

Corneal-Imaging Calibration for Optical See-Through Head-Mounted Displays

Alexander Plopski Kiyoshi Kiyokawa Haruo Takemura Yuta Itoh Gudrun Klinker Christian Nitschke

Spatial Consistency of OST-HMDs

Not consistent

Consistent

Eye and HMD Calibration

Manual Method [user interaction required]

SPAAM

Single Point Active Alignment Method

[Tuceryan '00] [Genc '02]

Automated Method Interaction-free

#NDICA

IN teraction-free DIsplay CA libration [Itoh'14]

INDICA

Eye Model

Limbus-based Estimation

Problems

- Occlusion
- Transition
- Highlights
- Contrast
- Do we really

Eye Pose from Limbus Detection

Incorrect Eye Pose results in misalignment of virtual content

Can we do better?

Why no Infra-Red Light?

- Complicated calibration
- Additional hardware
- Problems in environments with strong illumination
- Long-term impact is unknown

Summary of our 3 talks

1. Better HMD model

By Yuta

2. Better Eye position

By Alex

3. Formal **User** study

Summary of our 3 talks

1. Better

HMD model

By Yuta

2. Better

Eye position

By Alex

3. Formal *User* study

Pupil-Center-Cornea-Reflection (PCCR)

HMD Screen resembles a plane

Corneal Reflection

Detected Checkerboard in 2D

Detected grid corners

Scene Reflection in the Eye

 $v \times v_0 = 0$ is 6th degree polynomial in d_{TC}

Reprojected Points (3D → 2D)

Detected grid corners

Limbus-based reprojection

Reprojected Points (3D → 2D)

Detected grid corners

CIC-based reprojection

Reprojected Points (3D → 2D)

Original Image

Detected and Projected Corners

Estimated Cornea Position

Limbus

Eye Model

Eye Position Estimation

Eye Position Estimation

Eye Position Stability

Experiment

Experiment

Calibration Quality

Calibration Quality

No Difference?

Error Vectors

Error Distribution

Summary

- Eye Position estimated from the calibrated HMD-screen and Corneal Imaging
- No need for IR light sources
- Improved stability
- Improved calibration accuracy

Future?

- Improved Screen Model
- Improved Tracking
- Improved Eye Model
- Personal Parameters

Thank you! Questions?

