line
with many pre-tracked CVTs (§ 4.1). Given the detected
associations, the best pose T̂ is estimated using an EM-ICP
algorithm (§ 4.2).

4. Learning and tracking
4.1. Learning

We explain in this section how to learn the mapping
r : R3 → R3 from the observation domain to the tem-
plate domain with a regression forest [9], which is a set of
T binary decision trees. An input cell is first described as a
feature vector f in § 4.1.1. Taking f as input, during train-
ing each tree learns the split functions that best separate data
recursively at branch nodes, while during testing the cell is
routed through each tree, reaching T leaves that store statis-
tics (a mode in R3 in our case) as predictions (§ 4.1.2). We
first discuss the scenario with one single template and then
generalize to multiple ones in § 4.1.3.

4.1.1 Feature

The feature f we use for building trees is designed with sev-
eral principles in mind. In order to be discriminative for
shape matching, our feature should be able to characterize
the local neighborhood of any point of the volumetric shape.
This rules out the descriptors that rely on surface normals
such as SHOT [25]. For time and memory efficiency of
forest training and prediction, we want our feature vector
coefficients to be computable separately. This requirement
is not met by the descriptors that require unit length normal-
ization. In order to be able to match any deformed pose with
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Figure 2: Right: the distance field defined by a CVT sam-
pling S, where each cell stores the distance d(s, ∂Ω). Blue
to red colors means from close to far. Red dot: cell center s
to be described. Left: illustration of our feature f . L = 5 in
this toy example. See text for more explanations.

the template, we would like our feature to be pose-invariant.
Therefore, we build it on the Euclidean distance from cell
centroids s to the surface ∂Ω: d(s, ∂Ω) = minp∈∂Ω d(s, p)
because it naturally encodes the relative location with re-
spect to the surface and it is invariant to rotations, transla-
tions and quasi-invariant to changes of poses. Finally, our
feature needs to be robust to the topological noise present
in the input data.

Given a distance field defined by a CVT sampling S, our
feature is similar in spirit to Haar feature in the Viola-Jones
face detector [26], except that the rectangular neighborhood
is replaced with a sphere. As visualized in Fig. 2, we open
an L-layer spherical support region in the Euclidean space
around each cell. An L-dimensional vector u is defined ac-
cordingly, where each element ul is the sum of the distances
of all cells falling within layer l. The feature value is the lin-
ear combination of all ul, with coefficients cl chosen from a
set C = {−1, 0, 1}. Formally, suppose c are L-dimensional
vectors whose elements are the bootstrap samples of C. Let
cκ denotes one particular instance of c, i.e., cκ ∈ CL . The
feature value is then expressed as an inner product: u>cκ,
corresponding to one feature attribute κ. We consider all
possible cκ and also take the distance d itself into account.
f is hence a vector of (3L + 1) dimensions, where 3L is the
cardinality of CL and each element fκ is defined as:

fκ ,

{
u>cκ =

∑
l c
κ
l ul, κ < 3L , cκl ∈ {−1, 0, 1}

d(s, ∂Ω), κ = 3L
.

(1)
Since each dimension fκ is computation-wise indepen-

dent, f is suitable for decision forests, which select fea-
ture channels κ randomly to split the data during training.
Being derived from d(s, ∂Ω), f inherits the invariance to
rigid-body motions. In addition, we normalize distances by
their standard deviation in one surface, achieving scale in-
variance to a certain extent. However, f is not invariant to
pose changes as the contained cells in each layer vary with
poses. Although considering geodesic spherical supports
instead of Euclidean ones would overcome this issue and
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Figure 3: The schematic flowchart of the multi-template
learning framework. Red arrows: mappings gµ that asso-
ciate the indices from each subject-specific template Sµ to
the common template Ŝ . Mt

µ are the temporal evolutions of
each template. Blue: training; green: prediction.

admit quasi-invariance to pose changes, the resulting fea-
ture would be highly sensitive to topological noise. Thus,
we keep the Euclidean supports and let forests take care of
the variations caused by pose changes in learning.

4.1.2 Training and prediction

The aim of forests is to map an observed cell to the template
domain ΩM , typically chosen to be in the rest pose. Given
a set of CVTs corresponding to the template ΩM deformed
in various poses, we associate each cell s ∈ SM to its loca-
tions at the rest pose, denoted as x0

s ∈M0, forming a pool
of sample-label pairs

{
(s,x0

s)
}

as the dataset. SupposeDN
is the set of samples arriving at a certain branch node. The
training process is to partitionDN recursively into two sub-
setsDL andDR by simple thresholding on a chosen feature
channel. Our splitting candidate φ = (κ, τ) is therefore the
pair of thresholds τ and feature attribute indices κ in Eq. 1.
In branch nodes, many candidates φ are randomly gener-
ated and the one that maximizes the information gain G,
φ∗ = arg maxφG(φ), is stored for the later prediction use.

We use the typical definition of information gain:

G(φ) = H(DN )−
∑

i∈{L,R}

|Di(φ)|
|DN |

H(Di(φ)), (2)

where H is the entropy, measured as the variance in Eu-
clidean space, i.e. H = σ2. We do not apply the more
sophisticated measure [20] because (1) our continuous la-
bels x0

s lie in a volumetric domain Ω and (2) templates are
usually chosen in canonical T or A poses. The Euclidean
approximation holds more naturally here than in [16, 20],
where the regression is performed along the surface mani-
fold. The tree recursively splits samples and grows until one
of the following stopping criteria is met: (1) it reaches the
maximum depth, or (2) the number of samples |DN | is too
small. A mean-shift clustering is performed in a leaf node
to represent the distributions of x0

s as a set of confidence-
weighted modes L = {(m, ω)}. m ∈ R3 is the mode
location and ω is a scalar weight.

In the prediction phase, a cell i ∈ SY traverses down the
trees and lands on T leaves containing different collections
of modes: {L1 · · · LT }. The final regression output ri is the
cluster centroid with largest weight obtained by performing
mean-shift on them. Each observed cell then gets a closest
cell p in the reference SM : p = arg mins∈SM

∥∥ri − x0
s

∥∥
2
.

The correspondence pair (i, p) serves as input to the volu-
metric deformation framework described in § 4.2.

4.1.3 Multi-template learning

The above training scenario requires deformed CVTs of
consistent topology such that one can easily assign each cell
sample s a continuous label which is its rest-pose position
x0
s. It hence applies only to one template. However, the

amount of training data for one single template is often lim-
ited because a fully volumetric shape and pose modeling
framework is still an open challenge. To avoid over-fitting,
the rule of thumb is to incorporate as much variation as pos-
sible into training. This motivates us to devise an alternative
strategy that learns across different CVT topologies.

GivenU distinct CVT templates: {Sµ}Uµ=1
1, whose tem-

poral evolutions are recovered with the method in [1], re-
sulting in a collection of different templates deformed in
various poses: {{Mt

1} · · · {Mt
U}} as our dataset. To in-

clude all of them into training, we take one generic template
Ŝ as the reference. Intuitively, if there exist a mapping g that
brings each cell s ∈ Sµ to a new cell g(s) = ŝ ∈ Ŝ , one
only needs to change the template-specific labels x0

s to the
corresponding x0

ŝ, which are common to all templates, and
the training process in § 4.1.2 can again be applied. In other
words, we align topologies by matching every template Sµ
to Ŝ . Fig. 3 depicts this multi-template learning scheme.

Although various approaches for matching surface ver-
tices exist, only a handful of works discuss matching vox-
els/cells. Taking skinning weights as an example, we
demonstrate in the following how to adapt a surface de-
scriptor to CVTs. Note that the goal of this paper is not
to propose a robust local 3D descriptor. With proper mod-
ifications, other descriptors can be used as well for shape
matching.

Generalized skinning weights. Skinning weights are
originally used for skeleton-based animations, aiming to
blend the transformations of body parts (bones). Usually
coming as a side product of the skeleton-rigging process [4],
it is a vector w of B -dimensions, each corresponding to a
human bone b and B is the number of bones. The non-
negative weight wb indicates the dependency on that part
and is normalized to sum up to one, i.e.

∑
b wb = 1. As

such, a skinning weight vector w is actually a probability
mass function of body parts, offering rich information about

1The template suffix M is dropped to keep notations uncluttered.
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Figure 4: (a): illustration of our strategy adapting skinning
weights to CVT cells. Distances d(s, ∂Ω) are reflected in
normalizations. (b): result of matching two templates.

vertex locations. To extend it from surface vertices to CVT
cells, we first relax the unity-summation constraint as w is
not used to average transformations of bones but only as a
descriptor here. The intuition behind the adaptation is that,
a CVT cell should have bone dependencies similar to the
closest surface point. Therefore, for a cell whose distance
to the surface is d, its skinning weight is simply the one
of its closest surface point2, scaled by ed. Note that this
does not violate the unity-summation constraint for surface
vertices as their distance d is still zero. We illustrate this
concept in Fig. 4(a). The mapping g is then determined by
searching for the nearest neighbor in the skinning weight
space: g(s) = arg minŝ∈Ŝ ‖wŝ −ws‖2.

In practice, we use Pinocchio [4] to computes skin-
ning weights, extend them from surface vertices to CVT
cells, and match all cells to those of the common template
Ŝ. The resulting skeletons are not used in our method.
Fig. 4(b) visualizes one example of matching results. Our
approach yields reasonable matches, regardless of the dif-
ference in body sizes. Due to the descriptiveness of skin-
ning weights, symmetric limbs are not confused. Note that
this computation is performed only between user-specific
templates Sµ and the generic one Ŝ off-line once. Input data
SY cannot be matched this way, because rigging a skeleton
for shapes in arbitrary poses remains a challenging task.

4.2. Tracking

We elaborate in this section how to apply our regres-
sion forest to track a sequence of temporally inconsistent
observations. The current state-of-the-art 3D shape track-
ing methods usually employ non-rigid ICP algorithms [2].
Instead of performing an extensive search of all possible
associations, we directly use the correspondence pair (i, p)
detected by the forest as initializations. This results in a
faster pose estimation. We adopt the CVT-based deforma-
tion framework proposed in [1]. However, the approach we
describe can easily be adapted to other ICP variants.

2When the shortest distance does not hits exactly on a vertex but on a
triangle, we use barycentric coordinate as the coefficients to linearly com-
bine the skinning weights of the three vertices.

4.2.1 Bayesian tracking

Bayesian tracking such as [2] consists in maximizing the
a posteriori probability P (T|Y) of the pose parameters T
given the observations Y . It can be further simplified as
P (T|Y) ∝ P (T,Y) = P (T) ·P (Y|T), where the defor-
mation prior P (T) discourages the implausible poses and
the likelihood term P (Y|T) expresses the compatibility
between the observations and the pose estimate T. Since
maximizing a probability P (·) is equivalent to minimizing
− logP , it leads us to the following problem:

T̂ = arg min
T

(− logP (T)− logP (Y|T)) . (3)

In EM-ICP algorithms [8], the conditional likelihood
P (Y|T) is expressed by introducing a set of latent selec-
tion variables {ki}i that explicitly associate the cell ki of
the deformed template model to the observed cell i.

The prior on the latent association variables is usually
uniform, which means that an observed point can be asso-
ciated to any template point with the same probability. This
leads to a long exhaustive search among all possible asso-
ciations and produces a high number of residuals, slowing
down the EM-ICP algorithms. Moreover, it is the source of
wrong associations that guides the optimization to subopti-
mal local minimum.

4.2.2 EM-ICP with forest predictions

With a small number of possible associations provided by
forests, our algorithm is free from the need of an exhaus-
tive search, and therefore highly decreases the running time
of each optimization iteration. Moreover, it removes a lot
of wrong association hypotheses. We integrate the predic-
tions from the forest as a prior on the selection variable k.
The selection variable ki (for the observed cell i) follows a
probability distribution where only the cell predicted by the
forest has a non-zero probability.

Usually the forest outputs only one prediction per cell,
which is at the mode with higher weight resulting from the
mean-shift algorithm. However, because of the symmetry,
the good match is often not the mode with highest weight.
Thus, it makes sense to consider several modes instead of
one in the prediction phase. The robust scheme described
in the next section will usually select the good one.

4.2.3 Robustness

The detection forest sometimes outputs wrong correspon-
dences, either due the symmetry of human bodies (left-right
confusion) or other detection errors (e.g. hand-foot confu-
sion). Therefore, the ICP algorithm needs to be robust to
wrong correspondences. We achieve this goal by using a



Template / #Vertex / #Cell Sequence Frames

Ballet / 6844 / 5000
Seq1 [1] 500
Seq2 936

Goalkeeper / 5009 / 5000
SideJump [1] 150
UpJump [2] 239

Thomas / 5000 / 4998
Seq1 1500
Seq2 1400

Table 1: Sequences used in our experiments. For each sub-
jects, the training set is the random 250 tracked CVTs sam-
pled from first sequences and testing on the unseen second
sequence. Novel sequences proposed with this paper are
unreferenced.

noisy observation model [8], where the noise variance is es-
timated by an EM algorithm.

5. Experimental results
We validate our approach with numerous multi-view se-

quences, whose profiles are summarized in Table 1. For
each frame, a coarse visual hull is reconstructed by a shape-
from-silhouette method [12], followed by [28] to draw CVT
samplings (raw CVTs). Given a CVT template, we then per-
form an EM-ICP based method [1] on the raw CVTs to re-
cover temporal coherent volumetric deformations (tracked
CVTs). We evaluate our method in two aspects: detection
accuracy (§ 5.1) and tracking results (§ 5.2). Unless other-
wise specified, we follow the experimental protocol below.

Experimental protocol. We first explain the settings
common to two experiments. For each subject, up to 250
tracked CVTs are randomly chosen from the first sequence
as the training dataset, while the second sequences are com-
pletely left out for testing. We open L = 8 sphere layers for
the feature computation. Each tree is grown with 30% boot-
strap samples randomly chosen from the dataset and trees
are grown up to depth 20.

Two experiments, however, differ in the input data for
testing. To evaluate the quality of estimated associations,
we feed the tracked CVTs into forests due to the availability
of ground truth indices (§ 5.1), whereas raw CVTs are used
as the input for tracking experiments in § 5.2. Some distinct
experimental settings of the two are exposed in Table 2.

5.1. Matching

The contributions of CVT on improving the correspon-
dences detection are evaluated with two experiments. First,
we follow the learning framework in [16] but replace their
voxel-based features with ours in § 4.1.1, denoted as CVT-
feature. Next, we further change the regression domain

3More precisely, forests in § 5.1 are all single-template based except
for the one in “multi-template learning” paragraph.

Sect. Forest T Testing data

§ 5.1 template- 20 1. tCVTs of seq1 (Tr)
specific3 2. unseen tCVTs of seq2 (Te)

§ 5.2 multi- 50 unseen rCVTs of seq2template

Table 2: Different experimental settings in two sections.
tCVTs stand for tracked CVTs while rCVTs represent raw
CVTs.

from surfaces to volumes, as described in § 4.1.2 (fullCVT).
We test on the tracked CVTs and report the results on all
frames of training sequences (Tr) and testing ones (Te). The
drop between them is a natural phenomenon for every ma-
chine learning algorithm and indicates the ability to gener-
alize. If the Euclidean distances between the predicted cell
index and the ground truth are smaller than a certain thresh-
old, it is considered as correct.

Single-template learning. To align the experimental set-
ting, here the regression forests are subject-specific and con-
sist of only T = 20 trees. Fig. 5 shows the percentage of
right matches in varying thresholds for Thomas and Bal-
let. Since CVTfeature and [16] are regressing to surfaces
whereas fullCVT regresses to volumes, we normalize the x-
axis by the average edge length of templates to yield fair
comparisons. While the results of CVTfeature are compa-
rable to [16] (green vs. red or orange), fullCVT attains the
improved accuracies (blue vs. red or green), demonstrating
the advantages of our fully volumetric framework. Some
visual results of fullCVT approach on raw CVT input are
shown in Fig. 7.

Discussion. It is worth a closer analysis to compare our
approach against [16]. Compared to volumes of regular
grids, CVT is certainly a more memory-efficient way to de-
scribe 3D shapes. In practice, [16] describes each mesh
with 1503 voxels, while we need only 5k cells4. Conse-
quently, [16] is not able to include sufficient amount of
training shapes, leading to a major drawback that forests
are limited to one single subject and learn merely pose vari-
ations. To further decrease the needed number of training
meshes, [16] exploits skeletal poses to cancel the global
orientation. This in turn makes every mesh in the train-
ing dataset face the same direction. During tracking the
input data has to be re-oriented likewise using the esti-
mated skeletal poses from the last frame. Our approach,
on the other hand, considers distance fields of CVTs which
is naturally invariant to rotations and hence does not require
re-orientations. We anyway compare to [16] in both set-

4Further note that [16] stores a 3D vector in each voxel, whereas we
store a scalar in each CVT cell. So the ratio is 3× 1503 to 5k.
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Figure 5: Cumulative matching accuracy of different ap-
proaches. The x-axis is normalized with respect to the aver-
age edge length of the templates. The number of trees T is
20 in this experiment. Dashed and solid lines are accuracies
on training (Tr) and testing (Te) sequences respectively.

tings. Orange curves in Fig. 5 shows the results with re-
orientation, which is better than the proposed strategy in
Ballet. Nonetheless, without re-orienting data, the accuracy
drops substantially during testing (compare red to orange).
The efficiency on memory and the invariance of our features
are two determining reasons why the presented method is
better than [16] and needs just one forest for different sub-
jects in the following experiment.

Multi-template learning. We use the sequences of Goal-
keeper to verify the advantages of multi-template learning
strategy in § 4.1.3. It is a particularly difficult dataset be-
cause motions in the testing sequence UpJump have little
overlap with those in the training SideJump. We report in
Fig. 6 the correctness of correspondences in fullCVT set-
ting. Both curves represent the accuracy on testing Up-
Jump sequence. The blue curve corresponds to a forest only
trained with Goalkeeper tracked CVTs, whereas the green
curve corresponds to a forest trained with tracked CVTs of
Ballet and Thomas. For both forests, UpJump sequence is
unseen during training. Compared with the forest of the
blue curve, the one of the green curve is trained with twice
the amount of meshes from different subjects, and yet it
leads to more accurate prediction accuracy on unseen test-
ing poses. This suggests that including more variation of
motions indeed results in better generalization to unseen
data. It also confirms the necessity and efficacy of our multi-
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Figure 6: Cumulative matching accuracy of single and
multi-template strategy on Goalkeeper.

template strategy. We anyway point out that due to the lack
of adequate amount of training data, these encouraging pre-
liminary results need to be confirmed on datasets consisting
of more subjects and sequences.

5.2. Tracking

We perform several experiments to evaluate our whole
tracking-by-detection algorithm and compare with previous
approaches using two quantitative metrics. We also show
its resilience to large pose changes and its generalization
capacities on an unknown subject.

Unlike § 5.1, here we apply the multi-template strategy
in § 4.1.3 to train one universal regression forest, with Goal-
keeper chosen as the common template Ŝ. Training T = 50
trees up to depth 20 where each one is grown with around
200 CVTs (approximately one million samples) takes about
15 hours on a 24-core Intel Xeon CPU machine. For each
subject, we track the testing sequence, which is not part of
the training set. Tracking inputs are raw CVTs which have
no temporal coherence. Correspondences are predicted by
the forest and fed into the volumetric deformation frame-
work described in § 4.2. The number of clusters K is 250
for Ballet and Goalkeeper and 150 for Thomas. Some visual
results are shown in Fig. 8 and in the supplemental video5.
With the help of regression forests, our approach is able to
discover volumetric associations even in challenging poses
like in Thomas and deform the templates successfully.

Ballet 

Goalkeeper Thomas 

Figure 8: Qualitative tracking results. Gray: input observed
visual hulls; purple: deformed templates.

5https://hal.inria.fr/hal-01300191

https://hal.inria.fr/hal-01300191


(a) Ballet (b) Goalkeeper (c) Thomas 

Figure 7: Qualitative matching results on the raw CVTs. Templates are displayed at the upper left corner. Best viewed in pdf.
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Figure 9: Tracking results of Thomas dataset at low frame
rate.

Quantitative evaluation and comparison. We evaluate
the tracking results with two complementary metrics: sil-
houette overlap error, which measures the consistence be-
tween the shape and observed silhouettes, and marker loca-
tion error (using marker-based motion capture data), which
sparsely evaluates the surface pose. Numerical results,
which can be found in the supplemental paper, show simi-
lar or improved results with respect to volumetric ICP-based
tracking [1] and surface-based tracking by detection [16].

Tracking at low frame rate. One of the expected ben-
efits of our framework over purely ICP-based methods is
improved resilience with large pose changes. We test this
assertion by tracking the Thomas sequence at low frame rate
(5fps). Figure 9 shows how our method recovers from track-
ing failures while [1] does not. This improvement is con-
firmed by the median silhouette overlap pixel error, which
we found to be twice lower with our method (10054 pixels
compared to 19998 pixels).

Testing with a new subject. We tested the generaliza-
tion capacities of our framework with a subject (Dancer
dataset [2]) which is not in the training data. For this pur-
pose, one can either select an existing template from the
training sequences, or build a template model by matching
one of the samples from the test sequence to the common
reference model using skinning weights, as we do in multi-
template training. We use the latter, which is more subject

specific and can be expected to yield better results. Most
poses are correctly tracked in our experiment (see Fig. 10).
Not unexpectedly for this type of approach, some failures
occur on more complex poses unseen in training data and
would probably be improved with a larger training set.
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Figure 10: Tracking results with a new subject, Dancer
dataset. Input mesh (left) and tracked mesh (right).

6. Conclusion

In this paper, we present a fully volumetric tracking-
by-detection framework. Centroidal Voronoi tessellation is
chosen to be the unified representation used in feature com-
putations, predicting domains, and deformation models.
Such informative and consistent representations have shown
better detected correspondences than other discriminative
strategies. We further devise a multi-template learning strat-
egy to enrich the training variation. This leads to one
single forest for different subjects and yields cross-subject
learning of discriminative associations. The method opens
several research directions, and thanks to low memory-
footprint characteristics, it can be tested on much larger
training sets for discriminative 3D tracking in the future.
The methodology can easily be transposed to other volu-
metric features emphasizing other discriminative character-
istics.
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