
Temporal Calibration in Multisensor Tracking Setups
Manuel Huber Michael Schlegel Gudrun Klinker∗

Technische Universität München
Fakultät für Informatik

Boltzmannstraße 3
85748 Garching b. München, Germany

ABSTRACT

Spatial tracking is one of the most challenging parts of Augmented
Reality. Many AR applications rely on the fusion of several track-
ing systems in order to optimize the overall performance. While the
topic of sensor fusion has already seen considerable interest, most
results only deal with the integration of particular setups.

A crucial part of sensor fusion is the temporal alignment of
the sensor signals, as sensors in general are not synchronized.
We present a general method to calibrate the temporal offset be-
tween different sensors by applying the normalized cross correla-
tion method.

Keywords: sensor fusion, calibration, tracking, ubiquitous track-
ing, synchronization

1 INTRODUCTION

In order to correctly combine data from two tracking sensors it is
necessary to know the exact temporal relationship between data ac-
quired from the different sources. We call such sensors to be syn-
chronized or temporally calibrated.

Synchronization can either be achieved by hardware means or by
logical means on the sensor data. For hardware synchronization the
acquisition of sensor data is triggered by a central clock, connected
to all participating sensors. Logical synchronization depends on
correctly attaching timestamps to each sensor measurement. The
fusion algorithm then either has to correctly infer measurements
such that only observations regarding the same point in time are
fused or accommodated for sequential measurements. A general
concept on how to achieve a correctly operating system is described
in [7] and involves a push/pull dataflow architecture.

The temporal calibration problem so far is mostly only solved
for particular hardware setups. Mostly components are either hard-
ware synchronized or the lag between different sensors is tuned in
software by experimental means. Drawbacks of these approaches
are that common off-the-shelf hardware often lacks hardware syn-
chronization interfaces and that dynamic sensor fusion as proposed
in [5] requires methods for automatic adjustments.

In this paper we present a general method to calibrate the tem-
poral offset between different sensors.

The data from two rigidly connected sensors measuring corre-
sponding spatial relationships are compared by computing a simi-
larity measure which determines the level of agreement between the
two sensors, which is to be maximized (for an example see figure
1(a)). We use normalized cross-correlation as the similarity mea-
sure which has to be preceded by a suitable projection to transform
the individual multidimensional sensor data into one dimensional
signals.
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Figure 1: (a) Data of two different senors; (b)Schematic visualization
of different points in time

2 RELATED WORK

One of the major remaining questions in dynamic reconfigurable
tracking setups (such as [5]) is how to dynamically account for sen-
sor synchronization. The Ubitrack framework so far accounts for
unsynchronized sensors by utilizing a Push/Pull dataflow architec-
ture [7] which depends on the correctness of timestamps associated
with sensor measurements. The negative influence of lag on the
general usability of AR applications is generally agreed upon (see
for example [3] or [8]).

Also in [2] and [1] a sensor synchronization scheme is discussed
for the application of calibrating inertial sensors and vision based
tracking. Their approach relies on detecting abrupt movements in
both the camera image as well as the inertial tracker. In [4] it is
indicated that the employed camera and inertial tracker are syn-
chronized via a common clock source that triggers both sensors.
Such a setup using hardware synchronization currently seems to be
the most common case, but in general is prohibitive in ubiquitous
tracking scenarios.

3 APPROACH

Consider an event happening in the real world at time t0, two sen-
sors S1,S2 sense this event and register it at times tS1 and tS2 . These
are in general different observation times of the same event because
every type of sensor needs a different amount of time for the internal
signal processing. Some more delay will be caused by the operating
system or by sending the data over a network to a second worksta-
tion. Assuming the measurements arrive in the tracking software
at times t ′S1

, t ′S2
. All these sources of time delay can be reduced to

one single delay for each sensor ∆tS1 = t ′S1
− t0 and ∆tS2 = t ′S1

− t0.
For the sensor fusion it is only necessary that all sensors are tem-
porally aligned relative to each other, so the offset to the unknown
true point in time t0 is not relevant. To align the sensor data it is
sufficient to determine the temporal offset ∆t = t ′S1

− t ′S2
(see figure

1(b)).
The basic idea to find the temporal offset, is to shift one sensor

data successively by discrete time offsets and compare both streams
with a similarity measure. We investigated the cross correlation
coefficient as a similarity measure, which is quite common in the
field of signal processing. Let TS1 ,TS2 be the sets of all timestamps
t ∈ TS1 ∪ TS2 where measurements of either S1 or S2 respectively
were taken. We define the two data time series as X = {xt : t ∈ TS1}



and Y = {yt : t ∈ TS2} as the actual sensor data xt , yt from sensors
S1 and S2 respectively at the individual timestamps. Note that the
timestamps at which S1 and S2 acquire data, do in general not agree
and thus TS1 and TS2 are distinct.

We can thus define Pearsons’s correlation coefficient of these sig-
nals as

ρX ,Y :=
Cov(X ,Y )

σX σY
.

Note that the correlation is only defined for scalar valued time se-
ries. In order to be applicable to high dimensional tracking data
a suitable dimensionality reduction has to be performed. For our
experiments, we chose to implement a straightforward projection
onto an arbitrary, but constant axis.

If the correlation coefficient ρX ,Y is equal to 1, both signals are
identical. In general ρX ,Y 6= 1 even if the same type of sensors
is used because both measurements will be affected by noise and
other kinds of errors. The time-offset of the two sensor signals can
be determined by consecutively shifting one signal by small offsets
against the other signal and calculating the correlation coefficient
for each time-shift.

The task is to find a ∆t which maximizes the similarity of both
signals. This leads to the following formula

∆t = argmaxδ t{ρX ,Y (δ t)},

where Y (δ t) is the signal Y shifted by δ t.

4 EVALUATION

To validate the method described above we conducted a series of
experiments involving different combinations of sensors. Special
attention was paid to demonstrate to cover most of the interesting
sensor types used for spatial tracking. As such we are mostly con-
cerned with 6DoF pose sensors and subsets thereof such as 3DoF
position or 3DoF rotation sensors.

Calibration Results For our evaluation we used different
types of tracking devices. We used an A.R.T. optical tracking
system, an Xsens MTx inertial sensor, a Faro Fusion coordinate
measurement machine (CMM) as well as a optical square marker
tracker using an off-the-shelf camera.

Table 1 shows the summary of several temporal calibration re-
sults obtained for different sensor combinations.

Position (3DoF) Rotation (3DoF)
Combination of Sensors reg. unreg. reg. unreg.
FARO, A.R.T. 13ms 12ms — —
FARO, Xsens — — 21ms 19ms
A.R.T., MarkerTracker 54ms 47ms 52ms 50ms

Table 1: Measured temporal offsets

Error reduction To illustrate the effectiveness of the tempo-
ral alignment, we analyzed the resultant spatial registration error
between two different trackers in both the unsynchronized and the
synchronized case.

For this data set the tip of the Faro CMM was moved in a sim-
ple circle with moderate speed. The 3DoF position of the tip was
recorded both by the Faro system and by the A.R.T. system, which
was additionally transformed into the Faro coordinate frame. Fig-
ure 2(a) shows the error vector between measurements from the
A.R.T. system and corresponding points measured by the Faro sys-
tem during the movement. The root mean square (RMS) error in
this case is 13mm. From the direction of the vectors the movement
of the marker ball is clearly visible, which indicates a distinctive
lag between the two sensor systems.

Figure 2(b) shows the same error vectors with the difference that
the timestamps were corrected according to the calibration value
determined. In this plot the direction of the error vectors no longer
corresponds to the direction of the movement and the RMS has been
reduced to 6mm. The remaining errors mostly stem from calibra-
tion errors and sensor noise.
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Figure 2: Error vector between measurements from A.R.T. and the
Faro system during movement; (a) without temporal alignment; (b)
with temporal alignment

5 FUTURE WORK

Integration as an online recalibration tool requires further thought
on the classification of pathological input cases. While the offset
calibration method as described above produces proper results for
general input cases, there are also pathological inputs (such as no
motion at all or fast, perfectly periodic movements) which can lead
to meaningless calculations. An online method thus would have to
decide whether the current input is sufficient (e.g. exhibits enough
entropy) to allow for reliable calibration.

There are further possibilities to apply cross correlation to multi-
dimensional data, such as canonical correlation analysis [6]. How-
ever, first investigations did not yield any major improvements over
the methods described above. Nevertheless a more thorough com-
parison could be performed.
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