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Abstract. The simulation of ultrasound wave propagation is of high in-
terest in fields as ultrasound system development and therapeutic ultra-
sound. From a computational point of view the requirements for realistic
simulations are immense with processing time reaching even an entire
day. In this work we present a framework for fast ultrasound image sim-
ulation covering the imaging pipeline from the initial pulse transmission
to the final image formation. The propagation of ultrasound waves is
modeled with the Westervelt equation, which is solved explicitly with a
Finite Difference scheme. Solving this scheme in parallel on the Graph-
ics Processing Unit allows us to simulate realistic ultrasound images in
a short time.
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1 Introduction

The realistic simulation of medical ultrasound has applications in fields such
as ultrasound system development. Here the quality of ultrasound images de-
pends highly on numerous system parameters including for example transducer
shape, focusing strategies and active aperture size. To speed up prototyping
and lower development costs engineers simulate the effects of different system
parameterizations before moving on to the actual system assembly [6]. A more
recent application domain is the simulation of High Intensity Focused Ultrasound
(HIFU), also referred to as Therapeutic Ultrasound. The nonlinear propagation
of ultrasound in tissue produces high-frequency components that are absorbed
more rapidly by the tissue. Simulating these effects is crucial for the correct as-
sessment of the ultrasound dose required for therapy and is subject to ongoing
research [2]. In terms of education, the physics and instrumentation of ultra-
sound are complex and require in-depth knowledge to understand the impact
of different system parameterizations on the final image [15]. A fast simulation
can demonstrate the results of different system parameterizations and provide
more insights into the underlying mechanisms of the imaging modality. Last but
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not least, ultrasound simulation has recently been utilized for multimodal image
registration between CT and ultrasound [13]. A similarity measure is evaluated
between the real ultrasound images and ones simulated from CT. Improving the
simulation could also improve the accuracy and robustness of the registration.

The overall processing time is a decisive factor for the simulation of ultra-
sound. Simulating a single ultrasound scan line using the Westervelt equation
and a Finite Difference scheme was reported to take about 1 hour on a desktop
PC [5], with the simulation of a complete image requiring probably more than
a day of processing time. Furthermore, alternative simulation approaches like
Field II [6], one of the most widely used linear ultrasound simulation packages,
can require up to two days of processing time on a modern desktop PC for
generating a single 128 scan line ultrasound image [10].

In Pinton et al. [9] a thorough comparison was presented between the Wester-
velt equation and alternatively proposed methods for modeling ultrasound wave
propagation. They presented simulated ultrasound images by solving the West-
ervelt equation with a Finite-Difference Time-Domain scheme, whereas, details
on the Radio-Frequency (RF) processing for the image formation were omitted.

In this work we focus on the realistic simulation of ultrasound wave propa-
gation and the subsequent generation of ultrasound images in acceptable time.
For this purpose the ultrasound imaging pipeline was implemented from the ini-
tial pulse transmission to the final image formation. The wave propagation is
modeled using the Westervelt equation, which is explicitly solved with a Finite
Difference scheme. In order to achieve fast simulation times the Finite Differ-
ence scheme was implemented on the Graphics Processing Unit (GPU), which
has already demonstrated its potential for accelerating parallel computations
and efficiently solving these schemes [3, 8].

2 Wave Propagation

The propagation of ultrasound waves and their interaction with different media
was modeled using the Westervelt Partial Differential Equation (PDE), also
referred to as the nonlinear full-wave equation [2, 5]. It describes the propagation
of waves and additionally models thermal attenuation and nonlinearity. The
reader interested in an accuracy analysis of the Westervelt equation is referred
to Huijssen et al. [5], which includes comparisons to an analytical solution, the
Khokhlov-Zabolotskaya-Kuznetsov equation and water tank measurements. The
Westervelt equation is given as follows:
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where p [Pa] is the acoustic pressure, c0 [ms−1] is the propagation speed, ρ0
[kgm−3] is the ambient density, δ [m2s−1] is the diffusivity of sound, and β
is the coefficient of nonlinearity. Thus, the first two terms are identical to the
D’Alembertian operator on p, the third term is the loss term due to thermal
conduction and the fourth term describes the nonlinearity.
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One thing to note is that various simulation approaches model sound waves
as rays, taking into account the physics from optics [10, 13]. This simplification
results in faster processing times, but reduces significantly the realism of the
simulation. Ray based simulation approaches are not able to fully model the
complex effects modeled by wave based approaches. These effects include in-
terference, scattering, diffraction etc. which are common in medical ultrasound
propagation and contribute tremendously to the formation of the final ultra-
sound image. For more details on ultrasound image characteristics and artifacts
see Zagzebski [15].

The Westervelt equation is numerically solved with the Finite Difference
method [1, 3, 8]. The basic idea behind this method is to evaluate the PDE
equation, more specifically calculate the wave amplitude, on sampling points of a
computational grid. The grid can have complex shapes, while we use a regular 2D
grid with equidistant sampling points. For the calculation of the wave amplitude
the partial derivatives of the equation are substituted with their finite difference
representations and the equation is solved for the future timestep. A thorough
analysis of higher order Finite Difference schemes for solving the acoustic wave
equation is presented by Cohen and Joly [1]. Fourth-order accurate in space and
second-order accurate in time schemes have demonstrated good results [1, 2],
and are therefore used in our work. The finite differences for equation (1) are
given as follows:
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where i, j are the axial and the lateral indices of the discrete computational
grid, n is the timestep, ∆x,∆y are the spatial discretization steps and ∆t is
the temporal discretization step. Thus, an explicit solution is calculated for each
sampling point based on the wave amplitudes at sampling points of the previous
timesteps.

To model the interaction of the waves with heterogeneous media, different
coefficients are used for the speed of sound, the ambient density, the diffusivity
of sound and the nonlinearity. The most important effect in ultrasound imaging
is the reflection of the waves, which is caused by the difference in speed of sound
between media.

3 Ultrasound Image Simulation

In our framework we implemented the basic procedure to synthesize B-mode
ultrasound images. Other than the wave propagation, the image simulation pro-
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cess involves transmission and reception of ultrasound pulses and processing
of the resulting echoes for forming the final image. For more details on ultra-
sound physics, instrumentation and image formation see Hedrick et al. [4] and
Szabo [11].

3.1 Ultrasound Transmission and Reception

For each simulation run sound waves are emitted at selected points on the com-
putational grid. Various transducer geometries can be simulated by selecting the
appropriate points on the grid, with a linear transducer modeled in this work.
Modifying the wave amplitude at these points introduces a wave disturbance
that propagates through the grid with the simulation of consecutive timesteps.
The shape of the emitted pulse is of crucial importance. Non-modulated sinu-
soidal or Gaussian shaped pulses for instance can cause grid disturbances even
after the pulse transmission has ceased. We use a 6 cycle sinusoidal pulse modu-
lated by a Gaussian shaped envelope, commonly used by ultrasound systems [4].
The pulse is formulated as follows:
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t
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)
, (6)

where s(t) is the pulse amplitude at timestep t ∈ [0..l], l is the pulse length, A
is the maximal pulse amplitude, α is the Gaussian amplitude, x is the random
variable, µ the mean, and σ is the standard deviation. The echoes are recorded
for each timestep at the positions were the grid was perturbed by the pulse
transmission. Ultrasound images are formed from multiple scan lines with the
total number of scan lines playing an important role for the overall spatial res-
olution of the final ultrasound image. Each scan line in the ultrasound image
corresponds to the echoes received along an ultrasound beam, which brings us
to topic of ultrasound beamforming.

Beamforming refers to the constructive/destructive interference of waves
emitted by multiple transducer elements. Triggering a group of transducer ele-
ments at a time results in high acoustic intensities along the center axis of the
group. Figure 1(a) schematically shows the process of focusing using a group of
elements and figure 1(b) shows the simulation run, with our framework, for beam
focusing at a low depth. Generating a narrow beam is desirable in ultrasound
system development as it improves the spatial resolution of the ultrasound scan.
Additionally, triggering the transducer with the appropriate time delays allows
to position and steer the beam [4].

Multiple scan lines are acquired for the image formation by transmitting a
beam, receiving the echoes and moving the active element group until the entire
transducer element surface is covered.

3.2 Radio Frequency Processing

The result of the previously described simulation is Radio Frequency (RF) data
acquired for each element of an active element group for each scan line. Be-
fore forming an image, the raw data needs to be processed. The RF processing
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(a)Beam Focusing (b)Simulated Focusing

Fig. 1. Image (a) schematically demonstrates ultrasound beam focusing by triggering
a group of elements with different time delays. Image (b) shows the maximum wave
amplitudes of a simulation run using a focus scheme for low depths in a medium with
uniform speed of sound.

pipeline varies slightly between different ultrasound system vendors, but the
basic principles are common and are implemented in this framework.

An ultrasound scan line is formed by combining the RF data acquired at
each element of an active element group. For this we apply the Delay and Sum
beamforming algorithm [12], which can among others be defined as:

d(t) =
N∑
i=0

Wi · ei(t+ τ), (7)

where d(t) is the final signal response of an ultrasound beam at timestep t, N
is the number of active transducer elements, Wi is a weighting function (in our
case a Hanning window), ei(t) is the signal response of each active transducer
element i, and τ is the transmission delay expressed in timesteps.

The received signal contains noise that is mainly manifested in the low and
high frequency parts of its spectrum [11]. Therefore, the low and high frequency
components are removed with a bandpass filter, in our case a Butterworth filter.

Afterwards the signal goes through the process of demodulation, which re-
sults in a signal that retains its overall pulse response but contains much less
high frequency modulations. Demodulation is performed by finding the envelope
of the rectified signal and is implemented by taking the absolute of the Hilbert
Transform of the signal.

As a pulse traverses through the medium it is attenuated and reflectors at
greater depth appear weaker than reflectors at smaller depth. This is compen-
sated by applying a so-called Time-Gain Compensation (TGC), which amplifies
echoes based on their reception time (depth). In our implementation the signal
is convolved with a simple linear function f ∈ [1..n], where n is the amplification
factor for the maximal depth.

Last but not least, the resulting signal h(t) is compressed by decreasing its
dynamic range (ratio of strongest to weakest signal). This is usually done with
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a logarithmic scaling (also referred to as log-compression):

hc(t) = log(h(t) + c), (8)

where c is the compression coefficient. At this point the ultrasound image is
formed by combining the processed RF lines into a single image.

4 Results

The proposed simulation framework was utilized for generating 2D ultrasound
images out of two synthetic datasets, one showing a fetus, figure 2(a), and the
other one showing multiple anechoic regions embedded in a highly scattering
medium, figure 2(c). The fetus dataset is a modified version of the one presented
in Jensen and Munk [7] and the phantom dataset is generated using Rayleigh
noise, with similar phantoms being used for testing real ultrasound imaging
systems [4]. The mediums had following characteristics: δ = 4.5 · 10−6[m2s−1],
β = 6 and ρ0 = 1100[kgm−3], which are common for human tissue [14].

The corresponding simulated ultrasound images are shown in figure 2(b) and
2(d). They clearly demonstrate a realistic speckle pattern, interference effects and
beam focusing artifacts. The spatial resolution is high at the center of the focal
zone and decreases with increasing distance from the focal zone, an effect also ob-
served in real ultrasound imaging. Furthermore, interference of echoes is strongly
evident in the anechoic regions of the phantom dataset. Following parameters
were used for simulating the presented ultrasound images: 11 transducer ele-
ments formed the active group, λ/2 elements spacing was used, 192 scan lines
were processed, and the discretization steps were set to ∆x = ∆y = 5 · 10−3[m]
and ∆t = 5.5 · 10−7[s]. For the fetus dataset 6000 timesteps were evaluated and
for the phantom dataset 8600, because of the increased depth.

The simulation of the ultrasound wave propagation for generating the raw
RF data is performed on the GPU using C++, OpenGL, and the GL shading
language (GLSL). Implementing the Finite Difference scheme on the GPU is
relatively straight forward with explicit and implicit solvers presented in Har-
ris [3] and Krüger et al. [8] respectively. Switching from GLSL to C-like GPU
programming languages like CUDA or OpenCL might improve the performance
since they offer more elaborate shared memory features.

After simulating the scan lines, the resulting RF data is processed on the
CPU, as there are no computationally expensive tasks involved. For a 20482

grid and 192 scan lines the RF simulation on the GPU required 55 minutes
for the fetus dataset and 78 minutes for the phantom dataset, with the image
formation on the CPU requiring 19 seconds and 24 seconds respectively. The
performance was evaluated on a desktop PC with an Intel Core 2 2.66 GHz with
4 GB RAM and a NVIDIA GeForce GTX 280 with 1GB VRAM. In comparison,
the framework presented in Pinton et al. [9] required 32 hours processing time
on a 56 PC cluster with 118 GB RAM for a 3D simulation. Details on the
processing time of the 2D simulation were omitted, but should be in the same
range given the provided parameterizations. Furthermore, one simple 2D image
was simulated from a synthetic dataset containing only a single anechoic region.
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(a)Synthetic Fetus (b)Simulated Image

(c)Synthetic Phantom (d)Simulated Image

Fig. 2. Image (a) shows the synthetic fetus dataset and image (c) the synthetic phan-
tom dataset. The intensity values correspond to speed of sound values in the range of
1500-1550 [m/s]. The center of the focal zones are marked with a small triangle on the
left side. Image (b) and (d) show the simulated ultrasound images.

5 Conclusion

In this work we presented a framework for fast ultrasound image simulation,
covering the imaging pipeline from the initial pulse transmission to the final im-
age formation. Our implementation on the GPU simulates realistic ultrasound
images in under 80 minutes, avoiding the cumbersome use of PC clusters. The
considerably lower simulation time, compared to other implementations, has
practical implications for most simulation related application domains like ul-
trasound system development. Particularly, our approach has strong implications
for future intra-operative simulation of HIFU treatment, as the simulation of a
single focal zone is computed in less than 30 seconds. Furthermore, simulating
on the GPU allows for an interactive visualization of the wave propagation dur-
ing the simulation at almost no computational cost, which is of interest to both
education and system development applications.

In our current implementation the simulation grid is extended to prevent
reflections at the grid boundary from interfering with the region of interest in the

Submitted to MICCAI (Medical Image Computing and Computer Assisted Intervention) 2010



simulation grid. Implementing Absorbing Boundary Conditions, similar to [9],
could notably improve the overall performance of the simulation as less grid cells
would need to be evaluated. This would pave the way for utilizing our framework
for 3D ultrasound simulation in acceptable time.

Acknowledgments. We would like to thank Christian Wachinger for valuable
discussions. This work was partly funded by the European Project PASSPORT
and Siemens Corporate Research, Princeton, NJ, USA.

References

1. Gary Cohen and Patrick Joly. Construction and Analysis of Fourth-Order Finite
Difference Schemes for the Acoustic Wave Equation in Nonhomogeneous Media.
SIAM Journal on Numerical Analysis, 33(4):1266–1302, 1996.

2. I.M. Hallaj and R.O. Cleveland. FDTD Simulation of Finite-Amplitude Pressure
and Temperature Fields for Biomedical Ultrasound. The Journal of the Acoustical
Society of America, 105:7–12, 1999.

3. M. Harris. Fast Fluid Dynamics Simulation on the GPU. GPU Gems, 1:637–665,
2004.

4. W.R. Hedrick, D.L. Hykes, and D.E. Starchman. Ultrasound Physics and Instru-
mentation. Mosby, 2005.

5. J. Huijssen, A. Bouakaz, M.D. Verweij, and N. de Jong. Simulations of the Nonlin-
ear Acoustic Pressure Field without using the Parabolic Approximation. In IEEE
Symposium on Ultrasonics, volume 2, pages 1851–1854, 2003.

6. J.A. Jensen. Field: A Program for Simulating Ultrasound Systems. Medical and
Biological Engineering and Computing, 34:351–352, 1996.

7. J.A. Jensen and P. Munk. Computer Phantoms for Simulating Ultrasound B-mode
and CFM Images. Acoustical Imaging, 23(75-80), 1997.
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