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GaussianLightField:EstimationofViewpoint-Dependent
Blur forOpticalSee-ThroughHead-MountedDisplays

Yuta Itoh, Toshiyuki Amano, Daisuke Iwai, and Gudrun Klinker
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Fig. 1. An estimation result of eye position-dependent image blur of an OST-HMD by out calibration method. (a) Our experiment hardware with
an OST-HMD and a viewpoint RGB camera (Sec. 4). The HMD displayed a random gray-scale noise image. (b) Images captured by the camera
from different viewpoints. The patches corresponding to an identical region of the displayed image, yet blur tendencies differ among each other.
(c) A captured image from a new test viewpoint. (d) Zoomed image patches. (e) Corresponding ideal image patches if no image blur exists (yet
with optical distortion). (f) Observed Point-Spread Functions (PSFs) (g) Estimated PSFs with our Gaussian Light Field model. Note that the blur
characteristics varies in not only the image space but also depending on the camera position with respect to the HMD as explained in Sec. 1.

Abstract—We propose a method to calibrate viewpoint-dependent, channel-wise image blur of near-eye displays, especially of Optical
See-Through Head-Mounted Displays (OST-HMDs). Imperfections in HMD optics cause channel-wise image shift and blur that degrade
the image quality of the display at a user’s viewpoint. If we can estimate such characteristics perfectly, we could mitigate the effect
by applying correction techniques from the computational photography in computer vision as analogous to cameras. Unfortunately,
directly applying existing calibration techniques of cameras to OST-HMDs is not a straightforward task. Unlike ordinary imaging systems,
image blur in OST-HMDs is viewpoint-dependent, i.e. the optical characteristic of a display dynamically changes depending on the
current viewpoint of the user. This constraint makes the problem challenging since we must measure image blur of an HMD, ideally,
over the entire 3D eyebox in which a user can see an image. To overcome this problem, we model the viewpoint-dependent blur as
a Gaussian Light Field (GLF) that stores spatial information of the display screen as a (4D) light field with depth information and the
blur as point-spread functions in the form of Gaussian kernels, respectively. We first describe both our GLF model and a calibration
procedure to learn a GLF for a given OST-HMD. We then apply our calibration method to two HMDs that use different optics: a cubic
prism or holographic gratings. The results show that our method achieves significantly better accuracy in Point-Spread Function (PSF)
estimations with an accuracy about 2 to 7 dB in Peak SNR.

Index Terms—OST-HMD, calibration, optical see-through, chromatic aberration, point-spread functions, light field

F

1 INTRODUCTION

Optical aberrations of an OST-HMD could severely degrade the
image quality of the display. One major effect caused by optical
aberrations is the optical blur that results in undesirable, blurry
images in the user’s viewpoint (Fig. 1 (b)). Estimating the blur
characteristics of an HMD is important since we could mitigate the
effect by applying correction techniques from the computational
photography as analogous to cameras (Sec. 2.3).

However, the calibration problem has two challenges that are
unique to HMD systems unlike static camera systems. Firstly,
existing HMDs employ various optical designs, thus their optical
characteristics can be totally different for each other (Sec. 2.2).
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Secondly, and most importantly, the optical characteristics of HMDs
are viewpoint dependent. The optics affect final images differently
at the user’s viewpoint depending on the current user’s 3D eye
positions in the HMD coordinates (Fig. 1 (a, b)).

The second property above makes the blur estimation problem
more challenging. When an OST-HMD system, i.e. an image source
and optics, and a viewpoint are fixed to each other, it is possible to
measure optical characteristics in a 2D image space as analogous to
cameras [22]. In practice, however, lenses (display optics) are only
fixed to objects (micro display panels), not to the image planes (our
eyeballs). In other words, if an eye-HMD system were a camera, it
is as if we use a camera while keep moving its lens focus all the time.
As a result, the dynamic change of the 3D position of eyes with
respect to HMD’s display panels affects how an observed image is
blurred in the user’s view. Therefore, we must model image blur
in OST-HMD systems in a 3D spatial manner. Furthermore, the
amount of blur is different for each color channel of the display.

In this work, we thereby propose a calibration method that can
estimate the image blur of an OST-HMD for each color channels
and for arbitrary eye positions within a given eyebox (Fig. 1 (c-g)).
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Fig. 2. Schematic diagrams of common OST-HMD designs with micro
displays. Light from a point source, i.e. a pixel, is transferred to a user’s
eye via optical components. This could induce optical aberration at the
viewpoint due to various phenomena such as refraction and diffraction.
(left) With a free-form prism. (right) With a waveguide optics.

Optics (hardware) problems can be tackled from the software
side by measuring their optical characteristics a priori. For example,
Heide et al. [11] showcases an aberration removal method for
images photographed by simplistic convex lenses. Such lenses are
lightweight, yet usually yield huge chromatic aberrations. Their
method removes aberrations by locally estimating the Point Spread
Functions (PSF) of lenses, and compensates their image blur through
post-processing with estimated PSF priors. To transfer that valuable
knowledge for imaging systems to OST-HMDs, it is crucial to
establishacalibrationapproachthatcanhandleopticalcharacteristics
of various OST-HMDs.

On the other hand, while their method can model aberration as
local PSFs in a camera’s image space, it cannot handle the view-
dependent feature of OST-HMDs. Contrarily, our previous Light-
Field calibration approach [17], [19] can model this 3D property
for display undistortion, yet does not provide a way to model the
aberration on the image plane of an OST-HMD. We find that the
two approaches are neatly complementary each other.

Our proposed calibration method thus fuses the above two
approaches from different domains. We demonstrate that our
proposed model, the Gaussian Light Field (GLF), can handle
both the viewpoint dependency and image blur in OST-HMDs
simultaneously.

Note that distortion estimation is not the focus of this paper even
though ignoring such distortions readily break alignment between
AR contents and corresponding physical objects. Nevertheless, our
calibration procedure also corrects information that can be used to
the distortion estimation.

Contributions: Our main contributions include:
• Proposing a parametric, view-dependent image-blur model

for OST-HMDs that stores spatial information as a light field
and aberration information as point spread functions (PSF)
in the HMD coordinate system (Sec. 3)

• Providing a calibration procedure to learn the model by a
non-parametric regression (Sec. 4).

• Demonstratingthat the learnedmodelcanpredictaberrations
better than a baseline method in two OST-HMDs that use
completely different optics (Sec. 5).

2 RELATED WORK

2.1 Spatial Calibration for OST-HMDs
In Augmented Reality (AR) applications, one of the long-awaited
goals is to make AR experiences indistinguishable from the real
world (True AR [32]). If we are exposed to such an experience,
we would not be able to judge whether given stimuli are real or
synthesized.

To create desired visual stimuli in the user’s field of view
by an OST-HMD, we must figure out diverse characteristics of a

Fig. 3. Examples of impulse responses, i.e. PSFs, of an OST-HMD (Lumus
DK-32). A user-perspective camera captured the display screen while
drawing single pixels at various screen positions. (left) A raw image patch
of the observed image that has a large chromatic aberration and image
blur in the horizontal direction. (right) Various patches from different 2D
positions after a noise filtering (Sec. 3.2.1).

given display system such as visual (e.g. color correction [16]),
temporal (e.g. tracking and rendering latency [3], [39]), and
spatial characteristics (e.g. static registration between AR and real
objects [2], [21]). Among them, the spatial characteristic relates to
how to model the image field of a display with respect to user’s
eye positions for aligned rendering [2], [28]. Since eye positions
are dynamic, some work integrate eye tracking into OST-HMDs
so that a system can update a projection matrix for the rendering
automatically [18], [30].

In previous work, we addressed on minimizing the spatial
calibration error of OST-HMDs in a divide-and-conquer approach
following theworkbyOwenetal. [28].Wefirst tackled themainerror
source due to manual HMD calibration procedures by proposing an
automated calibration method based on eye tracking [18], [30].

We then further broke down the eye-HMD system, and focused
on optical distortions in display optics that are another major error
source after the human eye model. In recent work, we successfully
eliminated spherical distortions of the direct view and image view
caused by optical combiners of OST-HMDs [17], [19].

As yet another step to understand the HMD model deeper, this
work now focuses on the image blur property.

2.2 OST-HMD Optics
In a common OST-HMD design with a micro display panel, an
OST-HMD transfers light from its panels to user’s eyes via various
optical components such as prisms and waveguide plates (Fig. 2).
Although optics designers aim to design HMD optics so that they
can generate as sharp images as possible in predefined eyeboxes,
removing various optical aberrations while meeting other design
factors is still a challenging hardware issue. If we design optics that
minimize aberrations, they often become bulky similar to lenses
for expensive full-frame SLR cameras. This is undesirable since
the total weight of an HMD is a key requirement in practice. To
cope with this, Various optical designs exit, thus HMDs could hold
completely different optical aberrations depending on their designs
(Fig. 3 and Sec. 5).

An OST-HMD typically forms an image as the following. Let us
assume that we turn on a pixel in a micro display panel and the panel
is monochrome, i.e. its light consists of a single wavelength. The
pixel then emits diffused light, and a magnifying optics collimates
the light. The light travels through a waveguide optics to a user’s
eye; consequently, the eye forms the pixel’s image on its retina.

The waveguides can be implemented by different optical
components such as half mirrors (i.e. directly reflect the collimated
light to eyes) as used in Vuzix STAR 1200XLD and in a custom
HMD [13], free-form prisms [35] (Fig. 2 right), Holographic Optical
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Elements (HOEs, e.g., diffraction gratings and holographic beam
splitters) as used in Microsoft HoloLens and in custom HMDs [12],
[26], and combination of them [6]. Thin optical plates are commonly
used with HOEs to internally reflect the light (Fig. 2 left).

2.3 Potential Applications with OST-HMDs’ PSFs
TheprimeuseofthePSFinformationistocomputeapre-compensated
image to be displayed on an OST-HMD so that an observed image
becomes closer to a desired image. A key perspective we have is
that an HMD-eye system can be seen as a Projector-Camera system.
Under this view, knowing PSFs allows us to predict how a projected
image will be degraded at a viewpoint. There are three relevant
applications: projector pre-compensation [5], [8], computational
displays [14], [23], and computational vision correction [1], [29].
Ideally speaking,wecanmaintain the imagequalityofanOST-HMD
with estimated PSFs even if the optics is degraded.

PSFs would also help designing computational displays which
canaccommodate orhelp to optimizevisioncorrectioncomputation.
Recently, Oshima et al. propopsed a proof-of-concept system that
applies a vision correction method to an OST-HMD [27]. They
demonstrate a focus correction method to improve perceptual
image quality of an OST-HMD using PSFs of the display. We also
demonstrated that an OST-HMD system could correct a viewer’s
defocused view by displaying a compensation image that is designed
to cancel the defocus effect to enhance the eye sight [20]. To compute
such a compensation image, the optical aberration information of
an OST-HMD must be known.

In the next section, we introduce basics of optical aberrations,
and introduce related calibration work on OST-HMDs.

2.4 Optical Aberration Calibration
There are five common aberrations known as the Seidel aber-
rations [37]: spherical, coma, astigmatism, field curvature, and
distortion. Although common camera calibration methods consider
the distortion often modeled as a pincushion and a radial distortion,
theyusuallydonotconsiderotheraberrations.Ourpreviouswork[19]
also considers the distortion that changes based on an eye position
in a given eyebox space, but does not focus on image blur issues.

Some works investigate optical aberration issues in OST-HMDs.
Ha and Rolland proposed an assessment procedure for OST-HMDs
which measures the optics performance of a display by measuring
the modulation transfer function [10]. Lee and Hua reported that
optical distortion could affect user’s depth perception in OST-HMDs
since users get slight shift in their view [24]. Pohl et al. propose a
chromatic distortion calibration for virtual-reality HMDs for a fixed
viewpoint [31].

Spatial AR applications with projector-camera systems, such as
projection mapping, have a close relationship with OST-HMDs. A
mismatch between an object distance and the image focus distance
from a projector often causes defocus blurs [38].

Bermano et al. proposed a radiometric compensation method for
augmenting animatronics head where very precise pixel registration
was required, while they pointed out that the aberration was
negligible [4]. Another research, which focuses on a robust, error-
tolerant radiometric compensation, also did not take the aberration
into account, but regarded the drift of a projected pixel for long-term
installation as a more important factor [9].

Modern projectors generally have better optics than current
HMDs, because they do not have a strong size factor that limits
installingsophisticated,yetbulkyopticalsystems.Mobileprojectors,
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Fig. 4. A schematic diagram of our Gaussian Light Field model and its
PSF parameters (Sec. 3).

however, suffer from aberration issues since they require tiny and
simple optics with a space constraint. For example, Maiero et al.
investigated the legibility of projected contents considering the
chromatic aberration of their mobile projection system [25].

3 METHOD

We first start from a simplistic setup with a schematic illustration
in Fig. 4. A monochrome user-perspective camera E placed behind
a monochrome OST-HMD W captures a gray-scale image on the
HMD screen S.

The camera captures a screen point uS as uE in the camera
image. Assuming that the camera follows a pinhole model, and
given the pose of the camera with respect to the HMD coordinate
system W as (REW , tEW ), we can conceptually define a mapping
mES from the 2D screen space to the 2D image plane space as
uE =mES(uS|REW , tEW ) : R2→R2. Inpractice,webuildthismapping
as look-up tables for each viewpoint at which we place the camera
(Sec. 3.1).

Let KE be the intrinsic matrix of the camera, then we know that
the image pixel uE is on a light ray lE , a 3D line, passing through the
camera center tEW and a backprojected point K−1

E ũE , where ũE ∈R3

is a homogeneous vector of the camera pixel.
By defining two 3D planes in a coordinate system, then a 3D line

in the system can be parametrized as a 4D vector storing intersection
points of the line and the 3D planes. Given two planes in the HMD
coordinate systemW , and by converting the 3D points {tEW ,K

−1
E ũE}

via the camera pose (REW , tEW ), we get a light ray lW ∈ R4 in the
HMD coordinate system corresponding to the pixels uS and uE .

The camera E now observes a displayed image. At a camera
pixel uE , we get an image patch IE ∈RN×N with size N. In reality,
displays suffer from image blur that deteriorate ideal image patches.
Similar to a work in [11], we model the image blur as PSFs at each
pixel.

A PSF can be modeled as a Gaussian kernel, a 2D filter which
blurs a given image. Assuming that we have a discretized PSF
P ∈RN×N corresponding to a camera image pixel uE , then the PSF
creates a degraded image by convoluting the ideal image as

I′E(x,y) = P⊗IE = ∑k, jP(k, j)∗IE(x− k,x− j). (1)

The PSF P is correlated to both the light ray lW and a 3D point
xW := REWK

−1
E ( fE ∗ ũE)+ tEW at which the ray intersect with the
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camera’s image plane ( fE is a focal length of the camera). Therefore,
we get a relationship as

P⇔ lW , [xW ]z, (2)

where [xW ]z is the z element of the point. We only use the z element
not the x and y because the information in the x and y elements
are redundant – the light ray lW contains the equivalent information
implicitly.

Now our goal is to learn the relationship described by Eq. 2 over
different viewpoints so that we can predict the image blur of the
display at a new viewpoint. To do so, we design a data collection
procedure and apply a machine learning technique to build a GLF
model.

Note that our previous work in [19] essentially learns a
relationship between the light ray lW in the HMD coordinate system
and the screen pixel point uS. In practice, this step is combined
to associate estimated PSFs of a viewpoint to the display screen
image. Our calibration procedure also collects the data required for
the method in [19]. The only difference is that our procedure is done
for each color channel of the display while their method works on
a gray-scale image converted from an RGB.

3.1 Data Collection Procedure

We collect the dataset described by Eq. 2 for different viewpoints
by using a user-perspective camera. We make assumptions that our
camera is calibrated and has image resolution so that a pixel of
the display can be captured by ideally more than 4 pixels of the
camera. This is for a successful 2D-2D mapping estimation by
structured-light patterns as introduced below. We also assume that
the camera yields low chromatic blur.

We keep our explanation for a monochromatic camera setup
for the simplicity. One can simply extend to a color setup by
repeating the procedure for each color channel. In the experiment,
we consecutively recorded each color channel every time we moved
the camera to another viewpoint.

We first place a camera behind an OST-HMD, then we display
the following images to be captured by the camera:

• Structured-light patterns (gray-code + sinusoidal patterns)
• Impulse images (single white dots with black background)
• Black image

The structured-light patterns give us the 2D-to-2D mapping uE =
mES(uS|REW , tEW ) between the display image and the camera image
pixels. The impulse images and the black image are used to estimate
PSFs as elaborated in Sec. 3.2.

Assuming that we have tracked both the camera and the HMD,
we also get the camera pose (REW , tEW ). We describe our tracking
setup in Sec. 4.2. In addition to those data, we also display a random
noise pattern for evaluations used in Sec. 5.1.

3.2 PSF Estimation

A PSF is an impulse response of an imaging system, i.e. a PSF
represents how a point light source could be observed at a specific
point on an imaging sensor. If we turn on a single pixel on the HMD
screen with white color (an impulse image), then the light from the
pixel propagates the space and casts a PSF on the camera’s image
plane. Given a 2D-to-2D mapping obtained by the previous section,
we can extract a corresponding Region Of Interest (ROI) for a given
impulse pixel (Fig. 5 top row).

Fig. 5. Examples of PSF estimation. (top row) Observed ROIs of impulse
images in a single color channel. (middle row) ROIs after the background
removal. (bottom) Estimated final PSFs.

3.2.1 PSF sampling

In practice, ROI images also contain background noises. They could
be from the environment light and a backlight of an OST-HMD that
remain visible even if the pixel intensity is set to minimum. During
thecalibration,wealsomeasure thebackgroundnoisesbydisplaying
a black screen. Using this base image, we filter the original PSF ROI
image by subtracting the maximum noise value of a corresponding
ROI of the base image (Fig. 5 middle row). Some OST-HMDs that
employ Organic LEDs do not suffer from the problem since they
do not emit light when setting their color to black.

Notethatwecall theseimagesafter thebackgroundnoisefiltering
as Observed PSFs because they represent the impulse response of
each corresponding pixels, which is exactly the definition of PSFs.
We use this observed PSFs in the experiment (Sec. 5.1).

After the filtering, we fit a unimodal Gaussian function to the
filtered ROI image (Fig. 5 bottom row). We do so by applying the
expectation maximization algorithm [7]. To apply the method, we
converted the intensity image into a probabilistic density map by
treating the intensity value as the frequency count. After applying
the algorithm, we obtain a PSF as a 2-by-2 covariance matrix C,
which represents an ellipse by ∀u so that uTCu = 1.

Following the strategy in [33], we parameterize the ellipse by
its orientation θ , scale s, and axis ratio ρ ≥ 1 as (see also Fig. 4),

C= sUΛUT,U :=
[

cosθ sinθ

−sinθ cosθ

]
,Λ :=

[
ρ 0
0 ρ−1

]
(3)

These parameters can be obtained via the eigenvalue decomposition.
Now the learning problem falls into estimating the three parameters
θ , s, and ρ from the observations.

3.2.2 GLF modeling

As a summary, we obtain the following input and output pairs,

x =,[lTW [xW ]z]
T, y = [θ ,s,ρ]T, (4)

through the calibration procedure. We call a set of this pair as a
Gaussian Light Field (GLF) since the dataset consists of 4D light
field vectors (without radiance information) and PSFs represented
by Gaussian kernels.

The advantage of the GLF model is that it naturally models
both image distortions and image blur of an eye-HMD system while
considering their view-point dependent nature.

Now our goal is to learn a function f (·)|R5→R3 from a training
dataset {(xk,yk)}.
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NVIS ST60 Lumus DK32

Fig. 6. Our calibration setups for data collection. (left) NVIS nVisor ST60.
(right) Lumus DK-32. Marker spheres are rigidly attached to the displays
and the camera (Sec. 4.1).

3.2.3 Kernel regression
To learn the GLF function f , we apply a kernel regression method
on the dataset. Similar to [19], we chose a Gaussian kernel for the
regression. We minimize the training error by the L2 norm with an
L2 regularizer for the kernel parameters.

Since the change of PSFs are local in the HMD coordinate
system, we apply a local learning strategy for one of the two HMD
setup (Sec. 5.3). Given a training input set {xk}, we divide the 5D
space into grids based on lW , thus in the 4D space. For each grid,
we learn a kernel function f with training datasets whose input
vectors are inside the grid. When testing a test data, we search a
corresponding local function, then apply the function to the data.

3.2.4 Baseline PSF
As a more naive estimation, we also compute ŝ, the median of the
scale s over training samples, and construct a diagonal Gaussian
filter as diag([ŝ, ŝ]). We use this median Gaussian filter as a baseline
PSF against our GLF-based PSF. This means that we assume the
PSF is always constant over the entire eyebox of the display.

4 TECHNICAL SETUP

We evaluate our calibration method with two OST-HMDs that
employ different optics designs. Ahead to the experiment section
(Sec. 5), this section describe the HMD setups and the tracking
setup used for the calibration.

The experiments were done offline with Matlab R2016a on a
commodity Windows 7 laptop, and computation time took some
tens of seconds for a learning and few seconds for a testing.

4.1 OST-HMD Setups
The first OST-HMD is a nVisor ST60 from NVIS (Fig. 1 and Fig.
6 left), with a 1280× 1024 resolution and 60° diagonal field of
view (FoV). The HMD employs LCOS (Liquid Crystal on Silicon)
technology, a microdisplay technology, with a one-panel design; a
single LCOS panel projects each RGB color in succession with high
frequency. The optics of the display is similar to those with a free-
form prism (Fig. 2 left), but with a cubic prism. A semi-transparent,
cubic prism in front of the user’s eye reflects these light rays to the
eye. The HMD has two DVI inputs for a right-eye display and a
left-eye display. Our setup uses only the left-eye display.

The second OST-HMD is a DK32 from Lumus (Fig. 6 right),
with 1280×720 resolution and 40° diagonal FoV. The display optics
is based on polarized waveguide (See Fig. 2 right). light from the
display panels go through a thin glass plate while being reflected,
then sent to user’s eyes from the grating exits. To ensure a larger
eye box, the display have multiple grating exits aligned vertically.
The left eye display is used for the current setup.

T

M’
C

M

Fig. 7. Our hand-eye calibration setup. (left) A schematic diagram of the
coordinate systems. (right) Visualizations of an estimated pose. With the
estimated hand-eye pose, we augmented a virtual 3D cross-hair on a
marker-sphere in different viewpoints correctly.

Ideal view Observed PSF Estimated PSF Baseline PSF

Observed view
Simulated view

with Observed PSF
Simulated view

with Estimated PSF
Simulated view

with Baseline PSF

(e) (f) (g) (h)

(a) (b) (c) (d)

Fig. 8. Visualization of a training result. See Sec. 5.1 for details.

For a user-perspective camera, we used a UI-2280SE-C-HQ
Rev.3 from iDS. It has a 2/3" sensor and provides 2448× 2048
images, together with a 25mm C-mount lens (FL-CC2514-5M from
RICOH).

4.2 Tracking Setup
To compute the training dataset according to Eq. 4, we need the
camera pose (REW , tEW ) with respect to the OST-HMD coordinate
system.

We employed an outside-in tracking system consisting of
two ARTTRACK2 cameras. The system tracks constellations of
retroreflective markers, marker trees, and give their rigid 6 Degree-
of-Freedom (DoF) pose in a sub-millimeter accuracy at 60Hz. We
attached a marker tree to each devices (Fig. 6).

Importantly, the trackingsystemonlygives theposeof themarker
tree on the camera, and does not give the camera pose (REW , tEW )
directly. Therefore, we had to calibrate the camera with respect to
its marker tree. This is a typical problem in tracking as known as
the hand-eye calibration [34]. We calibrated the system beforehand
by using our calibration library Ubitrack [15].

Fig. 7 shows our hand-eye calibration setup where letters denote:
Trackers (T), a Marker tree (M), an optical Marker (M’), and the
Camera (C). We estimate the pose from the tree to the camera.

5 EXPERIMENT

5.1 Experiment Design
In this experiment, we evaluate our method on two OST-HMDs.
For each HMD setup, we repeat a training step and a test step. In a
training step, we collect a training dataset for a given HMD setup
(Sec. 3.1). By using the dataset, we learn GLF (and the baseline PSF
in Sec. 3.2.4) through the procedure described in Sec. 3.2. In a test
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Fig.9.Summaryof theevaluation for theST60setup. (top)Theobservation
similarity measurements. (bottom) The PSF similarity measurements as
boxplots and their histograms. Each color in the figures corresponds to
each color channel of the display. See Sec. 5.2 for the detail.

step, we collect a test dataset from a new viewpoint, and estimate
their PSFs via the learned GLF. In the end, we evaluate the estimated
PSFs against Observed PSFs (Sec. 3.2.1) and Baseline PSFs (Sec.
3.2.4).

To recall the definition of PSFs, we itemize them here:

• Observed PSF: Given as an 2D image of impulse response
with background noise removal applied (Sec. 3.2.1)

• Estimated PSF: Estimated from our proposed GLF model.
• BaselinePSF:EstimatedfromanaivePSFestimationwithout

considering viewpoint dependency (Sec. 3.2.4)

For our evaluation of the estimated PSFs, we define and use
two different similarity measurements: the PSF similarity and the
observation similarity.

5.1.1 The PSF similarity
The PSF similarity is the similarity between Observed PSFs (Fig.
8 (b)) and other PSFs, i.e. estimated and Baseline PSFs (Fig. 8 (c)
and (d)), in their filter image space.

Note that we cannot compare Observed PSFs against the rest
by PSF parameters – Observed PSFs are row images that are not
parametrically modeled by a unimodal Gaussian function.

As image similarity, we use Peak Signal-to-Noise Ratio (PSNR).
As an alternative image similarity, we also tested the structural
similarity (SSIM [36]), which is motivated to correlate the quality
perception of the human visual system. Since both distances resulted
in a similar error tendency and displayed images are mere random
noise images, we stick on the PSNR for the rest of the paper.

Estimated Baseline Estimated Baseline Estimated Baseline

10

20

30

PS
N

R 
[d

B]

Observed Raw PSF Estimated PSF Baseline PSF

Ba
se

lin
e

Es
tim

at
ed

Observation Similarity Measurement

PSF Similarity Measurement

Fig. 10. Summary of the evaluation for the DK32 setup. The notations
are same as Fig. 9. Note that we exclude the red channel from the
evaluation due to its few sample size we could collect.

5.1.2 The observation similarity
Now we explain the observation similarity. We evaluate if the
estimated PSFs result in view-point images that are similar to the
actual observation. We synthesize an ideal viewpoint image by
warping the reference screen image to the viewpoint by the 2D-to-
2D mapping mES (Fig. 8 (a)). We then predict expected view-point
images by applying the estimated PSFs (Figs. 8 (f-h)) on the ideal
viewpoint image. Finally, we compare the predicted images with an
actually observed image (Fig. 8 (e)). PSNR is again used for error
measurement.

5.2 OST-HMD Setup with a Cubic Prism

The first evaluation is for the ST60 setup. Figure 9 summarizes the
evaluation results. We collected 10 training viewpoints and 1 test
viewpoint.

5.2.1 The observation similarity results
Figure 9 top shows boxplots of the observation similarity for each
PSF types. In “Ideal Image”, we compare the observed images (Fig.
8 (e)) against the ideal viewpoint images (Fig. 8 (a)), a blur-free
images that the camera would see if there was no blur effects.
Our results showed that PSFs with the proposed method yields
significantly higher similarity measures than the baseline PSFs in
all the color channel (two-sample t-test, p≈ 0 for the red and the
green channel and p < 0.05 in the blue).

We further look into the PSF similarity measurement that gives
another insightful analysis on the proposed method.
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A cubic prism Holographic gratings

NVIS ST60 Lumus DK32

A collimator lens
behind a prism

Fig. 11. Differences in the optics design of two OST-HMDs. (left) ST60 with
a cubic prism. A photo of the right cubic prism of the display. A collimator
lens installed on top of the prism is seen as a reflected, semitransparent
image in the prism. (right) DK-32 with parallel waveguide exit plates. This
HMD causes discontinuous changes in PSFs between each exit grating
plates, which degenerates the GLF model based on Gaussian functions.

NVIS ST60 Lumus DK32

Fig. 12. Viewpoint image samples. Due to the FoV and the display quality,
ST60 yields a clearer image than the DK32, which tends to include local
blur.

5.2.2 The PSF similarity results
Figure 9 bottom shows boxplots and histograms of the PSF similarity
measurements. In the green and blue channels, our method achieves
significantly higher PSF similarities compared to the baseline (p≈ 0
for both color channels, with 2.8 and 2.1 mean dB improvements).
On the other hand, the baseline method gives significantly higher
mean similarity value than our method in the red channel, yet the
difference is rather small (about 0.08dB).

The histograms of the measurements show additional insights
that our method is superior to the baseline. In the histograms of
the baseline method, several peaks exist. In the baseline method,
each color channel is assigned to a single Gaussian filter, and these
simplistic PSFs could not handle varying PSFs over the field of
view at the given viewpoint. The peaks also suggest that the t-tests
might not be appropriate for the comparisons.

On the other hand, as expected, our GLF method yields higher
normality in the histograms for all the color channel. This fact
supports that the proposed model successfully predicted PSFs for
the new viewpoint while changing their parameters.

5.3 OST-HMD with Holographic Gratings

The second evaluation is for the DK32 setup. Fig. 10 summarizes the
results. We collected 11 training viewpoints and 1 test viewpoint.

Since the display uses holographic gratings to transfer an image
(Fig. 11 right), we observed that the PSFs of the display have strong
locality compared to the ST60, i.e. a small change in the viewpoint
position can drastically affect observed PSFs. To mitigate regression
errors caused by the discontinuity of the PSFs over the input space,
we decided to enforce a locality in the input space as detailed below.

We split the light field input space, lW ∈R4, into N grids while
keeping the depth feature [xW ]z ∈ R as is. The idea behind is the
following. The change of a light ray could switch a corresponding
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Fig. 13. Evaluation result of the DK32 setup when the local sampling
was being disabled. As elaborated in Sec. 5.3.2, the regression fails to
find a function which fits well to the global data at once.

waveguide plate through which the ray travels, thus a corresponding
PSF could drastically change its shape. On the other hand, the
change of the depth along the ray would modify the size of the PSF
smoothly, thus we assume PSFs are continuous on the depth.

By heuristics of checking training errors, but not the test errors,
we set N = 25, thus 254 ≈ 390k grids in the 4D space of the light
field. Note that the block size N could be objectively chosen by
introducing model selection scheme from the machine learning
community.

Note that we disregard the red channel data in the analysis since
it did not give reliable number of training samples due to the biased
brightness profile of the display, which tend to create bluish color
even if we display white (Fig. 12 right). Thus, we discuss only
the green and blue channel data. The red channel data is, however,
included in the figure for the completeness.

5.3.1 The observation similarity results
As shown in Fig. 10 top, our method slightly improves the mean
observation similarity compared to the Baseline PSFs in the green
and blue channels, and this difference was statistically significant
(two-sample tests, p ≈ 0). However, overall the PSNRs are lower
than those from the ST60 setup. The reason could be due to the
image quality of the display itself (Fig. 12).

5.3.2 The PSF similarity results
As shown in Fig. 10 below, our method improves the PSF estimation
accuracy even further compared to the ST60 setup in both the green
andthebluechannel(p≈ 0,with7.6and6.0meandBimprovements),
even though strong local blur existed in the DK32 as shown in Fig.
3. We observed that the local sampling strategy is necessary for a
successful calibration for this display optics. We explain why the
local sampling worked through an extra experiment.

Figure 13 is the extra evaluation result of the DK32 based on
the same training and test datasets used in the above evaluation. The
only difference is that we applied the global sampling instead of the
local one, i.e. we did a regression over the entire training dataset only
once. As one can see in the figure, the estimation failed to predict
PSFs correctly. To investigate this failure of the global sampling, we
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Ground-truth points Estimated points

Fig. 14. Visualization of the learning results (PSFs parameters) in the
viewpoint camera image pixel domain with/without the local data sampling
in the DK32 setup. (left) With the local sampling (data only from one
sample block). (right) Without. In the right column, due to the PSF locality
of the display, our GLF estimation fails to fit jumping data. On the other
hand, in the left column with the local sampling, our estimation nicely
fits to the local, small sample sets. See also Fig. 15 to check how the
sampling affects the size of local data sets.

visualize how a learned function and its training dataset distribute
in the data domain. Note that we do not discuss the red channel
because of the same reason explained in 5.3.

Figure 14 shows a visualization of both the learned function with
the local sampling (Fig. 14 left column) and the learned function
with the global sampling (Fig. 14 right column). Each row visualizes
how the functions based on the two sampling approaches estimate
the PSF parametersP (the axis angle, rate, and length). In each figure,
the vertical axis corresponds to a PSF parameter, and the other two
axes are first 2 elements of the input light ray lW so that we can
visualize the 5D input space (lW and [xW ]z) in 3D with an extra output
dimension. Blue dots represent measurement from a test dataset,
and orange points are estimated values from each learned functions
given the input data of the test dataset. For the visualization of the
local sampling effect shown on the left column of Fig. 14, we took
a typical regression result of a data block randomly taken from one
of the N4 local data blocks.

In the right column of Fig. 14, the learned function with the
global sampling fails to fit the function to large local changes. On
the other hand, the learned function with the local sampling (Fig.
14 left column), gives better estimates for this data block.

To make the global estimation work, we may tune a model
parameter (the regularizer) of the kernel regression so that the
regression function can express more radical changes. However,
this leads to unstable estimation in practice due to the overfitting.

Figure 15 shows histograms of how many data points are used
in each data block of the local-sampling for both training and test

Fig. 15. Histograms of the sample size of training and test dataset used
for each local kernel regression in the DK32 setup. The x axes represent
sample size per local sampling blocks and the y axes are count of those
blocks. If no local sampling is used, the training and the test data could
be 80k and 7.1k samples respectively.

datasets of the DK32 setup. The number of samples used in one
block is reduced to at most around 50 and 30 for both the training
and the test data. On the other hand, the global sampling regresses
a single function with 80,000 data samples and estimated 7,100
samples in the testing step.

6 DISCUSSION AND FUTURE WORK

Through the experiments, we demonstrated that our GLF method
is capable to estimate the chromatic blur of OST-HMDs for a given
viewpoint. Yet, there are some issues worth investigating further.

Validity of the PSF Model: In the current method, we use unimodal
Gaussian kernels to characterize the PSFs. This model could be too
simplistic to represent certain optical aberration types. For example,
a comatic aberration is typically wedge-shaped, thus cannot be
modeled by a single Gaussian kernel. If a user’s viewpoint is too
close to the display, an image would appear with a front bokeh,
which is usually ring shaped, again can not be modeled by a Gaussian
kernel. Another point to be improved is that our PSFs do not optimize
the amplitude either since they are always normalized to one.
A possible option for handling these complex PSF shapes is to use
a richer function model such as Gaussian mixture model. However,
a more complex model might affect the computation time.

Eye Orientation and GLF: There is another issue in the definition
of our GLF model. The current GLF model implicitly assumes that
the viewpoint camera is frontal to the HMD screen. In other words,
we treated the model as if the orientation of the viewpoint-camera
does not affect observed PSFs, which is not necessarily true. If the
camera (the eye) rotates, then orientation of the angle of its lens
(the eye’s crystal lens) changes, thus the observed PSFs could also
vary. Therefore, we would need to integrate the orientation of a
viewpoint in the GLF learning step. This potential effect should be
investigated deeper in future work.

Locality in theRegression:Although our local sampling technique
works moderately for the DK32 setup, it is worth considering to
apply a more sophisticated regression algorithm to improve the
estimation performance. For example, in the DK32 setup, it would
be reasonable to select subsetsofdata (4Dlight rays) so that eachdata
corresponds to a particular waveguide plate(s). In some OST-HMDs
with waveguide plates, an exit piece consists of several optics that
are aligned side-by-side, and their optical effects are not necessarily
continuous. Thus learning independent GLFs for each of the optical
components would be a reasonable extension of the current method.

Other Remarks: Although it is not the focus of this work, we have
not built a system that can achieve the GLF estimation real-time
with a dynamic viewpoint change. Eye positions change all the time
during the use of HMDs in the daily life as analogous to eyeglasses.
Thus a real-time system would be necessary for more practical
continuous use such as deblurring systems [20], [27].
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We could also extend the method to correct the direct-view
blur, i.e. chromatic blur of user’s real-world view that the user sees
through semitransparent optics of OST-HMDs. We could lern this
by observing reference objects in the real world through HMDs.

Our method is also applicable to virtual reality displays to collect
theirchromaticblur that tends tobestronger thanthatofOST-HMDs.

7 CONCLUSION

This work presents a calibration method to estimate the optical
characteristics of a given OST-HMD especially the image blur that
areviewpoint-dependent.AchallenginganduniqueprobleminOST-
HMDs (also in virtual reality HMDs) is that the optical characteristic
of a display is dependent on a user’s viewpoint. No optical systems
with static optical components can easily be designed to meet all
optical requirements for all possible eye positions.

Instead of approaching this issue from the hardware side, we
tackled this problem from a software side and proposed a viewpoint-
dependent image blur model so-called Gaussian Light Field (GLF).
We demonstrated that our GLF model is capable to estimate the
chromatic blur of two different OST-HMDs with different optics.
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