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Tracking-by-Detection of 3D Human Shapes:
from Surfaces to Volumes

Chun-Hao Huang, Benjamin Allain, Edmond Boyer, Jean-Sébastien Franco, Federico Tombari,
Nassir Navab and Slobodan Ilic

Abstract—3D Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually
comprises an association step, that finds correspondences between the model and the input data, and a deformation step, that fits the
model to the observations given correspondences. Most current approaches follow the Iterative-Closest-Point (ICP) paradigm, where the
association step is carried out by searching for the nearest neighbors. It fails when large deformations occur and errors in the association
tend to propagate over time. In this paper, we propose a discriminative alternative for the association, that leverages random forests to
infer correspondences in one shot. Regardless the choice of shape parameterizations, being surface or volumetric meshes, we convert
3D shapes to volumetric distance fields and thereby design features to train the forest. We investigate two ways to draw volumetric
samples: voxels of regular grids and cells from Centroidal Voronoi Tessellation (CVT). While the former consumes considerable memory
and in turn limits us to learn only subject-specific correspondences, the latter yields much less memory footprint by compactly tessellating
the interior space of a shape with optimal discretization. This facilitates the use of larger cross-subject training databases, generalizes to
different human subjects and hence results in less overfitting and better detection. The discriminative correspondences are successfully
integrated to both surface and volumetric deformation frameworks that recover human shape poses, which we refer to as ‘tracking-by-
detection of 3D human shapes.’ It allows for large deformations and prevents tracking errors from being accumulated. When combined
with ICP for refinement, it proves to yield better accuracy in registration and more stability when tracking over time. Evaluations on
existing datasets demonstrate the benefits with respect to the state-of-the-art.

Index Terms—Shape tracking, random forest, centroidal Voronoi tessellation, 3D tracking-by-detection, discriminative associations.
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1 INTRODUCTION

3D shape tracking is the process of recovering temporal
evolutions of a template shape using visual information,

such as images or 3D points. It finds applications in several
domains including computer vision, graphics and medical
imaging. In particular, it has recently demonstrated a good
success in marker-less human motion capture (mocap). Nu-
merous approaches assume a user-specific reference surface,
with the objective to recover the skeletal poses [1], surface
shapes [2], or both simultaneously [3]. A standard tracking
process consists in an alternation of the following two steps.
First, finding associations between the observed data, e.g. 3D
points of the reconstructed visual hull, to the corresponding
3D template shape, typically based on the proximity in
Euclidean space or a feature space. Second, given such
associations, recovering the pose of the template under the
constraint of a deformation model, typically based on the
kinematic skeleton [1], [4], [5], [6], or the piecewise-rigid
surface [2] parameterization, among others.

Most of these model-based methods can be viewed as
extensions of Iterative-Closest-Point (ICP) framework [7],
[8] to deformable shapes, which attempts to explain newly
observed data using the previous outcomes. As long as the
initialization is close to the optimum solution, it is able
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Fig. 1. Given a reference shape (a) and input data (b), our method dis-
covers reliable data-model correspondences by random forests, color-
coded in (c). This strategy detects user-specific shapes in a frame-wise
manner, resulting in better sustainability. In (d) the reference model (a)
is deformed with correspondences (c) to fit the input data (b).

to produce outstanding results. However, they also suffer
from inherent weaknesses of generative strategies, e.g. slow
convergence. Moreover, when large deformations or many
outliers occur, discovering associations becomes particularly
difficult. Unreliable correspondences result in ambiguous
situations that yield erroneous numerical solutions.

Recently, a number of alternatives and enhancements
have been explored for both association and deformation
stages independently. On one hand, improvements have
also been proposed for the association problem by discov-
ering them discriminatively [6], [9], [16], This in turn yields
the possibility for 3D tracking techniques that are robust
to failure. In contrast to those generative ICP variants,
these discriminative approaches that ‘detect’ rather than track
models have shown better robustness over the past decade,
for instance, in human pose estimation with 2.5D data from
Kinect [6], [10]. These approaches usually consider fore-
ground human subjects to be pre-segmented, which is not a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPAMI.2017.2740308

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

favorable assumption in full 3D data that generally contains
substantial amount of outliers like Fig. 1(b). Including non-
human objects into the reference shape so that more points
are explained, i.e. less outliers, is one workaround adopted
by many existing multi-view methods [17], [18], with the
downside that further post-processing is required to analyze
only humans’ movements. There is a growing need to
facilitate robust frame-wise observation-model associations
for reconstructed complete 3D human shapes. Although
surface-based features are commonly used for this purpose
in the context of shape matching [9], volumetric features
have also proven to be a promising direction for 3D shape
description with surface-based templates [11].

On the other hand, progress has also been made in
the deformation stage by introducing volumetric deforma-
tion models instead of purely surface-based ones, mainly
motivated by the observation that human movements are
largely volume-preserving. It has shown significantly im-
proved robustness to various tracking situations, such as
shape folding and volume bias of observed shapes [12]. As
volumetric deformation models are gradually used in cap-
turing actors’ motions due to their inherent local volume-
preserving properties, facilitating volumetric discriminative
correspondences can be favorable. We investigate this direc-
tion and make the following two contributions in this paper.

First, two volumetric features are designed for human
shape correspondence detection, operating respectively on sur-
face and volumetric meshes. Inspired by Taylor et al. [6], we
apply regression forests to improve the associations, with
two learning strategies devised for different shape parame-
terizations. In the case of surface mesh representations, we
convert shapes to the volumetric Truncated Signed Distance
Field (TSDF) [13], where each surface vertex is fed into user-
specific forests to predict correspondences in one shot. Mean-
while, we also tessellate both the observed and template
shapes as a set of uniform and anisotropic cells (see Fig. 2)
from Centroidal Voronoi Tessellation (CVT) [14] and, again
leverage the similar distance-transform representations to
predict volumetric correspondences for all CVT cells.

Second, by integrating these one-shot associations into
the respective deformation models, we further present a
discriminative human mocap framework, as depicted in
Fig. 1, termed tracking-by-detection of 3D human shapes.
In contrast to the ICP-like methods [2], [3], [4], it does not
require close initializations from a nearby frame to estimate
correspondences and thus better handles large deforma-
tions. Experiments demonstrate that, when combined with a
generative tracking approach, this hybrid framework leads to
better or comparable results than purely generative ones, e.g.
[2], [15], reducing error accumulations and hence increasing
the stability. The regression entropy is also augmented with
the classification one to identify outliers. Very few prior arts
afford the tracking or matching situation where the input
describes mainly irrelevant outliers. Notably, in the case of
CVT, our method is a unified volumetric pipeline where the
shape representation, deformation model, feature descrip-
tion, and points association are all built on a single CVT rep-
resentation that brings benefits at all stages of the pipeline.
This fully volumetric tracking-by-detection method shows
improved accuracy and memory performance compared to
the surface-based counterpart [11].
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Fig. 2. Centroidal Voronoi tessellations yields volumetric cells of uniform
shape and connectivity with controllable complexity. The cells of the
observed shape are matched discriminatively to those of the template.

2 RELATED WORK

Among the vast literature on human motion analysis [19],
we focus on top-down approaches that assume a 3D tem-
plate and deform it according to input data, either directly
with pixels [4], [20], or with computed 3D points [2], [3],
[15]. These methods typically decompose into two major
steps: (1) data association, where observations are associated
to the model, and (2) deformation stage, where motion
parameters are estimated given the associations. As our
primary objective in this paper is to improve the first part,
existing approaches are discussed accordingly below.

2.1 Generative approaches
Methods of this category follow the association strategy in
ICP while extending the motion model to more general
deformations than the one in the original method [7], [8].
Correspondences are addressed by searching for closest
points, with various distance measures such as point-to-
point [2], point-to-plane [21], or Mahalanobis distances [20].
This strategy heavily relies on the fact that observations
in consecutive frames are in vicinity. Klaudiny et al. [22],
Huang et al. [3] and Collet et al. [17] generalize the idea from
the previous frame to a certain key-frame in the considered
sequences, finding the best non-sequential order to track,
but the proximity assumption remains. On the other hand,
since 3D data such as reconstructed point clouds often con-
tain spurious fake geometries, another challenge consists in
identifying online and dynamically irrelevant observations
without any prior knowledge. Liu et al. [4] establish 3D-
2D correspondences by considering both texture in images
and contours in silhouettes and further include image seg-
mentation information to differentiate multiple interacting
subjects. Huang et al. [2], [3] relax the hard correspondence
constraint to soft assignments and introduce an additional
outlier class to reject noisy observations. Data is explained
by Gaussian Mixture Models (GMM) in an Expectation-
Maximization (EM) manner [23]. In [24], both source and
target points are similarly modeled as GMMs and the regis-
tration problem is cast as minimizing the distance between
two mixture models. Collet et al. [17] fuse information
from various modalities attentively to generate high-quality
textured meshes. Yet, to yield a temporal coherent mesh
tessellation, the underlying tracking component is still ICP-
based [25]. All these generative methods are highly likely
to fail in large deformations. Furthermore, they are prone
to error accumulations and, as a result of matching several
successive frames wrongly (whether sequentially or not),
they are prone to drift.
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2.2 Discriminative approaches and 3D descriptors

Recently, discriminative approaches have demonstrated
their strengths in estimating human [6], [26] and hand [27]
poses from depth images. With the initial intention to
substitute ICP-based optimization, Taylor et al. [6] propose
a frame-wise strategy that yields decent dense correspon-
dences without iterative refinements. The method replaces
the step of proximity search in ICP-based tracking methods
by learning the mapping from input 3D points from depth
sensors, to the human template surface domain, termed the
Vitruvian manifold. Later, Pons-Moll et al. [5] train forests
with a new objective on surface manifolds, and increase the
precision by finishing convergence with an ICP-based loop
after the discriminative association stage. Both approaches
operate frame-independently and are generally drift free.
Following the same weak pair-wise features and random
forest framework, Dou et al. [18] learn to match two succes-
sive depth frames to avoid depending on a specific template.

More informative descriptors and matching strategies
have long been studied for shape recognition or retrieval
with meshes [28] and point clouds [29]. The well known
heat kernel signatures (HKS) [30] and wave kernel signa-
tures (WKS) [31] exploit the Laplacian-Beltrami operator, the
extension of the Laplacian operator to surface embeddings.
Rodola et al. [9] later apply forests to learn the parameters of
WKS during training. These features are nonetheless known
for their lack of resilience to significant topology changes, an
artifact frequently seen in noisy surface acquisitions. Mesh-
HoG [32] and SHOT [33] attach a local coordinate frame at
each point to achieve invariant representations and reach
better performance for noisy surfaces. To enforce consistent
matches over the whole shape, Chen and Koltun [34] and
Starck et al. [35] formulate the matching problem as the
inference of Markov random field (MRF).

Besides hand-crafted features, there is a recent trend that
applies Convolutional Neural Network (CNN) [36] to dis-
cover the deep representation of non-rigid human shapes.
Wei et al. [16] render depth images in several viewpoints,
where the CNN feature transformation takes place, and
average the descriptors from multiple views. Boscaini et
al. [37] stay in 3D space but define the convolution function
in the intrinsic manifold domain. While showing encour-
aging results in handling missing data, these methods do
not consider matching human shapes in the presence of
large amount of outliers, e.g. un-subtracted furniture in the
background, and thus do not fit to our ‘detection’ purpose.

Another common trait of the aforementioned approaches
is that the computation involves only surface points. We
show in our early work [11] that surface features can be
built based on local coordinate frames in a regular-grid
volume. In this paper, we not only improve this feature
but also propose a new one to address the need of fully
volumetric correspondences. Both features, implicitly or
explicitly, leverage distance-transform volumes to describe
3D geometry. Taking only surface vertices into account, the
existing approaches rely on heterogeneous shape represen-
tations, deformation models, target primitives and feature
spaces. Instead, our CVT-based tracking-by-detection pro-
posal builds a unified framework for all these purposes and
takes advantage of volumetric tracking strategies.

3 OVERVIEW

We implement discriminative associations using two differ-
ent volumetric representations. In the first case, we convert
the triangular surface meshes to the Truncated Signed Dis-
tance Field (TSDF) constructed with the regular 3D volu-
metric grid. In the second case, we use CVT representation
which is not bound to the regular grids. As in Fig. 2, the
interior space of a triangular surface is tessellated into a set
of cells of uniform anisotropic shape whose seed location
coincides with its centers of mass. Such an optimal dis-
cretization yields lower memory footprint than regular-grid
volumes, in turn accommodating more training meshes.
Moreover, we also associate CVT cells discriminatively and
present volumetric correspondences.

Formally, a humanoid shape describes a continuous vol-
umetric domain in 3D Ω ⊂ R3 whose border ∂Ω defines
a 2-manifold surface. The discretized mesh representation
M contains a set of 3D points M and their connectivity
T , i.e. M = (M, T ), where M is drawn from the surface
(M ⊂ ∂Ω) or the whole volume (M ⊂ Ω ). The goal of
3D shape tracking is to register a source reference1 mesh
X = (X, TX) to the observed target mesh Y = (Y, TY ),
such as fitting the shape in Fig. 1(a) to the one in Fig. 1(b).

Our method starts with surface meshes reconstructed by
shape-from-silhouette method [38]. We refer only to points
on surfaces as vertices v ∈ V , where V is the set of their in-
dices. Suppose the reference surface X and the input visual
hull Y are located at X = {xv}v∈VX and Y = {yi}i∈V

Y

2

respectively, the registration typically boils down to two
steps: (1) association: matching each points in Y with those in
X to build the correspondence set C = {(i, v)} ⊂ VY ×VX ;
and (2) optimization: estimating the motion parameter Θ by
minimizing an energy E that describes the discrepancies
between pairs in C , i.e. Θ̂ = argminΘ E(Θ; C), such that
X(Θ̂) resembles Y as much as possible.

To discover the correspondences C discriminatively, we
adapt the Vitruvian strategy [6] from matching 2.5D against
3D to 3D against 3D. This amounts to warping the input
mesh Y to the reference one X , denoted as Ỹ = (Ỹ, TY ) =
(r(Y), TY ) where r is the warping function. A good r shall
lead to a clean warp Ỹ as in Fig. 3. Incorrect warped points,
however, can still be told from huge edges. Specifically, this
R3 → R3 mapping r is learned by a regression forest [39].
We convert each surface into an implicit representation,
a distance field, which is usually defined volumetrically.
As stated above, we investigate two ways to define the
volumetric elements s. The first one is a voxel from a regular
axis-aligned volume, i.e. s ∈ N3, while the second one is
a cell from a volumetric mesh, i.e. s ∈ S , where S is a
group of CVT cells that tessellate only the surface interiors.
Depending on the choice of s, our volumetric feature f is
hence also realized in two different forms. Taking the feature
f as input, multiple binary decision trees are trained with
previously observed meshes. In the online testing phase, a
input point obtains a prediction ỹi = r(yi) that indicates
the locations of potential matches since the warp Ỹ is

1. Several terms are used interchangeably in this paper: reference and
template; correspondences and associations; point and primitive.

2. The observations are always indexed by i regardless of the param-
eterization.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPAMI.2017.2740308

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Fig. 3. The pipeline of our tracking-by-detection framework. Data-model associations are visualized in the same color. Upper row: surface-based
associations (black means no correspondence found for that vertex); bottom row: volumetric associations.

learned to resemble X. Thus, C can be built swiftly by doing
nearest neighbor search between Ỹ and X just once and
the deformation parameter Θ that encodes the shape pose of
the template is estimated accordingly. Notably, in the case
of CVT, since cells comprise a volumetric mesh, the whole
pipeline (discovering C and estimating Θ) can instead be
conducted in a fully volumetric fashion. Fig. 3 illustrates
this correspondence detection process. The details of training,
prediction and deformation models are provided in § 5.

4 VOLUMETRIC FEATURES

The two volumetric features are introduced in this section.
Although both taking a volumetric point s as input, the
first one actually aims to match surface vertices v, denoted
as f (v) := f (sv) while the second one matches s directly,
i.e. f (s). Both are designed to be incorporated into forest
training and prediction. A great advantage of decision trees
is to learn the most discerning attributes among a large
feature bank. One does not have to prepare the whole high-
dimensional vector f to draw predictions, because only a
few learned attributes κ are needed to traverse the trees.
As a result, features can be computed on the fly during
testing. To make use of such property, the calculation of
each fκ is assumed to independent. We hence avoid the
histogram-based descriptors that requires normalization,
such as MeshHOG [32] or SHOT [33], and resort to offset
comparison features used in [40] for f (sv) and Haar feature
in [41] for f (s).

4.1 Regular-voxel-based features
Our first approach to discriminative associations consid-
ers regular-grid volumes (upper row in Fig. 3, s ∈ N3).
The warping function r is modeled as a composite one:
r : R3 → N3 → R3, where the former is voxelization and the
regression trees account for only the latter. We first cast each
meshM into a volumetric scalar field D : N3 ⊂ R3 → R.

4.1.1 Truncated signed distance transform (TSDT)
Voxelizing a surface in general comprises two parts: (1)
determining which voxel s that every vertex v maps to, and
(2) testing the overlap between triangles and voxels. The
first part can be viewed as a quantization mapping from

Euclidean space to a discretized space s : R3 → N3. The
size of the volume is large enough to include all possible
pose variations, and its center is aligned with the barycenter
of the surfaces. The voxel size is chosen to be close to the
average edge length of meshes, so that a single voxel is not
mapped by too many vertices. To check the intersection of
triangles with voxels, we apply separating axis theorem which
is known to be efficient for collision detection [42].

Voxels occupied by the surface are referred to as ssuf.
We further identify voxels located inside and outside the
surface, denoted respectively as sin and sout. Together they
define a directional truncated signed distance transform:

D(s) =



+ε if sout and d(s,M) > ε.

+d(s,M) if sout and d(s,M) ≤ ε.
0 if ssuf

−d(s,M) if sin and d(s,M) ≤ ε.
−ε if sin and d(s,M) > ε.

(1)

d(s,M) denotes the shortest Euclidean distance from the
voxel center to the mesh, which can be computed efficiently
via AABB trees using CGAL library. If the distance is big-
ger than a threshold ε, we store only ±ε to indicate the
inside/outside information. It is empirically set to be three
times the physical length of diagonal of voxels. In the earlier
version of this work [11], we store averaged surface normals
at each ssuf. However, such representations yield high mem-
ory footprint and thus limit the amount of training meshes
we can incorporate later in § 5. The TSDT representation
naturally encodes the spatial occupancies of a mesh and the
required memory footprint is only one-third of the former
(each voxel stores now just a scalar, not a vector). It shares a
similar spirit with implicit surface representations, e.g. level-
set, and has been widely employed in RGBD-based tracking
or reconstruction [43], [44].

4.1.2 Pair-wise offset features
Next, we present the features f for describing TSDT, which
are later used to train the forests. Since we are interested in
predicting correspondences for vertices instead of triangles,
from now on we concentrate only on those surface voxels
ssuf occupied by mesh vertices v, denoted as sv . The feature
is thus defined as a function of sv , i.e. f (v) := f (sv).
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Fig. 4. The intuition of adjusting offsets. (a) original offset pair ψ. (b)
η = 0 results in ψ without re-orientation, i.e. R = I. (c) η = 1. ψ is
orientated by a rotation matrix R = [e1, e2, e3] characterized by a LCF.

As depicted in Fig. 4, for each surface voxel sv (blue),
we shoot two offsets (red vectors) ψ = (o1,o2) ∈ N3 × N3,
reaching two neighboring voxels (green). To describe the
local geometry, we take the TSDT values within a cuboid
around two respective voxels (yellow squares), perform
element-wise subtractions and sum them up. Let ε denotes
this sum-of-difference operation. By definition, ε from dif-
ferent offsets ψ can be evaluated independently and thus
fully parallelizable, which is an useful trait since this com-
putation will be carried out multiple times during training
with thousands of randomly generated ψ for the same sv .

The feature vector f consist of ε resulted from many
offset pairs ψ. More precisely, it is a function of sv but
takes an offset pair ψ, a binary variable η (whether to use
Local Coordinate Frame (LCF) or not), and a rotational matrix
R ∈ SO(3) (the orientation of LCF) as parameters. Every
possible combination of offset pairs ψ and binary variables
η results in one independent feature attribute κ, in notations:
fκ(sv) = ε(sv; R

η(ψ)). The dimensionality of f is virtually
infinite. Binary variables η determines the alignment of the
offset ψ with respect to a LCF, whose transformation is
specified by R. The intuition behind this adjustment is to
make features f invariant to poses, c.f. Fig. 4(b) and (c).
Without re-orientations, ψ might land on different types of
voxel pairs, c.f. Fig. 4(a) and (b), and hence cause different
feature responses ε, despite the fact that the current voxels
are located on the same position on the body. Both offset
pairs ψ and binary variables η are learned during forest
training, while the rotational matrix R is characterized by
a LCF obtained as follows.

4.1.3 Local coordinate frame
Defining local coordinate frames for 3D primitives (vox-
els, vertices, points) has long been studied and usually
comes with their 3D descriptor counterparts, see [45] for
a comprehensive review. An ideal LCF is supposed to fol-
low whatever transformations the meshes undergo, namely,
as co-variant as possible, such that the consequent feature
representations are as invariant as possible. Constructing a
LCF boils down to defining three orthonormal vectors as
[x, y, z] axes. To do that, the state-of-the-art methods in the
field of LCFs for rigid matching of 3D meshes and point
clouds mainly rely on the neighboring points within a local
support [33], [46], [47], [48]. The way they leverage spatial
distributions can in general be classified into two categories:
(1) EigenValue-Decomposition (EVD) [33], [47], [49], and (2)
signed distance (SignDist.) [46], [48]. Since it is impractical
to repeat EVD process for all surface voxels sv , in the
following, we propose an adaptation of SignDist. approach
to our volumetric representations [50]. This conclusion is

(b) LCF procedure 

(1) (2) 

(3) (4) 

(a) (b) (c) 

(a) local support (c) Example results 

Fig. 5. Our method leads to quasi pose-covariant LCFs.

drawn after an extensive study and comparison of three LCF
approaches presented in our early work [50].

Specifically, for each sv , we consider its surface normals
nv as z axis, and obtain y axis by z × x. The task left is
to identify a repeatable x axis. To this end, the class of
SignDist. approaches look for a discerning point within the
support (yellow voxel in Fig. 5(b)). We first open an local
cuboid support (pink) around each sv (green) as visualized
in Fig. 5(a). The search involves only the peripheral voxels
s̃ (cyan) lying on the intersection of support borders and
the surface. The discernibility is defined as the maximum
signed distance to the tangent plane [46]:

ŝ = arg max
s̃∈S̃

(
(s̃ − sv)

>nv
)
, (2)

where S̃ is the intersection of support borders and the
surface. The x axis is the projection of the vector directed
from sv towards ŝ. Fig. 5(b) illustrates the full procedure.
Note that there is no guarantee that the discerning point
ŝ from Eq. 2 is always repeatable: in particular, if different
directions yield similar values of the signed distance, the
x axis will be ambiguous, hence the resulting LCFs could
rotate about the z axis. Therefore, as shown in Fig. 5(c), this
approach produces LCFs quasi-covariant to pose changes,
and as a result, only quasi-pose-invariant features f . We
leave such noise for forests to take care of during learning.

4.2 CVT-based features
The feature f (sv) above describes surface geometries in
volumes but is devised to match only surface vertices v.
A more intriguing question is: can one match these points
s directly? In other words, instead of an auxiliary role
of matching surfaces, can they also be associated to the
template discriminatively and even participate in shape
deformations (bottom row of Fig. 3)? We investigate this
direction with a volumetric representation from centroidal
Voronoi tessellations that haven shown some recent success
in various applications [51], [52], i.e. s is a CVT cell.

We use it to sample a distance field where every cell s
stores the Euclidean distance from the centroid to the sur-
face ∂Ω: d(xs, ∂Ω) = minp∈∂Ω d(xs, p), yielding a distance-
transform like representation similar to the TSDT above.

4.2.1 Haar-like spherical feature
The offset feature f (sv) above is nevertheless not applicable
here since it relies on regular grids. We propose a new fea-
ture f (s) with the following principles in mind. It should be
able to characterize the local neighborhood of any point of
the volumetric shape. This rules out the descriptors that rely
on surface normals such as MeshHOG [32] and SHOT [33].
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35 + 1 = 244 channels 
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if 

Fig. 6. CVT-based feature. Left: CVT cells S sample a distance field,
where each cell stores the distance d(xs, ∂Ω). Blue to red colors means
from close to far. Red dot: cell s to be described. Right: a toy example
of our feature f , where L = 5. Shadowed and transparent layers have
coefficients cl = −1 and 1 respectively. See text for more explanations.

To be able to match any deformed pose with the template,
we would like our feature to be pose-invariant. Therefore,
we build it on the distance transform because it naturally
encodes the relative location with respect to the surface and
it is invariant to rotations, translations and quasi-invariant
to pose changes. Finally, our feature needs to be robust to
the topological noise present in the input data.

Given a distance field sampled by CVT cells S , our
feature is similar in spirit to Haar feature in the Viola-Jones
face detector [41], except that the rectangular neighborhood
is replaced with a sphere. As depicted in Fig. 6, we open
an L-layer spherical support region in the Euclidean space
around each cell. An L-dimensional vector u is defined ac-
cordingly, where each element ul is the sum of the distances
of all cells falling within layer l. The feature value is the
linear combination of all ul, with coefficients cl chosen from
a set Υ = {−1, 0, 1}. Formally, suppose c are L-dimensional
vectors whose elements are the bootstrap samples of Υ. Let
cκ denote one particular instance of c, i.e. , cκ ∈ ΥL . The
feature value is then expressed as an inner product: u>cκ ,
corresponding to one feature attribute κ. We consider all
possible cκ and also take the distance d itself into account.
f is hence a vector of (3L + 1) dimensions, where 3L is the
cardinality of ΥL and each element fκ is defined as:

fκ ,

{
u>cκ =

∑
l c
κ
l ul, κ < 3L , c

κ
l ∈ {−1, 0, 1}

d(xs, ∂Ω), κ = 3L
. (3)

Since each dimension fκ is computation-wise indepen-
dent, f is suitable for decision forests, which select feature
channels κ randomly to split the data during training. Being
derived from d(xs, ∂Ω), f inherits the invariance to rigid-
body motions. As opposed to the early version of this
work [53], we normalize the distances with respect to the
averaged edge length of cells, achieving invariance to the
body size to a certain extent. However, f is not invariant to
pose changes as the contained cells in each layer vary with
poses. Although considering geodesic spherical supports
instead of Euclidean ones would overcome this issue and
yield quasi-invariance to pose changes, the resulting feature
would be highly sensitive to topological noise. Thus, we
keep the Euclidean supports and let forests take care of the
variations caused by pose changes in learning.

5 CORRESPONDENCES INFERENCE

Now that the features for both surface and volumetric as-
sociations, f (v) and f (s), are defined, we proceed on using

them to train a regression forest, an ensemble of T binary
decision trees, to learn the mapping r : R3 → R3 from
the observation domain to the template domain. During
training each tree learns the split functions that best separate
data recursively at branch nodes, while during testing the
input point is routed through each tree, reaching T leaves
that store statistics as predictions. We discuss in § 5.1 a
generic learning framework that applies to both shape pa-
rameterizations. A CVT-specific multi-template strategy is
presented in § 5.2 to generalize the Vitruvian framework
from single mesh connectivity to multiple ones.

5.1 Training and prediction
Broadly speaking, training a regression forest amounts to
determining the following components: sample-label pairs,
split functions, learning objectives and leaf-node statistical
models. Readers are referred to [39] for a comprehensive
analysis on different choices of these components.

5.1.1 Training data and split functions
First we elaborate the training scenario for surface repre-
sentations. Since forests aim to map an observed 3D vertex
back to the template domain ∂ΩX , usually chosen to be in
the rest (T or A) pose, it requires meshes in various poses
but with the same connectivity for training. To incorpo-
rate abundant training variations, we animate the template
X0 =

{
x0
v

}
⊂ ∂ΩX to a variety of poses with a method

similar to [54]. After voxelizing all animated meshes, we
associate each surface voxel to their locations at the rest
pose, obtaining a pool of sample-label pairs D = {(sv,x0

v)}.
Each tree is trained with a randomly bootstrapped subset
of D . While the split function may be arbitrarily complex, a
typical choice is a stump where one single dimension κ is
compared to a threshold τ , i.e. axis-aligned thresholding. Our
splitting candidate φ is hence the pair of testing channels
κ and thresholds τ , φ = (κ, τ), where κ is represented by
offset pairs ψ and binary variables η in § 4.1. LetDN denotes
the samples arriving at a certain branch node. The training
process is to partition DN recursively into two subsets DL
and DR, based on randomly generated φ:

DL(φ) = {sv ∈ DN |fκ(sv) = ε(sv; R
η(ψ)) ≥ τ}, (4a)

DR(φ) = {sv ∈ DN |fκ(sv) = ε(sv; R
η(ψ)) < τ}. (4b)

Similarly, given a set of CVTs corresponding to the tem-
plate volumes ΩX deformed in various poses, we associate
each cell s ∈ SX to its locations in the rest pose, denoted
as x0

s ∈ X0 ⊂ ΩX , forming a pool of sample-label pairs
D =

{
(s,x0

s)
}

as the dataset. The split candidate φ is again
the pair of thresholds and feature attributes, φ = (κ, τ),
where features are instead computed according to Eq. 3 but
the thresholding criteria in Eqs. 4a and 4b follows.

5.1.2 Learning objectives and leaf predictions
At branch nodes, many candidates φ are randomly gener-
ated and the one that maximizes the information gain I ,
φ∗ = argmaxφ I (φ), is stored for the later prediction use.
We follow the classic definition of information gain:

I (φ) = H(DN )−
∑

i∈{L,R}

|Di(φ)|
|DN |

H(Di(φ)), (5)
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where H is the entropy, measured as the variance in Eu-
clidean space, i.e. H = σ2 for both parameterizations. The
tree recursively splits samples and grows until one of the
following stopping criteria is met: (1) it reaches the maxi-
mum depth, or (2) the number of samples |DN | is too small.
A Mean-Shift clustering [55] is performed in a leaf node
to represent the distributions of x0 as a set of confidence-
weighted modesH = {(h, ω)}. h ∈ R3 is the mode location
and ω is a scalar weight.

In the prediction phase, a 3D input point i ∈ VY or i ∈
SY traverses down the trees and lands on T leaves contain-
ing different collections of modes: {H1 · · ·HT }. The final re-
gression output ri is the cluster centroid with largest weight
obtained by performing Mean-Shift [55] on them. Each
observed point then gets a closest point p in the reference
shape X0, either in surfaces, p = argminv∈V

X

∥∥ri − x0
v

∥∥
2
, or

in CVTs, p = argmins∈SX
∥∥ri − x0

s

∥∥
2
. The correspondence

pair (i, p) serves as input to the subsequent deformation
framework described in § 6.

Outliers such as false geometries, or un-removed back-
ground elements often exist in 3D data, drastically deteri-
orating tracking results. If their models are available, we
also include them in the training process, so that forests can
identify and reject them online. In this case, the goodness
of a split φ is evaluated in terms of both classification
and regression. We follow Fanelli et al. [56] and extend the
entropy to be:

H(D) = −
∑
c

p(c|D) log p(c|D) + (1− e δα )σ2(D), (6)

where p(c|D) is the class probability of being foreground or
background. It is the weighted sum of the aforementioned
regression measure σ2 and the classification entropy mea-
sure. Forests trained with Eq. 6 are often referred to as Hough
forests. During training it learns simultaneously (1) how to
distinguish between valid and invalid samples (outliers)
and (2) how to match valid samples to the template. The
regression part gets increasing emphasis when the current
depth δ gets larger (i.e. the tree grows deeper), and the
steepness is controlled by the parameter α.

5.2 Learning across multiple volumetric templates
So far we know how to utilize Vitruvian-based learning
framework to match surface or volumetric data against the
template. For the training purposes, one has to deform the
reference mesh into various poses such that all meshes share
a consistent topology TX and one can easily assign each
sample a continuous label which is its rest-pose position X0.
In this regards, the trained forest applies only to one mesh
connectivity TX . Nevertheless, the amount of training data
for one single template is often limited. To avoid over-fitting,
the rule of thumb is to incorporate as much variation as pos-
sible into training. This motivates us to devise an alternative
that learns across different template connectivities TX . Due
to the high memory footprint of regular voxel grids, this
strategy is unfortunately less practical for the surface feature
f (v) in § 4.1 and we implement it only with CVTs.

Given U distinct CVT templates: {Sµ}Uµ=1
3, whose tem-

poral evolutions are recovered with the method in [51],

3. The template suffix X is dropped to keep notations uncluttered.

NN search

dataset

input 
CVT

regression 
forest

generic
template

subject-specific template

Fig. 7. The schematic flowchart of the multi-template learning frame-
work. Red arrows: mappings gµ that associate the indices from each
subject-specific template Sµ to the common one Ŝ. Xt

µ are the temporal
evolutions of each template. Blue: training; green: prediction.

resulting in a collection of different templates deformed in
various poses: {{Xt

1} · · · {Xt
U}} as our dataset. To include

all of them into training, we take one generic template Ŝ
as the reference. Intuitively, if there exists a mapping g that
brings each cell s ∈ Sµ to a new cell g(s) = ŝ ∈ Ŝ , one
only needs to change the template-specific labels x0

s to the
corresponding x0

ŝ, which are common to all templates, and
the training process above can again be applied. In other
words, we align topologies by matching every template Sµ
to Ŝ . Fig. 7 depicts this multi-template learning scheme.

Although various approaches for matching surface ver-
tices exist, only a handful of works discuss matching vox-
els/cells. Taking skinning weights [57] as an example, we
demonstrate in the following how to adapt a surface de-
scriptor to CVTs. Note that our goal is not to propose a
robust local 3D descriptor. With proper modifications, other
descriptors can be used as well for shape matching.

5.2.1 Generalized skinning weights.
Skinning weights are originally used for skeleton-based an-
imations, aiming to blend the transformations of body parts
(bones). Usually coming as a side product of the skeleton-
rigging process [58], it is a vector w of B -dimensions, each
corresponding to a human bone b and B is the number
of bones. The non-negative weight wb indicates the depen-
dency on that part and is normalized to sum up to one, i.e.∑
b wb = 1. As such, a skinning weight vector w is actually

a probability mass function of body parts, offering rich
information about vertex locations. To extend it from surface
vertices to CVT cells, we first relax the unity-summation
constraint as w is not used to average transformations of
bones but only as a descriptor here. The intuition behind the
adaptation is that, a CVT cell should have bone dependen-
cies similar to the closest surface point. Therefore, for a cell
whose normalized distance to the surface is d, its skinning
weight is simply the one of its closest surface point, scaled
by ed. We tackle scale changes by normalizing the distance
field with the averaged edge length of cells in the shape.
Since the shortest distance usually hits a triangle rather than
a single vertex, we use barycentric coordinates as the coeffi-
cients to linearly combine the skinning weights of the three
vertices. Note that this does not violate the unity-summation
constraint for surface vertices as their distance d is still zero.
We illustrate this concept in Fig. 8(a). The mapping g is
then determined by searching for the nearest neighbor in
the skinning weight space: g(s) = arg minŝ∈Ŝ ‖wŝ −ws‖2.

In practice, we use Pinocchio [58] to computes skin-
ning weights, extend them from surface vertices to CVT
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(a) (b) 

side view top view 

Fig. 8. (a): illustration of our strategy adapting skinning weights to CVT
cells. Distances to the surface d(xs, ∂Ω) are reflected in the normaliza-
tion constants ed. (b): result of matching two templates.

cells, and match all cells to those of the common template Ŝ .
The resulting skeletons are not used in our method. Fig. 8(b)
visualizes one example of matching results. Our approach
yields reasonable matches, regardless of the difference in
body sizes. Due to the descriptiveness of skinning weights,
symmetric limbs are not confused. Note that this computa-
tion is performed only between user-specific templates Sµ
and the generic one Ŝ off-line once. Input data SY cannot
be matched this way, because rigging a skeleton for shapes
in arbitrary poses remains a challenging task.

6 TRACKING

Recall that our goal is not only to detect the associations
C but eventually to estimate the deformation parameter Θ̂
via Θ̂ = argminΘ E(Θ; C), such that the resulting X(Θ̂)
best explains Y . The choice of Θ could be raw point
positions [59], [60], skeletal kinematic chains [4], [61] and
cage [62]. We opt for a patch-based deformation frame-
work [2] for surfaces and a CVT cluster-based method [51]
for volumetric meshes respectively. Both group the 3D
points into a higher-level structure, where shape deforma-
tions are represented as the ensemble of their rigid-body
motions θ . We briefly explain here the basic principles and
how to apply the predicted correspondences in § 5 to track
a sequence of temporally inconsistent observations.

6.1 Surface-based deformation

In [2], the reference surface is decomposed into several
patches k. It serves as a intermediate deformation structure
between vertex positions and anatomical skeletons. Without
any prior knowledge of motion, patches are preferred to
be distributed uniformly over X . Given correspondences C
from above, a data term is formulated as:

Edata(Θ; C) =
∑

(i,p)∈C

wip‖yi − xp(Θ)‖22, (7)

which is a standard sum of weighted squared distances.
Since evolving a surface with discrete observations (even

with a good C) is ambiguous by nature, regularization
terms are usually introduced to exert soft constraints. Given
a vertex v, the rigidity constraint enforces the predicted
positions xv(θk) and xv(θl) from two adjacent patches Pk
and Pl ∈ Nk to be consistent:

Er(Θ) =

K∑
k=1

∑
Pl∈Nk

∑
v∈Pk∪Pl

wkl ‖xv(θk)− xv(θl)‖
2
2 , (8)

where Θ is implicitly encoded in xv(θk) and xv(θl).

Given a fixed input Y , the regression forest returns a
fixed response Ỹ , and in turn a fixed C . We therefore apply
standard Gauss-Newton method directly to find the mini-
mizer of final energy: E(Θ; C) = λEdata(Θ; C) + Er(Θ),
where λ defines the softness of the template and is empir-
ically set to 10 throughout our experiments. Note anyway
that refining C like non-rigid ICP does is always possible.
In this case, our method provides better initializations than
using last frame results, reducing the needed ICP-iterations.

6.2 Volumetric deformation
On the other hand, a similar deformation framework can
be formulated for CVTs as well, only that surface patches
k are replaced by clusters of cells. We follow [51] which
is essentially a non-rigid ICP method. As opposed to the
extensive correspondence search, we again directly use the
association pairs (i, p) detected by the forest as initializa-
tions. This results in a faster pose estimation.

7 EXPERIMENTS

The presented method is evaluated extensively in this sec-
tion. We verify the merits of the discriminative associations
as well as the complete 3D tracking-by-detection pipeline,
in both surface and CVT parameterizations. As summarized
in Table 1 in the supplemental material, in total 15 datasets
are considered for various evaluation purposes. Due to the
availability of ground-truths, the input in § 7.1 is the non-
rigid registration, whereas in § 7.2 it is the reconstructed
visual hull from [38] or raw tessellated CVT from [63].

7.1 Discriminative associations
Recall that the goal of discriminative correspondences is to
guide the shape deformation not to match non-rigid 3D
shapes accurately. We aim only to show that (1) the pre-
sented features are more or at least equally informative for
matching humanoid surfaces than the existing state-of-the-
arts 3D descriptors, e.g. Heat Kernel Signature (HKS) [30],
[64] or Wave Kernel Signature (WKS) [31] and (2) CVT-
based associations are more reliable than the surface-based
counterparts. We describe every vertices with HKS, WKS,
and our pair-wise offset features f (v) in § 4.1. CVT cells
are, on the other hand, described by the Haar-like spherical
features f (s) in § 4.2. The forests learn to match these 3D
primitives against their own learning template, either a
generic reference surface (FAUST) or a subject-specific CVT
template (Goalkeeper, Ballet and Thomas).

7.1.1 Surface-based correspondences
Surface correspondences are validated on the publicly-
available dataset FAUST [65]. Following [16], [34], we use
only the training set because of the availability of ground-
truth vertex indices. It comprises 100 static 3D scans from
10 subjects in 10 poses. The accuracy on FAUST indicates
how well the proposed method deals with human shape
variations. Specifically, half the registrations (50 meshes) are
chosen to train T = 50 trees and the other half are left out
for testing. At branch nodes, 5000 splitting candidates φ are
randomly generated and the best one is stored. The error
measure is the geodesic distance between predicted vertices
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Ref. 

TSDT WKS HKS 

(a) unseen poses

TSDT WKS HKS 

(b) unseen shapes

Fig. 9. Qualitative results of surface matching on FAUST. Best viewed in pdf.
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Fig. 10. Cumulative errors on FAUST [65].

and ground-truths. If the distance is smaller than a certain
threshold, we consider the point correctly matched. The
percentage of correct matches in varying thresholds charac-
terizes the performance of one algorithm and is commonly
used in many matching papers [16], [34].

The results are shown in Fig. 10, where x-axis is normal-
ized by the averaged edge length of the template. We parti-
tion the 100 meshes in two ways to test the generalization
to unseen shapes or poses. The keyword pose means that the
forest is trained with meshes in all 10 subjects but in only
5 poses, whereas shape represents the opposite. To compare
fairly with other existing methods, we keep the Vitruvian-
manifold label space unchanged (i.e. the same learning
template) while replacing the voxel-based features with 30-
dimensional scale-invariant HKS or WKS feature vectors.
The proposed TSDT-forest combination yields overall best
accuracy in Fig. 10, suggesting that the voxel-based TSDT
feature is indeed more informative than H/WKS in the
chosen parameter range. Comparing the blue solid curve
to the dashed one, we notice that our approach handles
unseen shapes better than unseen poses. This is due to the
fact that our feature relies mainly on 3D geometry, in which
pose variations cause more significant changes than shape
variations. Although this phenomenon is not observed in
the curves of H/WKS because they exploit the spectral
domain for better pose invariance, they suffer from the
confusion between symmetric parts as visualized in Fig. 9.

We further visualize in Fig. 11 the predicted associations
on noisy reconstructed visual hulls with outliers, where
no ground truths are available. Black colors means that

Fig. 11. Predicted data-model associations on noisy visual hulls with
Hough forests. Black color means that the points are either outliers, or
the inferred correspondences are rejected due to incompatible normals.

the predicted correspondences are either rejected by simple
normal compatibility check [2] like those on the body, or
rejected because they are recognized as the chair. In this
experiment, we include chair meshes into training data and
follow Eq. 6 as the entropy measure to grow the trees. As
a result, we can identify observations on the chair online
and remove them, so that they do not affect the subsequent
tracking stage. The task of trees here is throwing away the
points of known outlier classes and in the meanwhile also
predicting correspondences for the remaining points.

As one can see, our approach is capable of predicting
reasonable associations for noisy visual hulls while rejecting
outliers. This is of importance since they are the real input
data of the final tracking-by-detection pipeline. HKS and
WKS are known for their sensitivity to topological noises,
e.g. the merging of arms and torso. We however would like
to remark that, as oppose to our feature vector f (v) that has
a dimensionality virtually longer than 5000 from the ran-
domly generated splitting candidates at each branch node,
HKS and WKS are only 30-dimensional in our experiment.
To fully conclude that the presented voxel-based feature is
certainly better than HKS or WKS requires a more fair and
thorough comparison but is not the main goal of this paper.

7.1.2 Volumetric correspondences

The discriminative CVT-based correspondence in § 4.2 is
validated with 6 sequences from 3 subjects: Goalkeeper,
Ballet and Thomas. We register each template to the cor-
responding raw CVT sequences using a EM-ICP based
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(a) Ballet (b) Goalkeeper (c) Thomas 

Fig. 12. Qualitative results of volumetric matching on the raw CVTs. Best viewed in pdf.
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Fig. 13. Cumulative matching accuracy of different approaches. The x-
axis is normalized w.r.t. the average edge length of the templates. The
number of trees T is 20 in this experiment. Dashed and solid lines are
accuracies on training (Tr) and testing (Te) sequences respectively.

method [51] to recover temporal coherent volumetric defor-
mations (tracked CVTs). For each subject, up to 250 tracked
CVTs are randomly chosen from the first sequence to form
the training set, while the second sequences are completely
left out for testing. We open L = 8 sphere layers for the
feature computation. Each tree is grown up to depth 20 with
30% bootstrap samples randomly chosen from the dataset.

The contributions of CVT on improving the correspon-
dences detection are evaluated in two aspects. First, we keep
using the Vitruvian manifold ∂Ω as the regressing domain
but replace the voxel-based features f (v) with the spherical
feature f (s), denoted as CVTfeature. Next, we further change
the label space from surfaces ∂Ω to volumes Ω, termed
fullCVT. We test on the tracked CVTs and report the results
on all frames of both training sequences (Tr) and testing
ones (Te). The drop between them indicates the ability to
generalize. The same error measure as in the previous sub-
section is applied, only the geodesic distances are replaced
by Euclidean ones. To yield a fair comparison with [11], here
the forests are subject-specific and consist of T = 20 trees.

Fig. 13 shows the percentage of correct matches in
varying thresholds for Thomas and Ballet. Since CVTfeature
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Fig. 14. Cumulative matching accuracy on Goalkeeper.

and [11] are regressing to surfaces whereas fullCVT regresses
to volumes, we normalize the x-axis by the average edge
length of templates to yield fair comparisons. While the
results of CVTfeature are comparable to [11] (green vs. red
or orange), fullCVT attains the improved accuracies (blue
vs. red or green), demonstrating the advantages of our fully
volumetric framework. Some visual results of the fullCVT
approach on raw CVT input are shown in Fig. 12.

It is worth a closer analysis to highlight the advantages
of CVT-based feature f (s) against the voxel-based one f (v).
Our early work [11] applied f (v) that takes 1503 voxels for
f (v) to describe a human shape, while CVT needs only 5k
cells4. Consequently, [11] is not able to include a sufficient
amount of training shapes, leading to a major drawback that
forests are limited to one single subject. To further decrease
the needed number of training meshes, [11] exploits skeletal
poses to cancel the global orientation. This in turn makes
every mesh in the training dataset face the same direction
and we learn merely pose variations. It follows that during
tracking the input data has to be re-oriented likewise using
the estimated skeletal poses from the last frame. The CVT-
based feature f (s), on the other hand, considers distance
fields of cells which is naturally invariant to rotations and
hence does not require re-orientations. We anyway compare
to [11] in both settings. Orange curves in Fig. 13 shows the
results with re-orientation, which is better than the proposed
strategy in Ballet. Nonetheless, without re-orienting data, the
accuracy drops substantially during testing (compare red to
orange). The efficiency on memory and the invariance of
our features are two determining reasons why the presented
method is better than [11]. With the multi-template learning
strategy in § 5.2, it takes just one forest for different subjects
in the tracking-by-detection experiment in § 7.2.

4. Further note that [11] stores a 3D vector in each voxel, whereas we
store a scalar in each CVT cell. So the ratio is 3× 1503 to 5k.
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Fig. 15. Pixel overlap error of 8 sequences, averaged over all cameras. Image resolution: (a-d): 1920×1080; (e-h): 1000×1000. Best viewed in pdf.

Next, we use the sequences of Goalkeeper to verify the
merits of this multi-template learning framework, which
is unfeasible for voxel-based feature f (v) due to the high
memory footprint. It is a particularly difficult dataset be-
cause motions in the testing sequence UpJump have little
overlap with those in the training SideJump. We report
in Fig. 14 the correctness of correspondences for UpJump
(unseen during training) in fullCVT setting. Three situations
are taken into account: training with the tracked CVTs of all
three subjects (red), training only with those from Goalkeeper
(blue) and without Goalkeeper (green). For red and green
curves, we choose the Goalkeeper template as the common
one Ŝ and follow the strategy in § 5.2 to align distinct
CVT tessellations. Comparing the red curve to the blue
one confirms the advantage of this cross-template approach,
leading to a forest that applies to all three subjects without
trading off much accuracy. Nonetheless, the training data
of the testing subject is still indispensable, as the accuracy
drops when there is no tracked CVTs of Goalkeeper (green
vs. red or blue), even if the forest of green curve is trained
with twice the amount of CVTs compared to the blue curve.
This is partially due to the fact that template of Goalkeeper
has much smaller size than the other two and suggests that
the proposed Haar-like feature in Eq. 3 captures more shape
than pose information.

7.2 Tracking-by-detection
Now we move on to evaluate the full tracking-by-detection
pipeline. The predicted associations C of two parameter-
izations are fed into their respective shape deformation
frameworks in § 6 and the tracking is carried out on a frame-
by-frame basis. The fidelity of estimated shapes is verified
by the widely-used silhouette overlap error.

7.2.1 Surface-based
An individual forest is trained for each subject with up to
200 meshes, depending on the number of vertices in the
template. For Baran and Vlasic, we train standard regression
forest; for Lionel and Ben we apply the adaptation in Eq. 6
(α = 5) due to the un-properly segmented chairs and tables

TABLE 1
Average silhouette overlap error in pixels 4 sequences at low frame

rate. Image resolution: 1920×1080.

Crane Jumping Bouncing Handstand
ours 7746.40 9148.94 6847.72 9279.57
surICP [2] 8295.58 16759.29 9400.76 11690.61

in input data. Growing T = 20 trees to depth 25 with 5000
testing offset pairs ψ takes about 3 hours. Although it is
not the aim of this paper, we anyway augment the energies
in § 6.1 with the skeleton energy in [2] and validate the
estimated human poses in 2D.

For sequences without outliers, we compare with
surface-based ICP (surICP) [2] and articulated ICP (ar-
tICP) [15], both of which explain data with GMM using the
Expectation-Maximization algorithm. We run an additional
ICP step to reduce the errors (ours + ICP) for all testing se-
quences. The averaged overlap errors are shown in Fig. 15(a-
d). In general, our method performs much better than artICP
and attains comparable results with surICP. However, ICP-
based methods often fail when large deformation occurs
between consecutive frames, which is usually the case in
videos of low frame rates. We simulate this by tracking
only every three frames. As reported in Table 1, surICP now
yields higher errors because local proximity search fails to
estimate correspondences properly, while our approach is
able to handle large jumps between successive input.

Four of our testing sequences, Cutting, WalkChair1, Ham-
merTable, and WalkChair2 contain tables or chairs in observa-
tions, which play the roles as static outliers. We compare
with other outlier rejection strategies such as, fixed out-
lier proportion (fixOL) [2], removing outliers by body-part
classifications with SVM (bpSVM) [66], and modeling out-
lier likelihood dynamically by aggregating over all patches
(patchedOL) [3]. As shown in Fig. 15(e-h), conventional out-
lier strategy fixOL drifts quickly and soon fail to track (green
curves). ICP with robust outlier treatment, patchedOL, is
able to sustain noisy input to a certain extent. Once it starts
drifting, the error only gets higher due to its ICP nature
(yellow curves). When subjects and outliers are sperate
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components in visual hulls, we cast them into separately
TSDT, and feed them into the joint classification-regression
forest. If they are connected to each other, forests inevitably
associate some outliers to the humanoid template, leading
to undesirable deformations as suggested by the spike in
blue curves in Fig. 15(f). Nonetheless, since we rely less on
previous frames for data associations, the results can always
get recovered when they are separate again. In average, we
still yield low errors throughout the whole sequences. We
remark that such ability to recover is the essence of our dis-
criminative approach, which is the biggest advantages over
the existing generative methods. The recovered shapes and
poses, superimposed on original images, are also presented
in Fig. 2(c) in the supplementary material.

7.2.2 Fully volumetric tracking-by-detection

After evaluating the surface-based tracking-by-detection
framework, now we turn to evaluate the volumetric one.
We compare in two quantitative metrics against the whole
pipeline in [11], which is the early version of our surface-
based tracking-by-detection approach.

Unlike the matching experiment in the previous subsec-
tion, here we apply the multi-template strategy in § 5.2 to
train one universal regression forest, with Goalkeeper chosen
as the common template Ŝ . Training T = 50 trees up to
depth 20 where each one is grown with around 200 CVTs
(approximately one million samples) takes about 15 hours
on a 24-core Intel Xeon CPU machine. For each subject,
we track the testing sequence, which is not part of the
training set. Tracking inputs are raw CVTs that have no
temporal coherence. The number of clusters K is 250 for
Ballet and Goalkeeper and 150 for Thomas. We evaluate our
tracking approach with two different metrics. On one hand,
evaluation with marker-based motion capture evaluates the
correctness of the surface pose, but only for a sparse set of
surface points. On the other hand, the silhouette overlap
error evaluates the shape estimate but not the estimated
pose. Hence these metrics are complementary.

Some visual results are shown in Fig. 3 in the supplemen-
tal material and video5. Our approach is able to discover
volumetric associations even in challenging poses found in
Thomas and deform the templates successfully. As shown in
Table 2-4, we evaluate the results by computing the overlap
error between the ground truth silhouette and the projection
of the estimated surface. The metric we use is the pixel error
(number of pixels that differ). Statistics are computed on all
frames of all cameras. The Ballet/Seq2 sequence has marker-
based motion capture data: fifty markers were attached to
the body of the subject, providing a sparse ground truth
for surface tracking. First, each marker is associated to a
vertex of the template surface. Then, for each marker, we
measure the distance between its location and the estimated
vertex location. Statistics on the distance are reported on
Table 5. We observe that our approach attains slightly better
performances than a state of the art ICP-based approach [51]
and outperforms a surface-based tracking-by-detection [11]
which mostly fails to correctly register the legs of the subject.

5. https://hal.inria.fr/hal-01300191

TABLE 2
Silhouette pixel error on sequence Goalkeeper/UpJump. Image size is

2048×2048.

method mean stddev. median max
Proposed 15221 6843 14754 57748

Huang et al. [11] 19838 14260 15607 109428
Allain et al. [51] 14773 6378 14355 43359

TABLE 3
Silhouette pixel error on sequence Ballet/Seq2. Image size is

1920×1080.

method mean stddev. median max
Proposed 2620 1041 2557 8967

Huang et al. [11] 5427 2809 4863 39559
Allain et al. [51] 2606 1008 2571 7642

TABLE 4
Silhouette pixel error on sequence Thomas/Seq2. Image size is

2048×2048.

method mean stddev. median max
Proposed 9991 7089 7968 78242

Huang et al. [11] 28731 23421 22991 354293
Allain et al. [51] 10199 7379 8022 81649

TABLE 5
Statistics of surface registration error at marker locations, on the

Ballet/Seq2 sequence.

method mean (mm) stddev. (mm)
Proposed 26.37 16.67

Huang et al. [11] 124.02 200.16
Allain et al. [51] 27.82 18.39

7.2.3 Discussion

Last but not lease, we make a short comparison between
the two presented features. As discussed above, voxel-based
volume in § 4.1 has the downside of high memory footprint,
which limits the allowed training variations. Aligning the
orientations is one way to reduce the training variation such
that forests only need to learn the pose variations of one
single subject. One has to repeat the same thing likewise
during the testing phase. In [11], we rely on the skeletal
poses of previous frames for this purpose and thus the
forest predictions are not fully frame-independent, exposing
tracking subject to the potential risk of drifting. To facilitate
a fully 3D tracking-by-detection framework, the information
of previous frames is preferred no to participate in the dis-
criminative correspondence estimation. On the other hand,
the spherical feature presented in § 4.2 attempts to incor-
porate rotational, pose, and even shape variations during
training, yielding completely frame-wise forest predictions.

As reported in Fig. 13, without aligning rotations, the
accuracies of correspondences drop substantially on the
testing sequences for the method in [11]. This means that
voxel-based framework and the corresponding features do
not generalize well to unseen rotations. When deployed in
tracking applications, such unreliable associations eventu-
ally result in failure. In particular, one can observe in Table 4
that [11] attains high silhouette overlap discrepancy, most
likely due to the fact that the subject rotates himself in
many orientations and thus confuses the forest. From these
observations, we conclude that the CVT-based Haar-like fea-
ture and the derived fully volumetric tracking-by-detection
framework is better than the voxel-based counterpart.
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8 CONCLUSION

In this paper, we present two features for surface and CVT
shape parameterizations respectively, both making use of
volumetric distance fields to describe 3D geometry. Aiming
to integrate with random forests, each feature attribute is
computationally independent and can be obtained on the fly
in testing. They facilitate the surface-based and CVT-based
discriminative associations and in turn lead to the corre-
sponding tracking-by-detection frameworks for 3D human
shapes. While CVT-based approach is more robust to the
surface counterpart, we show that both yield more stability
compared with the respective generative ICP extensions.
The reliability of the proposed method is confirmed by the
experiments on numerous public sequences. Future direc-
tions include alleviating problems of topological changing
and incorporating photometric information.
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shape correspondence with anisotropic convolutional neural net-
works,” in NIPS, 2016.

[38] J.-S. Franco and E. Boyer, “Efficient polyhedral modeling from
silhouettes,” PAMI, vol. 31, no. 3, 2009. [Online]. Available:
https://hal.inria.fr/inria-00349103

[39] A. Criminisi and J. Shotton, Decision forests for computer vision and
medical image analysis. Springer, 2013.

[40] A. Criminisi, J. Shotton, D. Robertson, and E. Konukoglu, “Re-
gression forests for efficient anatomy detection and localization in
ct studies,” in Medical Computer Vision. Recognition Techniques and
Applications in Medical Imaging. Springer, 2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPAMI.2017.2740308

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[41] P. Viola and M. J. Jones, “Robust real-time face detection,” Interna-
tional journal of computer vision, vol. 57, no. 2, pp. 137–154, 2004.
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