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Abstract. This paper addresses the problems of object detection and 6
DoF pose estimation from a sequence of RGB images. Our deep learning-
based approach uses only synthetic non-textured 3D CAD models for
training and has no access to the images from the target domain. The
image sequence is used to obtain a sparse 3D reconstruction of the scene
via Structure from Motion. The domain gap is closed by relying on the
intuition that geometric edges are the only prominent features that can
be extracted from both the 3D models and the sparse reconstructions.
Based on this assumption, we have developed a domain-invariant data
preparation scheme and 3DKeypointNet, which is a neural network for
detecting of the 3D keypoints in sparse and noisy point clouds. The final
pose is estimated with RANSAC and a scale-aware point cloud alignment
method. The proposed method has been tested on the T-LESS dataset
and compared to methods also trained on synthetic data. The results
indicate the potential of our method despite the fact that the entire
pipeline is solely trained on synthetic data.
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1 Introduction

The problem of object detection and pose estimation of 3D objects has been
addressed for an infinite number of times in the field of computer vision. As
demonstrated in the BOP Challenge [24] for 6 DoF object pose estimation, deep
learning dominates if only monocular RGB images are used, while traditional
geometry-based methods [14] are still not giving up in depth and RGBD im-
ages. On the other hand, deep learning methods operating on unorganized point
clouds are massively used in autonomous driving, with one of the task being car
detection and pose estimation [45, 32, 9, 29, 61, 65]. This problem is better posed
than generic object pose estimation due to physical constraints. For instance,
cars cannot be in arbitrary poses; sizes and scales do not vary much, while in
general cases, an object can be placed completely arbitrarily. Moreover, obtain-
ing labels for 6 DoF pose estimation is extremely difficult. Therefore, training
detectors from synthetic renderings of 3D models is desirable. Unfortunately,
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Fig. 1: Illustration of the proposed method. The proposed method uses
SfM to obtain a sparse point cloud reconstruction from a frame sequence. Then,
object poses are estimated in 3D, after which per-frame poses are computed.

they still have lower performance than detectors trained on real data. However,
[26] showed that detectors trained on synthetic data do not overfit to particular
datasets and seem to be more generic when real data from the target domain
(labeled and unlabeled) are not available.

We propose herein a method for 6 DoF pose detection in RGB images, which
is trained solely on synthetic data. We address this problem for textureless 3D
objects (i.e. objects from the T-LESS dataset [21] as in Figure 1, which do not
have distinctive textures) whose 3D CAD models are available. The CAD models
come without any color or texture information associated with them, which is
typical in industrial scenarios where non-textured CAD models are available.
Renderings of such models appear as grayscale models on arbitrary backgrounds,
making training on them more challenging because of the domain gap. As shown
in [43, 62], classical GAN approaches [5, 17, 56, 36, 6, 30] depending on the data
from the target domain fail in such scenarios. Unlike other related approaches
that use a single RGB image for detection, we use an entire sequence of RGB
images as illustrated in Figure 1. Our intuition was to rely on SfM and perform
a sparse reconstruction of the scenes. This point cloud reconstruction is then
approximated with an edge-like reconstruction by fitting edge segments to the
geometric discontinuities in the scene. We designed a neural network that detects
the pre-selected keypoints for each object in the sparse reconstruction. Knowing
correspondences between these 3D keypoints and their locations on the CAD
models, the pose is determined using Umeyama algorithm [57]. We developed
an exhaustive data generation scheme that remains easy to use and requires
no extra artistic modeling effort, to close the domain gap between Structure
from Motion (SfM) reconstructions and CAD models. It starts by generating
a large number of 3D scenes using physics-based simulation. Since geometric
edges are the only features robust to light changes and present in non-textured
CAD models, we represent each CAD model with an edge-like representation
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obtained by the method of Hofer et al. [25]. This representation is then used
to replace 3D models in simulated scenes with the corresponding edge-based
models. The same method has been applied to SfM reconstructions to obtain
”edgy” scene representations. In this way, the synthetic and real domains have
a smaller discrepancy, which allows our keypoint detection network to detect
object keypoints, which are fed to RANSAC and the Umeyama algorithm to
output the object poses. Due to scale ambiguity of SfM reconstructions, we
perform pose refinement both in 3D with scale-aware ICP (directly on sparse
SfM reconstructions, no real depth information is used) and in the image using
multi-view edge-based alignment. Our main contributions are summarized as
follows:

1. a pipeline for recovering full 6 DoF object poses from sequences of RGB
images;

2. domain-invariant data preparation allowing for training from non-textured
CAD models; and

3. a 3D keypoint prediction network allowing for 6 DoF object detection and
pose estimation in point clouds.

We evaluated our method on the challenging T-LESS [21] dataset and com-
pared it with the best-performing synthetic methods on the recent BOP 6 DoF
pose recovery challenge [23].

2 Related Work

As two of the most classical problems in computer vision with a wide range
of applications in different domains, object detection and pose estimation have
been extensively studied in the past. In this section, we present a summary of
the relevant past works on this topic, ranging from classical methods to modern
deep learning approaches. Our method spans between RGB approaches and point
cloud based methods; hence, we are going to discuss related methods from both
categories.

2.1 DL methods for RGB images

Deep learning and convolutional neural networks allow for feature extraction
even from surfaces that do not exhibit pronounced textures, thereby making it
possible to estimate a pose directly from RGB images.

Training on synthetic data. SSD6D [27] paved the way for CNN-based
pose estimation approaches that rely solely on synthetic training data. The de-
tector extends the standard SSD detector [34] to predict a discrete approxima-
tion of the rotational component of the transformation. The drawback of the
approach is that it is slow, and poses estimated without ICP refinement are
extremely rough. Moreover, a confidence threshold must be chosen separately
for each object to achieve a good recall. The idea of discrete viewpoint approx-
imation was further revisited by the Augmented Autoencoder (AAE) [52, 53].
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The AAE approach consists of two disconnected stages. The first stage is a 2D
object detector trained on real data. At the second stage, each detected object
is transformed with a neural network to output a descriptor, which is matched
with a dictionary of pre-computed descriptors of all discrete viewpoints. The
pre-comuted descriptors are obtained using synthetic renderings of available 3D
models possessing texture information. The AAE achieves state of the art re-
sults on the T-LESS dataset [21]. DPOD [64] estimates dense correspondences
between the 3D model and its instance in the scene. This method can be trained
both on real and synthetic data, and achieves good results in both cases. When
training on synthetic data, we would like to mention methods using GAN net-
works [5, 54, 51, 1]. These approaches typically start from source domain images
(e.g., synthetic renderings of textured objects) and then alter them to resemble
the target domain images (e.g., coming from the real camera). For this, the un-
labeled images from the target domain must be available. On the contrary, the
approaches presented in [43, 63] rely on the exhaustive domain randomization
applied to synthetic images, which are then fed to a GAN network. The GAN
denoises them and makes them look similar to the synthetic images used for
training the target classifier and the pose estimation network. DeceptionNet [62]
elevates the problem of blind data randomization and performs network-driven
domain randomization that generalized well to new domains. However, the do-
main adaptation methods need object detection to be performed separately as a
preprocessing step. Moreover, they are applied separately to the object patches,
which is a simpler task than simultaneous detection and pose estimation.

Training on real data. The following methods utilize the prediction of
2D-3D correspondences, that are used with PnP [31] to directly compute an
object’s pose. BB8 [48] proposed the prediction of the location of the projec-
tions of the object’s 3D bounding box corners. The idea was extended further
in YOLO6D [55]. The multi-stage procedure was replaced with a direct one-
shot detection with the YOLO detector [49]. YOLO was additionally augmented
to simultaneously regress the projection of the 3D bounding box. As a result,
YOLO6D has superior performance than BB8 both in terms of runtime and
pose quality. Alternatively, CorNet [41] learns to predict generic corners which
are then matched to the actual model corners.

Another group of methods relies on semantic segmentation rather than on
detection. All methods in this group perform pixel-wise segmentation in order
to increase the quantity of 2D-3D correspondences and improve robustness to
occlusions. In Pixel-wise Voting Network (PVNet) [40]. each foreground pixel
votes for the location of a predefined set of keypoints. This is similar to our
approach, but ours is performed on sparse reconstructions represented with a
point cloud. Two segmentation-based approaches, that are very similar to each
other, are Pix2Pose [38] and DPOD [64]. In contrast to Hough voting for a
fixed number of key points in PVNet, both Pix2Pose and DPOD treat each
foreground pixel as a key point and predict a 2D-3D correspondence pair for each
pixel. CDPN [33] combines a segmentation-based PnP method and direct pose
regression. In [59], it is proposed using a two-stage approach. In the first stage,
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a standard semantic segmentation network is used to localize pixels belonging
to the objects of interest. At the second stage, a Pointnet [46, 47] is applied
to the detected objects to estimate per-pixel pose hypothesis via direct pose
regression. An alternative line of research focuses on how to properly deal with
the ambiguities caused by symmetries [42, 37].

Even though deep learning RGB methods have been extensively studied in
the past, as described earlier, they all target pose estimation from a single image.
Therefore, they are not directly applicable to the described multi-view scenario.

2.2 Methods for depth images and point clouds

Hand-crafted features still perform best when it comes to generic pose estimation
in depth images. The leading method based on Point Pair Features (PPF) [14]
and its numerous extensions [20, 3, 58] are still among the best-performing meth-
ods. However, despite its effectiveness, PPF is not appropriate for our tasks be-
cause no reliable normals can be estimated from a sparse point cloud. Another
problem is that SfM reconstructions are defined up to a scale, and using them
directly will be difficult because PPF are not scale-invariant.

PointNet [46, 47] paved the way for feature extraction from raw point clouds
for numerous object detection approaches in point clouds [45, 32, 44]. Even though
these approaches are aimed at solving a related task, they are not directly appli-
cable because they are targeted toward the type of challenges found in the KITTI
dataset [18]. First, the KITTI dataset has a very limited number of unique object
classes. Second, all objects are in the upright position and exhibit rotations only
around a single axis. Lastly, all these approaches use real data for training. The
most relevant paper to our approach is VoteNet [44]. In [44], it was proposed
using semantic segmentation of point clouds and Hough voting for object detec-
tion and pose estimation. However, VoteNet does not use Hough votes to directly
estimate the pose and does not use geometric constraints. Votes are only used
for point cloud clustering and region proposal generation. Our approach differs
from [44] in several ways. Our detector votes for multiple key points rather than
only for the object’s center. Each keypoint has a fixed location on the CAD
model. The object pose can then be directly estimated from the votes and the
known correspondences using the Umeyama algorithm [57].

3 Method

This section provides an in-depth description of all the components of the pro-
posed method. The section starts with an overview of the pipeline: 1) synthetic
data preparation; 2) the proposed network architecture, including the loss func-
tions; 3) the inference stage of the proposed detector; and 4) implementation
and training details.
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Fig. 2: Illustration of the inference steps of our method. 1) sparse recon-
structions are obtained from a sequence of RGB images using COLMAP [50]
and Lined3Dpp [25]; 2) seed points belonging to different objects vote for the
keypoints. 3) the keypoints are localized, and the correspondences between a
CAD model and an object in the scene are established; 4) poses of the objects
in the sparse scene are estimated based on model-to-scene correspondences; and
5) poses of the objects in the sparse scene and camera poses from the COLMAP
are used to recalculate the object poses in each frame.

3.1 General Pipeline

We deal herein with the problems of object detection and pose estimation of
3D objects, whose non-textured CAD models are known, in RGB images. In
contrast to the other RGB-based deep learning approaches described in Section
2, which operate on individual frames, the proposed approach takes advantage
of using multiple consecutive frames and jointly estimates poses for all of them.
Figure 2 illustrates the overall idea of the presented approach comprising five key
steps. 1) A sequence of RGB images (no depth information is used) is fed to the
COLMAP SfM algorithm [50]. In this way, a sparse reconstruction of the scene
is obtained, which is then approximated with the lines [25]. 2) 3DKeypointNet,
which is based on PointNet++, is used to detect the 3D keypoints belonging
to the objects. Each point belonging to the object in the scene votes for the
locations of a predefined set of 3D keypoints of this particular object. 3) With
votes at hand, the 3D locations of keypoints are estimated separately for each
object with the RANSAC scheme [16]. 4) Object poses can be computed in closed
form with the Umeyama algorithm [57] given the known 3D-3D correspondences
between the detected keypoints and their location on the CAD model. At this
stage, the object poses in the scene coordinate system are available. 5) Per-frame
poses are recomputed and refined to better account for the pose errors stemming
from SfM reconstructions defined up to a scale.
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3.2 Domain-Invariant Data Preparation

Our goal is to train the detector solely on sparse synthetic data. First, synthetic
data are simpler and cheaper to obtain than real data. Second, given a CAD
model, it is possible to generate infinitely many images or simulations in contrast
to limited sizes of manually labeled real datasets. In spite of the conceptual
advantages of synthetic data, special care must be taken to bridge the domain
gap. We solve this problem by assuming that 3D geometric edges are invariant to
light changes; therefore, they can be reliably extracted from synthetic train and
real test data. In both cases, we use the method of Hofer et al. [25] to replace a
sparse 3D scene with its line representation.

The data preparation consists of three stages: 1) model preparation to rep-
resent the given CAD models with lines; 2) randomized simulation of synthetic
3D scenes and their post-processing; 3) approximation of the generated scenes
with lines.

Model preparation. The first step of the training data preparation is the
pre-processing of the provided CAD models. Each CAD model is rendered in
1296 poses sampled from a sphere around the object. They are then used to
reconstruct prominent 3D edges of the model, which are visible in RGB images,
using [25]. The obtained reconstruction is essentially a sparse representation of a
model, with geometric features that can be observed in both the captured RGB
images of the object and in its synthetic renderings (see Figure 3). Subsequently,
a set of K keypoints is computed for each sparse model. The first selected key-
point is the object’s center. The other points are obtained via the furthest point
sampling of the model vertices.

Simulation of synthetic 3D scenes. The sparse nature of the test data also
affects the training data generation pipeline, which consists of three steps. In the
first step, synthetic training sequences are randomly simulated with the Bullet
Physics Simulation engine [10]. The library generates scenes by randomly drop-
ping objects on planar surfaces, which are sampled from the ScanNet dataset [11]
to introduce more variability and make the scenes more realistic. The original
dense CAD models are used in this stage. Each generated scene is saved together
with poses of all the objects in the scene coordinate system. Figure 4 (a) de-
picts an example of such a dense scene. These scenes are not yet suitable for
training because they are not sparse and contain all the object points, even the
invisible ones. The second step of the data preparation pipeline addresses these
issues. The view-based model sampling method of Birdal et al. [4] is applied to
make the simulated scenes resemble the reconstructions from a frame sequence.
A random number of camera poses (i.e., between 2 and 8) located nearby on the
upper hemisphere encapsulating the synthetic scene mesh is selected, followed
by the removal of the invisible faces of the mesh for each pose. Consequently, this
results in a mesh seen from a set of sampled viewpoints with removed invisible
faces and respective vertices. However, the mesh is still dense.

Approximation of synthetic scenes with lines. In the third and last
step of data preparation, a sparse representation of the scene is computed using
the poses obtained during the physical simulation and the sparse CAD models
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(a) (b)

Fig. 3: Comparison of the synthetic and real edge reconstructions: (a)
synthetic scene composed of edges and (b) real scene composed of edges.

represented with 3D edges. The effect of the view-based sampling is propagated
onto the sparse scene. A lookup table is created for each pair of dense and sparse
CAD models. It associates the sparse model edges with the nearest vertices
on the dense model. The vertices, which were removed during the view-based
sampling, are subsequently used to remove the corresponding model edges in the
sparse scenes. Finally, the sparse scenes are stored as a set of vertices and 3D
edges, with a respective class label assigned for each of the vertices. Figure 4(b)
depicts an example of a sparse scene is presented. The keypoints of each model,
transformed with their poses in the scene coordinate system, are saved.

3.3 3DKeypointNet - Keypoint Localization Network

While there are volumetric approaches for object detection and pose estimation
[2], it was more natural for the given task to opt for the point cloud-based
methods [46, 47] because the data are already represented as sparse points and
edges between them. This data representation can easily be converted into the
point cloud format by sampling points from the existing edges.

The network architecture is based on the PointNet++ [47]. Its backbone
architecture has several set abstraction levels followed by upsampling layers uti-
lizing skip connections, which facilitates learning local features with increasing
contextual scales. For a set of points {pi}Ni=1, pi ∈ R3, the backbone module
outputs M seed points with corresponding features of dimension D, namely
{si}Mi=1, where si = [pi; fi], pi ∈ R3 and fi ∈ RD. The seed features fi are then
passed to the voting module composed of a shared multilayer perceptron with
the ReLU activation function and batch normalization. For each seed point, the
network outputs class confidences {ci}Mi=1, where ci ∈ RC and C is a num-
ber of classes, and estimated keypoint directions {Di}Mi=1, where Di ∈ RK×3 is
composed of row-wise normalized vectors dj estimating the directions toward
keypoints kj ∈ R3 on an object a seed point belongs to. The approach is aimed
at making the network learn to estimate a relative position of a seed point in
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(a) (b)

Fig. 4: Illustration of synthetic training data: (a) synthetic scene composed
of dense meshes and (b) resulting sparse scene after view-based sampling

a more global context based on the information extracted from local neighbor-
hoods of different sizes.

The following loss function is optimized during training:

L = Lcls + λLdir, (1)

where Lcls is a cross-entropy classification loss and Ldir is a direction regression
loss defined as

Ldir =

M∑
i=1

K∑
j=1

smoothL1
(dij , d̂ij)1[pi is on object], (2)

where d̂ij ∈ R3 is a ground truth normalized direction vector from a seed point

pi to a keypoint kj of an object, namely d̂ij =
pi−kj

‖pi−kj‖ 2
, and λ ∈ R is a

weighting scalar. The smooth L1 loss is defined as in [34]. The indicator function
1[pi is on object] is used to eliminate objects on the background.

3.4 Inference

A sequence of RGB images {I1, ..., In} is taken as the initial input for inference.
Accordingly, sequentially captured images were used in our experiment. The
sequence is then processed with the COLMAP SfM method [50] that jointly
estimates the camera poses Ξi ∈ SE(3) for each image and sparse 3D points of
the scene seen in the image sequence. As in the case of the training data, the
method of Hofer et al. [25] is used to obtain a more detailed reconstruction of
the edges in 3D.

It needs to be taken into account at the inference time that the reconstruction
and the camera poses obtained through the SfM are defined up to a scale because
no ground truth depth information or known camera locations are used in our
method. The input 3D edges are scaled by a scalar s = µtrain

d , where µtrain is
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the mean diameter of the training samples, and d is the diameter of the current
test scene. Moreover, PCA whitening is applied to the reconstructed scenes to
center and axis-align them, which increases their resemblance to the synthetic
scenes used during training. The points are then sampled on the 3D edges with
the average density used during the training time. The resulting point cloud is
fed as an input to the detector. The network outputs per-seed point classification
labels as well as estimation of the keypoint direction vectors, which are further
used for the RANSAC-based voting for the object keypoint locations, similar to
PVNet [40]. For each object class c ∈ {1, ..., C} and for each object keypoint kj ,
j ∈ {1, ...,K}, a set of H keypoint location proposals is created by randomly
sampling tuples of three seed points with the direction vectors. These seed points
and directions define lines in 3D. Accordingly, a potential keypoint candidate
k∗hcj is defined as an approximate intersection of these three lines, which we
define herein as an optimization problem that looks for the closest point to all
those lines in terms of Euclidean distance

k∗hcj = arg min
khcj

∑
i∈I
‖pij + λijdij − khcj‖22 , (3)

where I is an index set of the selected seed points. The solutions to Equation 3
are computed in closed form. All the other seed points belonging to the object
of a particular class then vote for the computed keypoint candidates. If the
dot product between the estimated vote vector dj(p) of a seed point and the
computed direction vector from a seed point p to a candidate k∗hcj is above the
threshold of θ, then the seed point is counted as an inlier:

∑
p∈Oc

1

[
(k∗hcj − p)T∥∥∥k∗hcj − p

∥∥∥
2

dj(p) ≥ θ

]
(4)

Finally, all the inlier seed points are used to estimate the keypoints k∗hcj
using Equation 3. The procedure can be executed several times to generate
multiple hypotheses for each keypoint. In practice, the predicted keypoints are
relatively unreliable because of data sparsity and the seed points sampling done
internally in PointNet. The problem has been circumvented by running PointNet
multiple times with random re-sampling, as was also done in [35], to produce
more keypoint hypotheses.

Having a set of correspondence hypotheses between the estimated keypoints
{k∗hcj}Kj=1 and the keypoints on the canonical model of an object {khcj}Kj=1 for
an object of class c it becomes possible to estimate a similarity transformation
S ∈ Sim(3),

S =

(
sR t
0T 1

)
with R ∈ SO(3), t ∈ R3 and s ∈ R+, (5)

which transforms and scales from the object’s coordinate system to the scene
point cloud coordinate system. This transformation can be estimated from the
point correspondences in closed form using the Umeyama algorithm [57]. A
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RANSAC-based scheme is employed to choose from the hypotheses and deal
with the outliers. Given an object, object pose and a set PCc of points classi-
fied to belong to this object class, the pose quality is measured as a number of
points from PCc which lie within a certain threshold from the object’s surface.
The global scale of the reconstructed sparse scene is also estimated in this step.

However, even a minor scale estimation error may result in a considerable
camera translation error in the Z-direction once the poses are reformulated us-
ing SE(3) transformations only. Therefore, further pose refinement is necessary.
First, a variant of scale-aware point-to-point ICP is used on the reconstructed
point cloud, followed by a multi-view edge-based refinement on RGB images in-
spired by the work of Drummond et al. [15]. The camera poses Ξi obtained from
COLMAP remain fixed and only the similarity transformation from the model to
the scene point cloud coordinate system is optimized. Again, no depth informa-
tion is used. Multi-view consistency enforces the alignment of the object contours
in every image, leading to a better solution, as opposed to the refinement in each
RGB image separately, which may suffer from projective ambiguities.

3.5 Training and Implementation Details

We trained our detector on synthetic data generated from non-textured CAD
models of the T-LESS dataset [21]. In our experiments, we focused on per-scene
training. The detector is trained simultaneously for all the objects present in a
particular test scene, as opposed to training one network per object. Training
a separate network per each object is commonly done in other object detection
and pose estimation pipelines because it tends to improve the results. However,
this approach is not scalable and hard to apply in practice. For the training
herein, a separate synthetic dataset for each of the scenes was generated. Each
dataset contained 15K training samples. The data were generated completely
automatically at random without any artistic modeling effort. With this setup,
it took approximately 12 hours (with 16 Intel Core i9-9900K) to generate a train
set for a particular scene. The points on the edges of the synthetic data sam-
ples are randomly sampled online during training. Sampling was done uniformly

along the edge. Moreover, a number of samples was determined by
‖e‖2
ν , where

‖e‖2 is the length of an edge and ν ∼ U [3; 10]. The purpose of the sampling
was twofold. It prevented the network from overfitting to exact point locations.
Additionally, it enforced the detector to learn how to recognize more global ge-
ometric structures. The resulting point cloud was either subsampled or padded
to contain 16384 points.

Various augmentations were applied to the input point clouds, including ran-
dom rotations around the Z-axis and around X and Y axes between [−20◦, 20◦],
scene flipping around the Z-axis. Random scaling by a factor between [0.5, 2.0]
is used to make the network more robust to scale changes. In addition, random
dropout of points and Gaussian noise are used.

The network has been implemented using PyTorch deep learning framework
[39]. Training was done using the Adam optimizer [28] with a learning rate
of 0.01, a learning rate decay of 0.5, a and decay step of 2 · 105. On average,
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convergence was observed within 200 training epochs. The weighting coefficient
λ from the loss function in Equation 1 was set to 5.0 in all the experiments.

4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluate our method on the challenging T-LESS [21] dataset consisting of
30 textureless industrial objects. Two types of 3D models are supplied with the
dataset: untextured CAD models and low-quality textured reconstructions. T-
LESS features 20 test sequences of various complexities, each of which contains
501 images captured at different camera elevations. We chose the T-LESS dataset
because it is still challenging not only for pure RGB detectors but also for RGBD
detectors. Several factors contribute to the complexity of the dataset. First, all
objects are textureless in a sense that they do not have distinctive colors. All
of them are colored in more or less the same shade of gray, except for certain
structural parts. As a result, the performance of RGB detectors is automatically
hindered because they cannot rely on color information. Second, the T-LESS
objects exhibit symmetries leading to pose ambiguity. Mutual and self-occlusions
of the objects are extensively present in the test sequences. The presence of
similar-looking objects also makes it difficult to distinguish between them in
the monocular case. For RGB-based methods, detection becomes even more
complicated when only the untextured CAD models with no additional real
images are used as an input for training. We aim to demonstrate that by using
sequences of RGB images instead of separate frames it is possible to leverage the
performance of detection and pose estimation, even when only synthetic CAD
models are used as an input for training. Thus, the TLESS dataset is an ideal test
set for our approach, since significant performance boosts can be expected for the
approaches utilizing multi-frame consistency to overcome the those challenges.

While other popular datasets for pose estimation can be used, such as YCB-
Video [60], LINEMOD[19] and OCCLUSION [7], they are not fully suitable for
our approach. Evaluation on them is hindered by the fact that they feature RGB
images captured with low resolution of 640× 480 pixels, which does not allow for
reliable 3D reconstruction and approximation with lines. In addition, scenes in
LINEMOD and OCCLUSION change too fast. Thus, the existing subsequences
of images with a constant scene consist of too few frames with little camera
motion, which significantly reduces the amount of extra information that the
multi-view setup brings. This is the reason why we have not evaluated our ap-
proach on these datasets and fully focused on the T-LESS dataset, which also
tends to be more complicated than the aforementioned datasets.

For the evaluation, we followed the BOP challenge [23] protocol for Varying
number of Instances of a Varying number of Objects (VIVO) task. The BOP
pipeline was chosen because it strives to unify the dataset formats and evaluation
methodologies to facilitate a comparison of various methods. We computed the
overall performance score as the mean of VSD, MSSD and MSPD recalls, each of
which is averaged across several thresholds. Visible Surface Discrepancy (VSD)



Pose Estimation from Multiple RGB Frames 13

Table 1: Per-scene quality on BOP Challenge images. First three methods rely
solely on RGB images. Other methods use real depth data for pose refinement.

Modality Method/Scene 1 2 3 4 5 7 8 10 11 15 Average

DPOD - 24.22 27.12 31.63 11.53 17.2 7.09 18.78 4.77 20.83 -
RGB AAE w\o ICP 49.32 64.08 45.2 42.65 38.56 43.81 31.74 26.88 50.57 21.81 41.46

Ours 72.45 81.45 77.62 75.08 64.23 33.08 53.18 49.46 64.27 49 61.98

AAE w\ ICP 73.78 95.82 77.66 70.29 68.92 58.76 57.83 48.39 88.1 36.99 67.65
Depth PPF 64.33 68.72 60.88 52 45.05 53.59 56.12 57.44 67.34 42.7 56.82

PPF with ref. 69.38 73.72 74.37 71.76 73.55 56.52 49.73 62.58 85.25 47 66.39

Table 2: Per scene quality for our method on selected T-LESS sequences
Modality Method/Scene 1 2 3 4 5 7 8 10 11 15 Average

RGB Ours 71.44 80.77 78.09 74.71 65.15 33.75 55.9 50.25 66.89 48.5 62.60

[22, 24] was used as a de-facto standard measure for comparing the results on the
T-LESS dataset. VSD compares distance maps of the object rendered in the es-
timated and ground truth poses. Maximum Symmetry-Aware Surface Distance
(MSSD) was defined in [13] as the maximal distance between corresponding
model vertices in the ground truth similarly to the symmetric ADD [19]. Max-
imum Symmetry-Aware Projection Distance (MSPD) extends the idea of the
projection error of [8] by taking explicit care of the object symmetries.

4.2 Results

We selected a minimal subset of all the scenes such that they cover all objects in
the dataset. In the evaluation, subsequences of 72 consecutive frames were used
to obtain the sparse reconstructions. Figure 5 demonstrates how the average
recall changes depending on the number of frames used for the scene reconstruc-
tion. Two type of sequences were used: 1) consecutive frames, 2) frames with
interleaving, when only every t-th frame was taken in order to cover as many
camera poses around the object as possible. The plot confirms our assumption
that a larger number of frames facilitates object detection and pose estimation.
Taking frames with interleaving is also more robust when a fewer number of
frames is used. The number of keypoints per model K was set to 8, and the in-
lier threshold θ introduced in Equation 4 was set to 0.995. We experimented with
using from 5 to 20 keypoints, but there was no significant change in performance
with the increased number of points.

The evaluation was conducted in two directions: 1) to compare with the other
methods utilizing synthetic training data; and 2) to report the recall on all the
images in the dataset. In all the experiments only 360 first images of each scene
were used. The reason for that is the fact that a significant portions of static
background become visible on the lower camera elevations, and motion of the
turntable becomes explicit. This violates the static scene requirement which is
essential for the SfM, making scene reconstruction impossible.
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We ran the evaluation procedure on the
BOP subset of the T-LESS data to perform
a comparison with the other top-performing
methods. Table 1 provides average recall for
three different methods: AAE (with and with-
out ICP) [53], DPOD [64], PPF (uses real
depth and ICP) [14] and PPF with refine-
ment [12]. The results show that our method
clearly outperforms all the other approaches
if no depth-based ICP is applied. Even re-
sult of AAE, which uses real data for training
the detector, fall far behind. The only excep-
tion is scene 7, which contains numerous small
round-shaped objects exhibiting strong inter-object similarity and no strong ge-
ometric features. The sparsity of the reconstructions does not allow for reliable
representation of their geometry. This resulted in misdetections and inaccurately
predicted poses. Moreover, the network also confuses similarly looking objects.
Compared to AAE with ICP and the PPF variants, our approach still shows
competitive results even though we do not use any real depth for refinement.
With a score of 61.98 it outperforms the classical PPF, which achieves 56.82,
by a large margin. In comparison with the PPF and AAE refined with ICP, our
detector performs only slightly inferior. Table 2 presents the average per-scene
recall of our detector on all the first 360 of images of each scene from the T-LESS
dataset. A visual inspection of the predicted poses showed that the pose recall
is mostly bounded by the object detection performance. If an object is detected,
then its estimated pose is almost always nearly perfect.

5 Conclusions

In this work, we have introduced a pipeline for object detection from a sequence
of RGB-only images. The presented approach is trained on synthetic simulations
and, therefore, does not require any labeled real data. A sequence of images is
processed with an SfM algorithm to obtain a sparse reconstruction for the scene
to allow for a simultaneous detection for all of the images in one shot. We relied
heavily on the intuition that the geometric edges are the only prominent features
that can both be extracted from the 3D models as well as from the sequences of
real RGB images. The resulting detector was found to work significantly better
than DPOD, which was also trained completely on synthetic data, and AAE,
which used real data for training the 2D detector and synthetic data for the pose
estimation network. Additionally, our detector works better or on par with AAE
and the PPF-based approaches even if their poses are refined with depth ICP.
Acknowledgements. We thank the authors of AAE [52, 53], DPOD [64] and
PPF [14, 12] for providing us with the poses estimated with their detectors.
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