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Abstract—The correct orientation of an ultrasound (US)
probe is one of the main parameters governing the US
image quality. With the rise of robotic ultrasound systems
(RUSS), methods that can automatically compute the orien-
tation promise repeatable, automatic acquisition from pre-
defined angles resulting in high-quality US imaging. In the
present paper, we propose a method to automatically posi-
tion a US probe orthogonally to the tissue surface, thereby
improving sound propagation and enabling RUSS to reach
predefined orientations relatively to the surface normal at
the contact point. The method relies on the derivation of
the underlying mechanical model. Two rotations around
orthogonal axes are carried out, while the contact force
is being recorded. Then, the force data are fed into the
model to estimate the normal direction. Accordingly, the
probe orientation can be computed without requiring visual
features. The method is applicable to the convex and linear
probes. It has been evaluated on a phantom with varying
tilt angles and on multiple human tissues (forearm, upper
arm, lower back, and leg). As a result, it has outperformed
existing methods in terms of accuracy. The mean (±SD)
absolute angular difference on the in-vivo tissues averaged
over all anatomies and probe types is 2.9±1.6◦ and 2.2±1.5◦

on the phantom.

Index Terms—Medical robotics, robotic ultrasound, nor-
mal direction detection, parameters optimization

I. INTRODUCTION

The importance of orthopedic surgery amplifies with an
increase in life expectancy, as elderly people are more prone to
bone-related injuries [1]. For example, 18% of elderly people
and 25% of children in the USA suffer from distal radius
fracture [1], [2]. The ultrasound (US) image is widely used in
scanning bones and many other clinical applications owing
to its low cost, high accessibility, and absence of ionizing
radiation. For example, in 2017, over 9.2 million US scans
were performed in England, which is twice and three times
larger than the number of computer tomography (CT) scans
and magnetic resonance imaging (MRI), respectively, during
the same period [3].

To optimize the outcome of an orthopedic surgery, surgical
navigation has been widely implemented in current clinical
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practice. To enable accurate navigation, it is necessary to
perform a registration providing the consistency between the
intra-operative US scans and the high resolution pre-operative
scans, such as MRI or CT [4], [5]. Concerning orthopedic
surgery, the bone surface is often considered to perform such
a registration, as it has strong resistance to deformation [5].
Therefore, it is crucial to obtain high-quality US bone imaging.
However, US examinations are highly operator-dependent, as
it is challenging to exactly maintain or replicate acquisition
parameters (the contact force and relative orientation between
a probe and a tested object), even for experienced sonogra-
phers [6].

To address this challenge, the robotic-based techniques have
been introduced to assist in US scanning owing to their high
accuracy and reproducibility [7]–[9]. Applying the robotic US
systems (RUSS) allows obtaining US sweeps with a repeatable
predefined contact force and probe orientation (namely, the tilt
angle θt between the probe center line and the normal direction
of a scanned tissue), which are the two most important
parameters governing the US image quality. Huang et al.
employed two strain sensing elements attached onto both sides
of the probe front surface to monitor the pressure between
a probe and a subject [10]. To reconstruct 3D US arteries,
Pierrot et al. implemented an external force control scheme
aiming to exert a given effort on skin based on a force/torque
(F/T) sensor mounted to the flange of a 7-DOF (degree of
freedom) robotic arm [11]. Gilbertson et al. designed a 1-DOF
hand-held device to perform freehand US scanning, while
the predefined contact force was maintained using a hybrid
position/force control scheme [6].

Pujas et al. showed that external control is able to reach
a similar performance as the hybrid scheme for real imple-
mentations [12]. However, the implementation of an external
force controller was deemed simpler compared with a hybrid
controller used in industrial applications in [13]. Furthermore,
the external control is particularly well-suited in the case
when safety is of concern, as the acting position loop of
external control could mitigate the disturbance occurred on the
robotic arm. However, the performance of the classic hybrid
method [13] is limited due to dynamic instability caused
by the robot’s dynamic model. Since we only require force
control for one Cartesian direction (along probe), the spring-
like external force controller [14] is employed to maintain a
constant contact force in this study.

However, in addition to the contact force, the relative tilt
angle θt is also crucial to fully parameterize a US scan,
specifically when repeated US scans are required to monitor
the changes in the anatomies of interest. To investigate the
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Fig. 1. Two rotations executed to optimize the probe orientation.

influence of θt, Hnatsenka et al. found that better quality
could be obtained when θt is close to zero (the probe center
line is situated close to the normal direction of the contact
surface) [15]. This phenomenon is further aggravated in or-
thopedic applications, as the intensity reflection coefficient for
most interfaces from soft tissues to bones are approximately
25% while that for most interfaces from soft tissues to soft
tissues are less than 0.01% [16]. Therefore, it is reasonable
to place the probe along the normal direction of unknown
constraints for general US applications. Moreover, the probe
is able to be further deflected from the normal direction by
an explicit θt for specific applications, such as imaging the
anatomies covered by ribs.

Some industrial applications, such as robotic polishing,
also require to orient a tool attached to the flange along the
normal direction of the constraint surface or a given direction
θt. However, the constrained surface is usually known in
industrial applications, such as mold manufacturing. There-
fore, the desired posture of attached tools can be directly
generated from CAD/CAM software for polishing a freeform
surface [17]–[19]. Concerning an unknown constraint surface,
Merlet et al. and Kazanzides et al. proposed using reaction
force to determine the surface normal [20], [21]. However the
estimation accuracy cannot be guaranteed when the surface
is non-rigid. In addition, Yoshikawa et al. suggested moving
the tool on the surface using a hybrid position/force control,
and then, the normal direction was approximated according to
the direction that is perpendicular to the line connecting two
nearby positions on a considered trajectory [13]. However, this
method requires a change of the contact point on the constraint
surface.

To orient a US probe close to the normal direction of an
unknown constraint surface for US applications, Chatelain et
al. employed a visual servoing technique for a 3D US probe
in [22]. However, for 2D probes which are much more
common in clinical practice, the method is only able to opti-
mize the in-plane orientation while the out-of-plane part still
required to be adjusted via telemanipulation [23]. Huang et al.
approximated the normal direction of the constraint surface
considering the normal direction of a triangle composed by
three neighbor points around the planned path on an image
obtained by a depth camera prior to US scanning [24].
However, the surface obtained before the probe makes contact
with the tissue can not adapt to deformations induced by
the contact. Furthermore, the method’s accuracy is limited by

the employed hand-eye calibration and potential occlusions
between the camera and the scanned tissue.

To build a RUSS independent of additional devices, Jiang et
al. proposed an algorithm to identify the normal direction
based on live US scans together with contact force values
estimated from joint torques [25]. However, the accuracy of
estimated force is highly depends on the joint configuration
and accuracy of torque sensors in all joints of the robot. In
addition, their computer vision based in-plane adjustment is
limited to convex probes and requires the presence of sufficient
amounts of shadows in a US scan. This limits the possibility of
realizing potential clinical applications, as the preferred type
of probes for limbs or carotid artery is linear.

This study aims to present a model based orientation opti-
mization method to accurately place the probe perpendicular
to the tissue surface for automatic RUSS. Accurately orienting
the US probe to anatomies is an important step towards fully
automatic RUSS with high-quality US imaging. This will
further extend the usability of US modality for monitoring
changes of tissues or lesions of interest, since it can provide
accurate and repeatable probe orientation making scans easily
comparable. To this end, we first build the mechanical model
describing the reaction force during two rotations around a
given contact point. Then the parameters of the derived model
are optimized using particle swarm optimization (PSO) on the
force data measured from an external F/T sensor. In addition,
we show that the probe orientation is an important factor
governing the image quality of orthopedic US scans. The
effect of probe orientation θt on the orthopedic US image
quality has been quantitatively investigated using a state-of-
the-art US bone detection algorithm [5]. The desired normal
is decomposed into two parts: an in-plane component Ni

(co-planar with the US image plane) and an out-of-plane
component No (orthogonal to the US image plane). These
two components are estimated separately by executing two
rotations around the corresponding axes, as shown in Fig. 1.
Moreover, we report the results of experiments performed on
both phantom and different human tissues. These results show
that the proposed method outperforms existing approaches in
terms of accuracy, and it is applicable in real conditions.

This paper is organized as follows. Section II provides the
results of investigating the impact of the probe orientation
on US bone detection. Section III presents the mechanical
model for the in-plane and out-of-plane rotation. Section IV
describes the denoising and optimization procedures used to
extract the normal direction from the measured force values.
Experimental validation on both phantom and in-vivo tissues
with different probes are presented in Section V.

II. EFFECT OF PROBE ORIENTATION ON BONE
DETECTION

A. Ultrasound Bone Detection

The bone surface detection method by Salehi et al. [5] is
used for bone detection in this paper. The method is based on
a convolutional neural network to first segment the bone in the
US scans. Then the segmentations are post-processed to extract
the bone surface. The model was trained using US acquisitions
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Fig. 2. Bone detection results for an US sweep of the radius bone for various probe orientations. (a) and (b) are the B-mode US slices from
two sweeps of a volunteer’s radius bone when the probe is placed in a tilted (θt = 15◦) and normal orientation (θt = 0◦). (c) and (d) show the
corresponding bone detection results. (e) shows the compounded volume with the detected bone surface on each slice of the sweep for θt = 0◦.

from multiple subjects using different acquisition settings. The
method is shown to outperform existing feature-based methods
both in terms of precision and recall. The method with trained
model was thankfully obtained from the authors implemented
in ImFusionSuite (ImFusion GmbH, Munich, Germany).

The results of applying the method to an US sweep per-
formed on an in-vivo radius bone is shown in Fig. 2. As it
can be seen in Fig. 2, the US image acquired with θt = 0◦ is
more contrast compared with the scan from the other sweep
with the tilted (θt = 15◦) probe orientation (brighter than the
surrounded soft tissues as denoted by red arrows). Hence, the
corresponding detection result for θt = 0◦ is much better.
Since bones are acoustically in-homogeneous, the US waves
are scattered away rather than reflected back to the probe if
θt is not zero [26]. When increasing θt the ability of a US
probe to properly contact the scanned surface deteriorates due
to the high stiffness of a bone, which further degrades image
quality.

To quantitatively assess the quality of bone detection, the
detected bone feature coefficient (DBFC) λc is considered.
Intuitively, λc describes the true positive rate adapted to the
case where the detection is confined to a curve, whereas
the annotation is volumetric. It is computed by dividing the
number of the true positive detected pixels over the difference
in the column indeces between the leftmost and rightmost
annotated pixels. A larger λc means to a larger true positive
rate, which benefits a potential registration. This is shown in
Eq. (1).

λc =
|Ω|

Gr −Gl
where Ω = {p|p ∈ DET ∩GT} (1)

where Gl and Gr represent the column index of the leftmost
and rightmost pixels of the ground truth; DET and GT rep-
resent the sets containing all pixels belonging to the detected
bone surface (line) and the labelled ground truth (area) and Ω
is the intersection of DET and GT.

B. Detection Quality with Different Probe Orientations

To investigate the impact of θt on the US imaging quality
and bone detection results, five US sweeps (each includes 195

2D B-mode scans) on the volunteer’s forearm with different
θt (0◦, 5◦, 10◦, 15◦, and 20◦) were obtained using a linear US
probe. The forearm surface is seen as flat during short sweeps
(50 mm). To ensure the constant contact force Fc, all sweeps
were recorded using the compliant control scheme described
in [14]. Furthermore, to ensure that the imaged area is the
same despite the varying tilt angles, only the middle part of
each sweep is considered. The bone detection results for the
five sweeps are represented in Fig. 3.

The sweep recorded under the normal direction (θt = 0◦)
contains more B-mode scans (70%) with λc ≥ 0.75 compared
with the sweeps corresponding to the other four directions.
It could be seen that the second highest peak in that bin
corresponds to the θt of 10◦. However, when considering the
neighbor bin (λc ∈ [0.5, 0.75)), the sweep with θc = 5◦

contains 73% of scans with λc ≥ 0.5, whereas the sweep
with θc = 10◦ contains only 66%. Regarding sweeps with
λc < 0.25, the sweeps with θt of 0◦ and 5◦ comprised only
6% and 3%, respectively. With an increase in θt to 20◦, the
amount of sweeps with λc < 0.25 augmented to 18%, 34%,
and 29% for θt of 10◦, 15◦, and 20◦, respectively. Hence it
can be seen that the bone detection quality of the state-of-the-
art US bone detection method improves, as the US probe is
oriented closer to the normal direction.

Fig. 3. Bone detection results for US sweeps obtained from a volunteer’s
forearm using a linear US probe. The probe was tilted in various angles.
The contact force is 5 N .
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III. NORMAL DIRECTION DETECTION

A. Strategy for Searching the Normal Direction
To ensure the imaging quality and patient safety, the com-

pliant control scheme described in Section IV-A is employed
to maintain a constant force Fc along the probe center line C
during US scans (see Fig. 4). The target tissues in orthopedic
applications (i.e. limbs) are rigid due to the presence of bones,
whose elastic modulus is more than 8.91 Gpa [27]. Thus,
when a constant Fc is exerted along the probe, reaction force
Fr is generated along N of the constraint surface to balance
Fc. The other reaction force component normal to Fc varies
according to the change in the relative posture between probe
C and unknown N as shown in Fig. 4 (d). According to the
concept of reaction force defined in theoretical mechanics, it
can be inferred that when an external force (Fc) is applied
along the normal direction of a contact surface (N), the re-
sulting reaction force components in the other two orthogonal
directions should be zero.

To estimate N of an unknown constraint surface, two
rotations with a given point of contact around two orthogonal
axes (xsa and ysa) are executed. During the process of rotating,
the reaction force component saFy and sa′

Fx (see Fig. 4 (c)
and (d)) are measured by a F/T sensor attached onto the flange,
respectively. Then, the components of N lying in the plane
defined by the rotation axis (Nx or Ny) is estimated. After
each rotation, the robot is moved to align the probe center
line C with the estimated direction.

Desired Nx is located inside the virtual plane A that com-
prises desired N and the randomly selected axis xsa. Desired
Nx is approximated by C when the probe is rotated onto the
plane A. Theoretically, this is also the posture resulting in saFy

to be zero. Then, the second rotation around the axis ysa that
is orthogonal to xsa is conducted. It is used to estimate Ny

where sa′
Fx is reduced to zero. The two rotations around xsa

and ysa are denoted as X-rotation and Y-rotation, as shown in
Fig. 4 (c) and (d).

However, human tissue, such as the human limbs, are not
completely rigid. There are some soft tissues (i.e. muscles)
between the skin and an underlying bone. In real scenar-
ios, small and unexpected deformations of soft tissues are
generated to balance the external force. Thus, the recorded
force is affected, particularly, in the applications requiring the
applied force to be small. Accordingly, to identify the normal
direction of human tissues, the measured forces saFy and
sa′
Fx (see Fig. 4 (c) and (d)) will not be exactly zero when

the US probe is accurately placed along desired direction Nx

or Ny . To address the limitation of the simple threshold-based
method, here a model-based optimization method is employed
to extract N. As the model-based method estimates the desired
direction based on the whole experimental force data rather
than on a single value, it is more robust in terms of adapting
to the small differences between the ideal and real cases.

B. Mechanical Model
In this subsection, we explain the theoretical mechanical

model describing two successive rotations (X-rotation and Y-
rotation) with a given contact point. The goal of the me-

chanical model is to establish a framework that allows un-
derstanding the exact relationship between the measurements
of the F/T sensor and the tilt angle of a probe. The problem
can be decomposed into two independent subproblems. First,
Nx is estimated based on the rotation around xsa. Then, Ny

is computed based on the rotation around ysa, after the X-
rotation alignment has been executed.

First, the F/T sensor origin Ps is projected onto the selected
rotation axis xsa yielding point P

′

s. The equivalent radius of
X-rotation Rp is equal to the distance between Ps and P

′

s.

Rp =
√
|C|2 − L2

x (2)

where C is the probe length vector (including the length of
fixture) from Ps to the tool center point (TCP) Ptcp, and Lx

is the distance between P
′

s and Ptcp.
After placing the US probe on a given contact point with the
random posture, Lx is computed using Eq. (3):

Lx = C · xsa (3)

where xsa is a unit vector.
Then, a unit vector zsa that is orthogonal to xsa is defined in
the direction of the equivalent radius Rp as shown in Fig. 4 (c).
The unit vector zsa is calculated using Eq. (4):

zsa =
C + Lx · xsa
|C + Lx · xsa|

(4)

Accordingly, the Cartesian coordinate frame {sa} corre-
sponding to the randomly selected xsa is well-defined by xsa,
zsa, and ysa = zsa×xsa. The reaction force component in ysa
(saFy) is able to be represented by a function with respect to
the rotation angle around xsa (θx) from plane A to real-time
equivalent radius Rp.

saFy = sgn(θx)
Rp

|C|
Fc · tan θx (5)

where sgn(θout) is the sign function.
The measured saF̂y is computed based on the recorded force
using Eq. (6):

saF̂r = sa
tcpR tcp

s R sFr

saF̂y =sa Fr(y)
(6)

where A
BR is the rotation matrix used to describe the frame {B}

relatively to frame {A}; sa
tcpR = [tcpxsa, tcpysa,

tcpzsa]−1,
tcp
s R is fixed after attaching the F/T sensor on the flange.

Upon the successful completion of the X-rotation compu-
tation, the probe is placed along the computed N̂x, which is
located at the plane A in the ideal case. Then, the correspond-
ing Y-rotation around ysa is executed. To intuitively describe
the reaction force with respect to the rotation angle around
ysa (θy) ranging from desired Nx to real-time probe C, the
other Cartesian coordinate frame {sa’} can be defined, where
ysa′ = ysa, zsa′ = C and xsa′ = ysa′ × zsa′ (Fig. 4 (d)). The
reaction force component in xsa′ (sa

′
Fx) is computed using

Eq. (7):
sa′
Fx = −sgn(θy) Fc · tan θy (7)
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Fig. 4. Theoretical mechanical model of the two successive rotations; (a) a 3D view of a random contact between the convex probe and the unknown
constraint surface; (b) the 3D model of two orthogonal searching rotations around random xsa and corresponding ysa at a fixed point, respectively;
(c) 2D view of the rotation around randomly selected axis xsa; (d) 2D view of the rotation around the computed axis ysa, that is normal to xsa.
Desired Nx is estimated based on the X-rotation. Then the Y-rotation is performed from the estimated Nx. Computed Ny is used to approximate N
of the unknown constraint surface. Ps and Ptcp denote the F/T sensor frame {s} and the tool center point (TCP) frame {tcp}, respectively.

In addition, the measured sa′
F̂x during the Y-rotation is

calculated based on the sensor output using Eq. (8):
sa′

F̂r = sa′

tcpR tcp
s R sFr

sa′
F̂x =sa′

Fr(x)
(8)

where sa′

tcpR = [tcpxsa′ , tcpysa′ , tcpzsa′ ]−1.
The reaction force model of searching rotations around a

random axis (xsa) is formulated in Eq. (5), and Eq. (7). Since
the real-time Cartesian frame {tcp} can be computed based on
the robotic kinematic model, it is deemed a suitable candidate
to be used as a rotation axis without the need for additional
computations. Moreover, since the US probe structure (both
linear and convex) is symmetrical around the long axis (xtcp)
and short axis (ytcp) (see Fig. 1 and Fig. 7), xtcp and ytcp
are the center lines of the contact area in two orthogonal
directions when the probe is close to the normal direction of
the constraint surface. This means that the center contact lines
remain unchanged during the process of searching rotations,
respectively. The unchanged center line of the contact area
indicates that no additional deformation is generated along
the rotation axis. Therefore, the two searching rotations can
be executed around xtcp and ytcp in this study. Then, the
theoretical reaction force model defined in Eq. (5) and Eq. (7)
can be rewritten as Eq. (9), and Eq. (10) for the orthogonal
out-of-plane rotation (xtcp) and in-plane rotation (co-planar
with the US image plane, ytcp), respectively.

tcpFy = sgn(θout) Fc · tan θout (9)

where θout is the out-of-plane offset angle between N and C.
Here, θout is identical to θx when xsa = xtcp.

tcpFx = −sgn(θin) Fc · tan θin (10)

where θin is the in-plane offset angle between N and C. Here,
θin is identical to θy when ysa = ytcp.

As a result of comparing Eq. (9) and Eq. (10), it can be
seen that both forces corresponding to the out-of-plane and

in-plane searching rotations are able to be computed using the
general equation described in Eq. (11):

tcpFi = Fa · tan θj + Fb (11)

where (i, j) = (y, out) or (x, in); Fa and Fb are constant
variables for each rotation. Here, Fb is introduced to reduce
the negative effect caused by the force bias related to the initial
contact condition for the real experimental data.

C. Extracting the Normal Direction

Based on the recorded reaction force tcpF̂r and the pre-
viously derived mechanical model tcpFi, i = x or y (see
Eq. (11)), a model-based orientation optimization method is
proposed to obtain first No and then Ni as a result of the
out-of-plane and in-plane rotation.

However, since the derivative of a tangent monotonically
increases until infinity, a small variation in tcpF̂r may lead to
non-negligible errors in a tangent-based fitting result. How-
ever, the required maximum angular error in this task is less
than 20◦ (|θi| < 20◦). Therefore, the tangent-based equation
(Eq. 11) derived from the theoretical mechanical model can be
approximated by a sine-based function applying small-angle
approximation (20◦ = 0.35 rad). Compared with the tangent-
based equation, the derivative of the sine-based function is
limited to the range [−1, 1]. Thus, it is more robust to fit
the sine-based function to the noise-perturbed tcpF̂r using
Eq. (12):

tcpFi = pi1 + pi2 sin (2πpi3t+ pi4) (12)

where θj = 2πpi3t + pi4, (i, j) = (x, out) or (y, in), and t is
the time stamp of the recorded force data.

The unknown parameters in Eq. (12) are estimated based
on the experimental fluctuation-compensated reaction force
(FCRF) tcpF̂r using the constrained non-linear optimization
problem described in Eq. (13).
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min
1

2N

N∑
j=1

[tcpFi(j) − tcpF̂i(j)]
2

s.t.

{
2πpi3t(k) + pi4 ≤ ηmax

2πpi3t(k) + pi4 ≥ ηmin

∀ k ∈ [1, N ]

(13)

where i = x or y; N is the length of tcpF̂r; ηmax and ηmin

are the boundaries limiting the search space, respectively.
Eq. (13) can be solved using the Sequential Quadratic

Programming (SQP) method. The desired direction for each
of rotations is at θj = 0. Therefore, the normal (No or Ni) is
approximated by the recorded orientation R corresponding to
the time stamp tf making θj = 0 using Eq. (14).

Nd = R(tf ) when θj = 0 (14)

The fitted result and the corresponding feature curve used
to identify No for an example of the out-of-plane rotation are
shown in Fig. 5. Here, an experiment to determine the out-of-
plane normal is performed. Then based on the optimized time
stamp tf computed by Eq. (14), the ideal No is approximated
by the orientation encoded by the recorded probe orientation
R(tf ). The angular error between the ground truth No and
R(tf ) is 0.7◦ (error=arccos

No · R(tf )
|No| |R(tf )| ).

Fig. 5. (a) Fitting result. (b) feature point identification. The experimental
force is the denoised force data recorded by F/T sensor. Parameters for
the out-of-plane part: rotation range θout ∈ [10◦, − 15◦], phantom tilt
angle αt = 5◦ and initial in-plane position θin = −10◦.

IV. CONTROL ARCHITECTURE AND DATA PROCESSING

In this section, we first describe the control architecture.
Then, several de-noising procedures are introduced to mitigate
the presence of the large noise in the raw force data recorded
during the out-of-plane or in-plane rotations. An overview of
the algorithm is shown in Fig. 6.

A. Compliant Control Architecture
The experimental setup for a gel-wax phantom with a planar

surface is illustrated in Fig. 7. To measure the interaction
force during the estimation of the normal direction N, an
F/T sensor was attached to the robotic flange. To validate
the proposed method in different cases, a phantom with a flat
surface is placed onto the tilted surfaces with varied tilt angles.

Fig. 6. Workflow of identifying the normal direction based on force
measurement.

In addition, since the rotations are performed around xtcp and
ytcp (frame {tcp}) fixed on the probe, the symbols Nx and
Ny used in the rotation around an arbitrary frame {sa} are
replaced by No and Ni, respectively.

The robot motion is controlled via a 1-DOF compliant
controller combined with a 5-DOF position controller as
in [14]. The acting 5-DOF position controller is employed to
execute the desired scan trajectory or to limit the movement
of the contact point around the given position. The compliant
controller is applied to exert the constant desired contact force
(Fd) between the US probe and tissue aiming to guarantee the
US imaging quality and patient safety during screening. The
spring-like compliant controller is represented in Eq. (15).

tcpF = Fd −K(Pi − P0) (15)

where tcpF ∈ Rm is the real force acting onto the contact
point in the frame {tcp} (tool center point); K ∈ Rm×1 is the
stiffness vector; P0 is the position where the robot enters force
mode; Pi is the current position.

Fig. 7. Experimental setup on the gel-wax phantom. The rotation
is performed around xtcp (out-of-plane view) and ytcp (in-plane view)
rather than the frame {sa} corresponding to an arbitrary axis. The
symbols Nx, Ny , θx and θy in Fig. 4 are replaced with No, Ni, θout and
θin, respectively. Pb, Pf , Ps and Ptcp denote the origin coordinates in
the robotic base frame {b}, the robotic flange frame {f}, the F/T sensor
frame {s}, and TCP frame {tcp}, respectively. Different slope bases are
used to tilt the phantom with different angles (αt = 0◦, 5◦, 10◦ and 15◦).

B. Force Calibration using Particle Swarm Optimization
To obtain the true reaction force component (tcpFi in

Eq. (11)) during the searching rotation, the weight of the US
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probe (including fixture) and the preloading force (to mount
the sensor on the robot) were identified and then compensated.
The ouput from the F/T sensor (sFm) constituted the combined
result of the real contact force (sFr), the probe weight (bW),
and the initial force offsets (sFoff ), including of the sensor
bias and the preloading force.

sFm =s Fr +s
b R bW +s Foff (16)

where s
bR =tcp

s R−1 b
tcpR−1; tcp

s R = [0 1 0; − 1 0 0; 0 0 1]
is the rotation matrix from {s} to {tcp}; b

tcpR is the varied
transformation mapping data from {tcp} to {b}, which is
obtained from the forward kinematics; {b} is the robot base
frame; {s} is the F/T sensor frame.

A particle swarm optimization (PSO) is employed to
identify the unknown parameters bW and sFoff based on
the experimentally recorded force data. PSO is an iterative
population-based stochastic optimization technique inspired by
the foraging behavior of bird flocks [28]. Its main advantages
are acceptable performance in terms of finding global optima
and its simple implementation [29].

PSO utilizes a group of particles to find an optimal solution
by moving the particles around in a search space. The search
process is guided by searching for the minimum of the fitness
function Fn. In this study, Fn is given by Eq. (17):

Fn =
1

3N

N∑
i=1

‖sFm(i)− (sbR(i)bW(i)−s Foff )‖ (17)

where N is the number of measurements.

C. De-noising and Compensation of Recorded Force
The measured force data contains noise due to the unde-

sired contact conditions and digital noise. Therefore, a set of
denoising steps are applied to the measured force data. First, a
Kalman filter (KF) is used to remove the Gaussian digital noise
caused by the F/T sensor and the robotic servoing system.
Following the steps listed in [25], the transition matrices for
the estimated state (A) and the measured value (H) of KF
are set to be the identity matrix because the last measurement
could be set as the predicted value due to the high sampling
frequency (Fs = 83Hz) of the F/T sensor and the slow
rotational velocity (0.025 rad/s). The process and measurement
noise model are empirically chosen to be N (0, 10−4) and
N (0, 10−6), respectively. The output of KF is shown in Fig. 8.

Since the rotations are non-periodic and executed with slow
velocity (0.025 rad/s), the resulting force corresponding to
the rotation is mainly distributed in the low-frequency part.
Therefore, a low-pass filter is applied to restrain the high-
frequency noise. Its stop-band frequency is determined using
the fast Fourier transform (FFT). The FFT results of measured
force Fm and the corresponding power spectral density (PSD)
are shown in Fig. 8 (c). The PSD is rapidly attenuated after
5 Hz, and the energy (cumulative PSD) at 5 Hz occupies over
86% of the total signal energy. Hence, the stop-band frequency
is set to 5 Hz.

However, the signal will experience a constant phase shift
(group delay) after applying the low-pass filter. This corre-
sponds to time delay (tde), defined as the derivative of the

phase with respect to frequency. More details can be found
in [30]. The output data of the low-pass filter are further cor-
rected by shifting the denoised signal by tde. Concerning the
general S-tap low-pass filter, tde is calculated using Eq. (18):

tde = (S − 1)/(2 ∗ Fs) (18)

To further extract the force corresponding to the searching
rotation from low-pass filter result, the weight of the probe
(including fixture) should be compensated. In all experiments,
the bias of the force sensor measurement is compensated when
the probe is aligned along the bz direction. Then, based on the
probe weight (sFw and sFoff ) estimated by PSO, the weight-
compensated reaction force (WCRF) in frame {tcp} (tcpFr)
is calculated by rewriting Eq. (16) as Eq. (19).

tcpFr =tcp
s R(sFm −s

b R bW−s Foff ) (19)

It can be seen in Fig. 8 (b), that the real contact force along
C (tcpFz) is not exactly equal to the desired Fc, due to inho-
mogeneous deformations and small slides occuring between
the probe and the contact surface. To restrain the influence of
small fluctuations of recorded tcpFz ∈ (Fc −∆F, Fc + ∆F ),
the average value of tcpFz during the rotation is computed
as tcpF z . Thus, the fluctuation-compensated reaction force
(FCRF) tcpF̂r = [tcpF̂x,

tcp F̂y,
tcp F̂z] is calculated by mapping

the fluctuated tcpFz to tcpF z using Eq. 20.

tcpF̂r(i) =
tcpF z

tcpFz(i)
tcpF(i), if

tcpF z

tcpFz(i)
< T1 (20)

where tcpF z = 1
N

∑N
i=1

tcpFz(i), N is the number of mea-
surements.

Fig. 8. Effect of the processing steps on the data recorded during the
out-of-plane rotation; (a) and (b) display tcpFy and tcpFz , respectively;
(c) shows the FFT result on tcpFy . Experimental parameters: rotation
range [10,−15]◦, the phantom tilt angle αt = 5◦, initial orientation θin =
−10◦ and θout = −15◦.

V. RESULTS

A. Experimental Setup
The method was evaluated using a KUKA LBR iiwa 7

R800 robot (KUKA Roboter GmbH, Augsburg, Germany),
an Ultrasonic Sonix RP machine (BK Ultrasound, Peabody,
USA) and a Gamma F/T sensor (ATI Industrial Automation,
USA) attached to the end-effector via a custom 3D printed
holder. The US B-mode scans were acquired using both a C5-
2/60 GPS convex probe and a L14-5/38 GPS linear probe (BK
Ultrasound, Peabody, USA).
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Fig. 9. Experimental setup.

The robot is controlled via a software module based on the
Robot Operating System (ROS) framework. The B-mode scans
are transferred to a workstation (Intel Core i7-8750H CPU,
16 GB RAM, GeForce GTX 1060) using the OpenIGTLink
protocol. The robot’s status and force measurements are ex-
changed at 100 Hz and 83 Hz, respectively. The gel-wax
phantom with a flat surface is placed on a flat table. Hence
the ground truth is represented by [0, 0, 1] when αt = 0◦.
As for the phantom with a non-zero αt (5, 10 and 15◦)
and in-vivo volunteer tissues, the ground truth is represented
by the normal direction of a local surface composed by
three neighbor points distributed around the given position
as in [25]. The neighbouring points are manually selected.
We have experimentally determined that this method measures
the normal with an accuracy of less than 0.1◦ for a gel wax
phantom.

B. External Load Calibration Result

The probe weight bW and the initial force offset sFoff

are optimized through minimizing the fitness function Fn

(Eq. (17)) using PSO. The parameters of PSO are listed as
follows: acceleration constants c1 = c2 = 2; inertia weight
ξmin = 0.4 and ξmax = 0.9; particle size Jp = 24; the
maximum number of iterations: 2000. The measured force
(sFm) is recorded while the end-effector is rotated around
xtcp and ytcp without any external load. Then the weight
of the convex probe (bW = [0 0 − 4.33]N) and initial
force offset (sFoff = [−0.01 0.04 − 4.31]N) are obtained
using PSO. The algorithm terminated after 1400 iterations,
returning the final Fn of 0.0022. Repeating the procedures,
the probe weight and initial force offset for the linear probe
are calculated as follows: bW = [0 0 − 3.05]N) and
sFoff = [−0.03 − 0.05 − 3.06]N.

C. Robustness of the Model-Based Identification Algo-
rithm

To validate the robustness of the method aiming to ensure
its usability in real applications without any requirements for
the knowledge about the constraint surface, a set of out-of-
plane rotations with varying initial in-plane angle offsets θin
and different rotation parameters (direction, start angle, and
end angle) are executed. All experiments are conducted on
the same gel-wax phantom with a flat surface. The phantom
is placed on a tilted surface (αt = 5◦) (see Fig. 7) to mimic

the non-planar human tissues. The resulting angular difference
between the estimated normal N̂o and actual No are listed in
TABLE I.

From Table I, it can be seen that the average angular dif-
ference ēout (mean±SD) summed over all trials is 2.1± 1.5◦.
This is smaller than the error of human operators reported
in [25], which is 3.2 ± 1.7◦. Furthermore, in two cases, eout
of zero was achieved, and in 51 out of 60 cases (85%), eout
was less than three degrees. The two cases with the zero error
contain one sample with the largest rotation range ([−15, 10])
and one sample with the smallest rotation range ([−5, 5]). The
average errors for each row and column are denoted by ēra
and ēoff in the table. It can be seen that there is no significant
difference between the experiments conducted using different
θin and θout values. When grouped by a rotation direction,
the average errors ēout for the forward and backward scanning
are 1.9±1.5◦ and 2.3±1.5◦, respectively. However, the t-test
(wiht the probability p = 0.27 > 0.05) yielded that the search
direction has no significant impact on the identification result.
Therefore, the proposed method demonstrated the capability of
providing the sufficiently accurate estimate of No for various
θin and rotation parameters (direction, starting angle, and
ending angle).

However, there are three suboptimal cases (eout ≥ 5◦,
marked in red in Table I). Two of them occurred when the
start or the end of the rotation is close to the desired direction
(≤ 5◦). This is because the US probe is not a mass point as
modeled in Fig. 7. This indicates that an asymmetric searching
rotation introduces a bias of the measured force data, which
is not in line with the theoretical model. However, the largest
ēra is only 3.4 ± 1.1◦ when the absolute end angle is 10◦

greater than the absolute start angle ([5,−15]). In addition,
while starting or stopping the movement of the robotic arm,
the motion is not stable during the beginning and ending
phases, which will further corrupt the force measurement.
This suggests that both start and end points of a rotation had
to be sufficiently far from Nd (≥ 5◦) to guarantee accurate
identification results.

In addition, the impact of the rotation velocity on identifi-
cation performance is also investigated. Besides 0.025 rad/s,
three other velocities (0.015, 0.05 and 0.075 rad/s) are
tested in the experiments using the same frequency for force
data acquisition. For each velocity, at least four experiments
are repeated under the same condition. The angular error
between the detected direction and ground truth slowly grows
(0.38 ± 0.23, 0.41 ± 0.28, 0.94 ± 0.40, and 1.40 ± 0.11◦)
as velocity increases from 0.015 to 0.075 rad/s. Based on
the result, the error behaves close to linear with respect to
the velocity. This is because a larger velocity results in larger
motion during the same time period. Thus, it is possible to
maintain the identification accuracy by increasing the record-
ing frequency of the robot pose and force data when a larger
velocity is used.But a slow motion means that the contact
condition is closer to the static case while a fast rotation will
introduce an unmodeled dynamic contact situation between
the probe and human tissue. This means that too high velocity
may result in a failure to find a good estimation. Therefore, the
rotation velocity should be carefully selected to make a trade-
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off between accuracy and efficiency. If the accuracy is the main
concern for a specific application, the probe is suggested to
be rotated slowly.

D. Validation on Gel-Wax Phantom
In this section, we systemically describe the performance

of the proposed method concerning both convex and linear
probes on a gel-wax phantom. To make the experiments more
detailed, the phantom is placed on various titled surfaces (αt =
0, 5, 10, 15◦). The absolute angular difference for the out-of-
plane and in-plane rotations are shown in Fig. 10.

Regarding the out-of-plane experiments, six rotations were
executed for each pair of θin (−10,−5, 0, 5 and 10◦) and the
probe type (convex and linear). Then, the rotation ranging
[−15, 10◦] offset from the desired location is performed. Con-
cerning in-plane evaluation, the rotation ranges from [−13, 8◦].
For each pair of a probe type (linear, convex) and θout
(−5, 0, 5), the rotation is repeated five times. The range of
θout in this case is smaller, as the out of plane alignment is
conducted before the in-plane rotation.

From Fig. 10 (a), the average angular difference (± SD)
for the 120 out-of-plane rotations (eout) is 2.7± 1.9◦ for the
convex and 2.5 ± 1.3◦ for the linear probe. More than 75%
of eout for all 240 rotations (both convex and linear probes)
are below 3.6◦. As can be seen in Fig. 10 (b), the average in-
plane error (ein) is 1.7±0.9◦ and 1.0±0.7◦ for the convex and
linear probes, respectively, based on 60 rotations. The model-
based optimization also demonstrates robustness to the various
tilt angles αt used. Due to its flat tip, the proposed method
achieves better performance for the linear probe rather than
for the convex probe, which contains an arched tip. When
considering all 360 rotations (the convex and linear probes,
in- and out-of-plane), over 75% of the samples exhibites an
error less than 4◦.

It is also noteworthy that although the average error of
the in-plane and out-of-plane optimizations are rather close
to each other (less than 1◦), the maximum error of the in-
plane optimization is much less compared with that of the
out-of-plane optimization(convex: 8.5◦ vs 3.3◦; linear: 5.7◦

vs 2.9◦). The differences between the performances of the in-
plane and out-of-plane optimizations are caused by the probe
structure for which the length in xtcp is much larger than the
width in ytcp direction. For example, the length and the width
of the linear probe are 50 mm and 13 mm, respectively. The
larger length results in greater force changes when the probe is
rotated around the same angle. Thus, the in-plane optimization

results are better than those of the out-of-plane optimization
as shown in Fig. 10. In addition, the performance differences
between the probes (see Fig. 10 (b)) are caused by a similar
reason. This is because the linear tip of the linear probe makes
it more sensitive to the in-plane rotation compared with the
round tip of the convex probe.

In addition, to demonstrate the superiority of the proposed
method, we compared it with existing approaches and also
human operators as shown in TABLE II. A red cross indicates
that a method cannot be applied for the corresponding scenario
(e.g. probe type). The performance of the camera based
method [10] is computed based on the angular difference
between the ground truth and the estimated normal direction
of a flat calibration board at different positions and timestamps
(90 data in total). In addition, a simple method based on the
reaction force (N = [ Fx

|F | ,
Fy

|F | ,
Fz

|F | ]) used in [20], [21] also
does not work well in this case, particularly for the linear
probe. This is mainly caused by the probe’s geometry and
the properties of human tissues, which are not as stiff as a
workpiece. Since the probe width is much smaller than its
length (linear probe: 13 mm vs 50 mm), the out-of-plane
performance is better than the in-plane performance for both
linear and convex probes (see TABLE II).

Then we further compared our proposed method with the
state of art probe orientation optimization method [25], which
is the first work aimed to fully optimize a US probe orienta-
tion (both in-plane and out-of-plane). However, the in-plane
optimization method is only applicable to a convex probe and
required sufficient amounts of shadows in US images. The
force based out-of-plane adjustment was developed based on
the searching for an optimized minimum force deviation. In the
present study, all available experimental data has been taken
into consideration rather than focusing on local minima [25],
which makes it more robust to adapt the unmodeled error
in real cases (e.g. friction and amount of US gel). The
performance of the model-based method is better than that of
the local minima based method [25] on a gel-wax phantom
(2.5 ± 1.3◦ vs 3.1 ± 1.0◦). Furthermore, the lowest error
reported in [25] is 1.7◦ while the best of the out-of-plane ori-
entation achieved by the present work has an error of zero (see
Fig. 10 (a)). Based on experiments performed on a phantom,
the proposed method outperforms other existing methods, and
is comparable to the participating human operators in terms
of identification accuracy.
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Fig. 10. Absolute angular difference between ground truth No and Ni

and the estimated values N̂o and N̂i for out-of-plane and in-plane rota-
tion, respectively. The circles represent the absolute angular difference
for each experiment, the bar represents the mean value. The bottom
and top short bars represent the 25th and 75th percentile, respectively.
There are 30 experiments for out-of-plane and 15 for in-plane for each
probe type and each αt. Several initial angular offsets were used
([−10,−5, 0− 5, 10]). Here, αt denotes the tilt angle of the phantom.

E. In-vivo validation

Since human tissues are more complicated, the impact of the
probe orientation on the real US bone images is analyzed as
demonstrated in Fig. 11. The radius bone boundary gradually
disappears in the US view when the US probe is rotated away
from the normal direction of the constraint surface. The bone
boundary becomes very weak in the case the tilted angle is
over 15◦ as shown in Fig. 11 (d), (e), and (f). Therefore, the
probe orientation is deemed important to obtain high-quality
US bone imaging for the potential registration between intra-
operative US imaging and pre-operative scans (CT or MRI).

To further investigate the performance of the proposed probe
orientation adjustment method concerning the real clinical

applications, validations were carried out on real human tissues
(forearm, upper arm, leg, and back) using the linear probe. To
restrain the negative effect caused by breathing, the volunteers
are asked to hold their breathing for the experiments on their
low back. Ten rotations are executed for each tissue, starting
from a random location. The absolute angular error for the
in-plane and out-of-plane parts are shown in Fig. 12.

The error corresponding to the various in-vivo tissues ranges
from 0.1◦ to 6.0◦. Regarding the out-of-plane rotation, the
mean errors (±SD) are 3.7 ± 1.7◦, 3.1 ± 1.5◦, 2.5 ± 1.3◦,
and 2.0 ± 1.8◦ for the forearm, upper arm, leg, and lower
back, respectively. This result outperforms that of the previous
state-of-the-art approach that was evaluated on a volunteer’s
forearm, upper arm and back achieved mean (±SD) of 3.7±
1.7◦, 5.3± 1.3◦, 6.9± 3.5◦ [25]. Regarding the in-plane part,
the mean errors (±SD) for the same tissues are 2.3±1.6◦, 3.2±
0.6◦, 2.5±1.4◦ and 2.3±1.4◦, respectively. The average errors
for the in-vivo tissues are close to the results on the gel-wax
phantom. Therefore, we confirmed that the proposed method
is partly robust against the distortions caused by unexpected
human movement and tissue deformation.

In addition, it is also noteworthy that the best in-plane result
on the upper arm (2.2◦) is worse than the best results on
other tissues (0.2, 0.0, and 0.2◦ for forearm, leg, and back,
respectively). This is due to the different fat distribution, which
makes the upper arm softer than the other tissues. In addition,
the round structure of upper arm is more prone to yield
sliding between the probe and the tissue, which led to further
deterioration of the algorithm accuracy. However, despite these
challenges, the worst case in-plane results on the upper arm
are still less than 4.0◦.

VI. CONCLUSION

In the present paper, we introduced a model-based orien-
tation (both in-plane and out-of-plane) optimization method
to automatically estimate the normal of an object surface
purely based on the measured contact force. This method
enables RUSS to automatically obtain US scans with higher
quality. The focus of the proposed method is emphasized on
the utilization of the underlying mechanical model to obtain
a desired direction based on the force values recorded during
the two orthogonal fan motions with a certain point of contact.
The proposed method is applicable to the most common
types of US probes (both convex and linear), and due to its
purely force-based nature, it is invariant to image content.
Thereby, it could be easily transferred to any robotic system
concerning either medical or industrial applications, requiring
the estimation of a specific angle between a tool and a contact
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Fig. 11. The impact of the US probe orientation on the US scans of the radius bone. The upper row depicts the probe orientation. The lower row
shows the corresponding US images of a volunteer’s radius bone. (a), (b), (c), (d), (e), and (f) are the images acquired when the linear probe is
titled around 0, 5, 10, 15, 20, 25◦, respectively.

Fig. 12. Absolute errors for the estimation of the desired orientation Nd

on in-vivo tissues.

surface. The performance of the proposed method has been
validated both on the gel-wax phantom and on the in-vivo
tissue of a human volunteer. Friction is not considered due
to the usage of the US gel and the smooth US probe surface
resulting in low friction between the scanned tissue and the
probe.

Nevertheless, the limitations of the proposed method are
also outlined. First, the proposed method was developed for
orthopedic applications (e.g. limb) rather than the very soft
tissue (e.g. breast) as the contact could severely change the
original curvature of soft anatomies, and even the optimal
orientation is not necessarily to be normal anymore. Second,
if the normal direction of the underlying bone surface is
differed considerably from the tissue surface, the orientation
optimization procedure had to be performed multiple times at
different positions on the scan path.

To conclude, we consider that the proposed approach will
contribute significantly into developing novel RUSS for auto-
matic day-to-day clinical examination by enabling the auto-
mated adjustment of the probe orientation, thereby achieving
better image quality. Future research work will also focus on
camera imaging to automatically generate a dynamic scan path
and investigate the optimal contact force for different tissues.
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