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Abstract. We present a 3D object detection method that uses regressed
descriptors of locally-sampled RGB-D patches for 6D vote casting. For
regression, we employ a convolutional auto-encoder that has been trained
on a large collection of random local patches. During testing, scene
patch descriptors are matched against a database of synthetic model
view patches and cast 6D object votes which are subsequently filtered
to refined hypotheses. We evaluate on three datasets to show that our
method generalizes well to previously unseen input data, delivers robust
detection results that compete with and surpass the state-of-the-art while
being scalable in the number of objects.

1 Introduction

Object detection and pose estimation are of primary importance for tasks such
as robotic manipulation, scene understanding and augmented reality, and have
been the focus of intense research in recent years. The availability of low-cost
RGB-D sensors enabled the development of novel methods that can infer scale
and pose of the object more accurately even in presence of occlusions and clutter.

Methods such as Hinterstoisser et al. and related [14, 27, 18] detect objects in
the scene by employing templates generated from synthetic views and matching
them efficiently against the scene. While these holistic methods are implemented
to be very fast at a low FP-rate, their recall drops quickly in presence of occlusion

Fig. 1. Results of our voting-based approach that uses auto-encoder descriptors of
local RGB-D patches for 6-DoF pose hypotheses generation. (Left) Cast votes from each
patch indicating object centroids, colored with their confidence. (Middle) Segmentation
map obtained after vote filtering. (Right) Final detections after pose refinement.
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or substantial noise. Differently, descriptor-based approaches [23, 13, 2] rely on
robust schemes for correspondence grouping and hypothesis verification to with-
stand occlusion and clutter, but are computationally intensive. Other methods
like Brachmann et al. [5] and Tejani et al. [30] follow a local approach where
small RGB-D patches vote for object pose hypotheses in a 6D space. Although
such methods are not taking global context into account, they proved to be ro-
bust towards occlusion and the presence of noise artifacts since they infer the
object pose using only its parts. Their implementations are based on classical
Random Forests where the chosen features to represent the data can strongly
influence the amount of votes that need to be cast to accomplish the task and,
consequently, the required computational effort.

Recently, convolutional neural networks (CNNs) have shown to outperform
state-of-the-art approaches in many computer vision tasks by leveraging the
CNNs’ abilities of automatically learning features from raw data. CNNs are
capable of representing images in an abstract, hierarchical fashion and once a
suitable network architecture is defined and the corresponding model is trained,
CNNs can cope with a large variety of object appearances and classes.

Recent methods performing 3D object detection and pose estimation success-
fully demonstrated the use of CNNs on data acquired through RGB-D sensors
such as depth or normals. For example, [11, 12] make use of features produced
by a network to perform classification of region proposals via SVMs. A notewor-
thy work is Wohlhart et al. [32], that demonstrates the applicability of CNNs
for descriptor learning of RGB-D views. This work uses a holistic approach and
delivers impressive results in terms of object retrieval and pose estimation, al-
though can not be directly applied to object detection in clutter since a precise
object localization would be needed. Nonetheless, it does hint towards replacing
hand-crafted features with learned ones for this task.

Our work is inspired by [32] and we demonstrate that neural networks coupled
with a local voting-based approach can be used to perform reliable 3D object
detection and pose estimation under clutter and occlusion. To this end, we deeply
learn descriptive features from local RGB-D patches and use them afterwards
to create hypotheses in the 6D pose space, similar to [5, 30].

In practice, we train a convolutional autoencoder (CAE) [22] from scratch
using random patches from RGB-D images with the goal of descriptor regression.
With this network we create codebooks from synthetic patches sampled from
object views where each codebook entry holds a local 6D pose vote. In the
detection phase we sample patches in the input image on a regular grid, compute
their descriptors and match them against codebooks with an approximate k-NN
search. Matching returns a number of candidate votes which are cast only if their
matching score surpasses a threshold (see a schematic in Figure 2).

We will show that our method allows for training on real data, efficient match-
ing between synthetic and real patches and that it generalizes well to unseen
data with an extremely high recall. Furthermore, we avoid explicit background
learning and scale well with the number of objects in the database.
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Fig. 2. Illustration of the voting. We densely sample the scene to extract scale-invariant
RGB-D patches. These are fed into a network to regress features for a subsequent k-
NN search in a codebook of pre-computed synthetic local object patches. The retrieved
neighbors then cast 6D votes if their feature distance is smaller than a threshold τ .

2 Related work

There has recently been an intense research activity in the field of 3D object de-
tection, with many methods proposed in literature traditionally subdivided into
feature-based and template-based. As for the first class, earlier approaches relied
on features [20, 4] directly detected on the RGB image and then back-projected
to 3D [19, 25]. With the introduction of 3D descriptors [28, 31], approaches re-
placed image features with features directly computed on the 3D point cloud
[23], and introduced robust schemes for filtering wrong 3D correspondences and
for hypothesis verification [13, 2, 6]. They can handle occlusion and are scalable
in the number of models, thanks to the use of approximate nearest neighbor
schemes for feature matching [24] yielding sub-linear complexity. Nevertheless,
they are limited when matching surfaces of poor informative shape and tend to
report non real-time run-times.

On the other hand, template-based approaches are often very robust to clut-
ter but scale linearly with the number of models. LineMOD [15] performed ro-
bust 3D object detection by matching templates extracted from rendered views
of 3D models and embedding quantized image contours and normal orientations.
Successively, [27] optimized the matching via a cascaded classification scheme,
achieving a run-time increase by a factor of 10. Improvements in efficiency are
also achieved by the two-stage cascaded detection method in [7] and by the
hashing matching approach tailored to LineMOD templates proposed in [18].
Other recent approaches [21, 10, 3] build discriminative models based on such
representations using SVM or boosting applied to training data.

Recently, another category of methods has emerged based on learning RGB-
D representations, which are successively classified or matched at test time.
[5, 30] use random forest-based voting schemes on local patches to detect and
estimate 3D poses. While the former regresses object coordinates and conducts
a subsequent energy-based pose estimation, the latter bases its voting on a scale-
invariant LineMOD-inspired patch representation and returns location and pose
simultaneously. Recently, CNNs have also been employed [32, 11, 12] to learn
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RGB-D features. The main limitations of this category of methods is that, being
based on discriminative classifiers, they usually require to learn the background
as a negative class, thus making their performance dataset-specific. Instead, we
train neural networks in an unsupervised fashion and use them as a plug-in
replacement for methods based on local features.

3 Methodology

In this section, we first give a description of how we sample local RGB-D patches
of the given target objects and the scene while ensuring scale-invariance and
suitability as a neural network input. Secondly, we describe the employed neural
networks in more detail. Finally, we present our voting and filtering approach
which efficiently detects objects in real scenes using a trained network and a
codebook of regressed descriptors from synthetic patches.

3.1 Local Patch Representation

Our method follows an established paradigm for voting via local information.
Given an object appearance, the idea is to separate it into its local parts and
let them vote independently [26, 8, 5, 30]. While most approaches rely on hand-
crafted features for describing these local patches, we tackle the issue by regress-
ing them with a neural network.

To represent an object locally, we render it from many viewpoints equidis-
tantly sampled on an icosahedron (similar to [15]), and densely extract a set
of scale-independent RGB-D patches from each view. To sample invariantly to
scale, we take depth z at the patch center point and compute the patch pixel
size such that the patch corresponds to a fixed metric size m (here: 5 cm) via

patchsize =
m

z
· f (1)

with f being the focal length of the rendering camera. After patch extraction,
we de-mean the depth values with z and clamp them to ±m to confine the patch
locally not only along x and y, but also along z. Finally, we normalize color and
depth to [−1, 1] and resize the patches to 32×32. See Figure 3 for an exemplary
synthetic view together with sampled local patches.

An important advantage of using local patches as in the proposed framework
is that it avoids the problematic aspect of background modeling. Indeed, for
what concerns discriminative approaches based on learning a background and a
foreground class, a generic background appearance can hardly be modeled, and
recent approaches based on discriminative classifiers such as CNNs deploy scene
data for training, thus becoming extremely dataset-specific and necessitating
refinement strategies such as hard negative mining. Also, both [5] and [32] model
a supporting plane to achieve improved results, with the latter even introducing
real images intertwined with synthetic renderings into the training to force the
CNN to abstract from real background. Our method instead does not need to
model the background at all.



Deep Learning of Local RGB-D Patches for Detection and Pose Estimation 5

Fig. 3. Left: For each synthetic view, we sample scale-invariant RGB-D patches yi of
a fixed metric size on a dense grid. Their associated regressed features f(yi) and local
votes v(yi) are stored into a codebook. Right: Examples from the approx. 1.5 million
random patches taken from the LineMOD dataset for autoencoder training.

3.2 Network Training

Since we want the network to produce discriminative features for the provided
input RGB-D patches, we need to bootstrap suitable filters and weights for the
intermediate layers of the network. Instead of relying on pre-trained, publicly
available networks, we decided to train from scratch due to multiple reasons:

1. Not many works have incorporated depth as an additional channel in net-
works and most remark that special care has to be taken to cope with, among
others, sensor noise and depth ’holes’ which we can control with our data.

2. We are one of the first to focus on local RGB-D patches of small-scale objects.
There are no pre-trained networks that have been so far learned on such data,
and it is unclear how well other networks that were learned on RGB-D data
can generalize to our specific problem at hand.

3. To robustly train deep architectures, a high amount of training samples is
needed. By using patches from real scenes, we can easily create a huge train-
ing dataset which is specialized to our task, thus enhancing the discriminative
power of our network.

Note that other works usually train a CNN on a classification problem and
then use a ’beheaded’ version of the network for other tasks (e.g. [9]). Here, we
cannot simply convert our problem into a feasible classification task because of
the sheer amount of training samples that range in the millions. Although we
could assign each sample to the object class it belongs to, this would bias the
feature training and hence, counter the learning of a generalized patch feature
representation, independent of object affiliations. It is important to point out
that also [32] aimed for feature learning, but with a different goal. Indeed, they
enforce distance similarity of feature space and object pose space, while we in-
stead strive for a compact representation of our local input patches, independent
of the objects’ poses.
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Fig. 4. Depiction of the employed AE (top) and CAE (bottom) architectures. For both,
we have the compressing feature layer with dimensionality F .

We teach the network regression on a large variety of input data by randomly
sampling local patches from the LineMOD dataset [15], amounting to around
1.5 million total samples. Furthermore, these samples were augmented such that
each image got randomly flipped and its color channels permutated. Our network
aims to learn a mapping from the high-dimensional patch space to a much lower
feature space of dimensionality F , and we employ a traditional autoencoder (AE)
and a convolutional autoencoder (CAE) to accomplish this task.

Autoencoders minimize a reconstruction error ||x − y|| between an input
patch x and a regressed output patch y while the inner-most compression layer
condenses the data into F values. We use these F values as our descriptor since
they represent the most informative compact encoding of the input patch. Our
architectures can be seen in Figure 4. For the AE we use two encoding and
decoding layers which are all connected with tanh activations. For the CAE we
employ multiple layers of 5×5 convolutions and PReLUs (Parametrized Rectified
Linear Unit) before a single fully-connected encoding/decoding layer, and use a
deconvolution with learned 2 × 2 kernels for upscaling before proceeding back
again with 5× 5 convolutions and PReLUs. Note that we conduct one max-pool
operation after the first convolutions to introduce a small shift-invariance.

3.3 Constrained Voting

A problem that is often encountered in regression tasks is the unpredictability
of output values in the case of noisy or unseen, ill-conditioned input data. This
is especially true for CNNs as a deep cascade of non-linear functions composed
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Fig. 5. Casting the constrained votes for k = 10 with a varying distance threshold (left
to right): τ = 15, τ = 7, τ = 5. The projected vote centroids vi are colored according
to their scaled weight w(vi)/τ . It can be seen that many votes accumulate confidently
around the true object centroid for differently chosen thresholds.

of many parameters. In our case, this can be caused by e.g., unseen object parts,
general background appearance or sensor noise in color or depth. If we were
to simply regress the translational and rotational parts, we would be prone to
this input sensitivity. Furthermore, this approach would always cast votes at
each image sampling position, increasing the complexity of sifting through the
voting space afterwards. Instead, we render an object from many views and
store local patches y of this synthetic data in a database, as seen in Figure 3.
For each y, we compute its feature f(y) ∈ RF and store it together with a local
vote (tx, ty, tz, α, β, γ) describing the patch 3D center point offset to the object
centroid and the rotation with respect to the local object coordinate frame. This
serves as an object-dependent codebook.

During testing, we take each sampled 3D scene point s = (sx, sy, sz) with
associated patch x, compute its deep-regressed feature f(x) and retrieve k (ap-
proximate) nearest neighbors y1, ...,yk. Each neighbor casts then a global vote
v(s,y) = (tx + sx, ty + sy, tz + ty, α, β, γ) with an associated weight w(v) =
e−||f(x)−f(y)|| based on the feature distance.

Notably, this approach is flexible enough to provide three main practical
advantages. First, we can vary k in order to steer the amount of possible vote
candidates per sampling position. Together with a joint codebook for all objects,
we can retrieve the nearest neighbors with sub-linear complexity, enabling scal-
ability. Secondly, we can define a threshold τ on the nearest neighbor distance,
so that retrieved neighbors will only vote if they hold a certain confidence. This
reduces the amount of votes cast over scene parts that do not resemble any of
the codebook patches. Furthermore, if noise sensitivity perturbs our regressed
feature, it is more likely to be hindered from vote casting. Lastly and of signifi-
cance, it is assured that each vote is numerically correct because it is unaffected
by noise in the input data, given that the feature matching was reliable. See
Figure 5 for a visualization of the constrained voting.

Vote filtering Casting votes can lead to a very crowded vote space that re-
quires refinement in order to keep detection computationally feasible. We thus
employ a three-stage filtering: in the first stage we subdivide the image plane
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into a 2D grid (here: cell size of 5×5 pixels) and throw each vote into the cell the
projected centroid points to. We suppress all cells that hold less than k votes and
extract local maxima after bilinear filtering over the accumulated weights of the
cells. Each local mode collects the votes from its direct cell neighbors and per-
forms mean shift with a flat kernel, first in translational and then in quaternion
space (here: kernel sizes 2.5 cm and 7 degrees). This filtering is computation-
ally very efficient and removes most spurious votes with non-agreeing centroids,
while retaining plausible hypotheses, as can be seen in Figure 6. Furthermore,
the retrieved neighbors of each hypotheses’ constituting votes hold synthetic
foreground information that can be quickly accumulated to create meaningful
segmentation maps (see Figure 1 for an example on another sequence).

Fig. 6. Starting with thousands of votes (left) we run our filtering to retrieve interme-
diate local maxima (middle) that are further verified and accepted (right).

4 Evaluation

4.1 Reconstruction quality

To evaluate the performance of the networks, we trained AEs and CAEs with
feature layer dimensions F ∈ {32, 64, 128, 256}. We implemented our networks
with Caffe [17] and trained each with an NVIDIA Titan X with a batch size of
500. The learning rate was fixed to 10−5 and we ran 100,000 iterations for each
network. The only exception was the 256-dim AE, which we trained for 200,000
iterations for convergence due to its higher number of parameters.

For a visual impression of the results, we present the reconstruction quality
side-by-side of AEs and CAEs on six random RGB-D patches in Figure 7. Note
that these patches are test samples from another dataset and thus have not been
part of the training, i.e. the networks are reconstructing previously unseen data.

It is apparent that the CAEs put more emphasis on different image properties
than their AE pendants. The AE reconstructions focus more on color and are
more afflicted by noise since weights of neighboring pixels are trained in an
uncorrelated fashion in this architecture. The CAE patches instead recover the
spatial structure better at the cost of color fidelity. This can be especially seen for
the 64-dimensional CAE where the remaining 1.56% = (64/4096) of the input
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Fig. 7. RGB-D patch reconstruction comparison between our AE and CAE for a given
feature dimensionality F . Clearly, the AE and CAE focus on different qualities and
both networks increase the reconstruction fidelity with a wider compression layer.

information forced the network to resort to grayscale in order to preserve image
structure. It can be objectively stated that the convolutional reconstructions for
128 dimensions are usually closer to their input in visual terms. Subsequently,
at dimensionality 256 the CAE results are consistently of higher fidelity both in
terms of structure and color/texture.

4.2 Multi-instance dataset from Tejani et al.

We evaluated our approach on the dataset of Tejani et al. [30]. Upon inspection,
the dataset showed problems with the ground truth annotation, which has been
confirmed by the authors via personal communication. We thus re-annotated
the dataset by ICP and visual inspection of each single frame. The authors then
supplied us with their recomputed scores of the method in [30] on such corrected
version of the dataset, which they are also going to publish on their website. To
evaluate against the authors’ method (LC-HF), we follow their protocol and
extract the N = 5 strongest modes in the voting space and subsequently verify
each via ICP and depth/normal checks to suppress false positives.

We used this dataset first to evaluate how different networks and feature
dimensions influence the final detection result. To this end, we fixed k = 3 and
conducted a run with the trained CAEs, AEs and also compared to PCA1 as
means for dimensionality reduction. Since different dimensions and methods lead
to different feature distances we set τ = ∞ for this experiment, i.e. votes are
unconstrained. Note that we already show here generalization since the networks
were trained on patches from another dataset. As can be seen in Table 1, PCA

1 Due to computational constraints we took only 1 million patches for PCA training.
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provides a good baseline performance that surpasses even the CAE at 32 di-
mensions, although this mainly stems from a high precision since vote centroids
rarely agreed. In turn, both networks supplied similar behavior and we reached
a peak at 128 with our CAE, which we fixed for further evaluation. We also
found τ = 10 and a sampling step of 8 pixels to provide a good balance between
accuracy and runtime. For a more in-depth self comparison, we kindly refer the
reader to the supplementary material.

For this evaluation we also supply numbers from the original implementation
of LineMOD [14]. Since LineMOD is a matching-based approach, we evaluated
such that each template having a similarity score larger than 0.8 is taken into
the same verification described above. It is evident that LineMOD fares very
well on most sequences since the amount of occlusion is low. It only showed
problems where objects sometimes are partially outside the image plane (e.g.
’joystick’,’coffe’), have many occluders and thus a smaller recall (’milk’) or where
the planar ’juice’ object decreased the precision by occasional misdetections in
the table. Not surprisingly, LineMOD outperforms the other two methods largely
for the small ’camera’ since it searches the entire specified scale space whereas
LC-HF and our method both rely on local depth for scale inference. Although our
local voting does detect instances in the table as well, there is rarely an agreeing
centroid that survives the filtering stage and our method is by far more robust to
larger occlusions and partial views. We are thus overtaking the other methods in
’coffe’ and ’joystick’. The ’milk’ object is difficult to handle with local methods
since it is uniformly colored and symmetric, defying a reliable accumulation of
vote centroids. Although the ’joystick’ is mostly black, its geometry allows us
to recover the pose very reliably. All in all, we outperform the state-of-the art
in holistic matching slightly while clearly improving over the state-of-the-art in
local-based detection by significant 9.6% on this challenging dataset. Detailed
numbers are given in Tables 2 and 3. Unfortunately, runtimes for LC-HF are not
provided by the authors.

F 32 64 128 256

PCA 0.33 0.43 0.46 0.47

F 32 64 128 256

AE 0.43 0.63 0.65 0.66

F 32 64 128 256

CAE 0.32 0.58 0.70 0.69

Table 1. F1-scores on the Tejani dataset using PCA, AE and CAE for patch descriptor
regression with a varying dimension F . We highlight the best method for a given F .
Note that the number for CAE-128 deviates from Table 3 since here we set τ = ∞.

4.3 LineMOD dataset

We evaluated our method on the benchmark of [15] in two different ways. To
compare to a whole set of related work that followed the original evaluation
protocol, we remove the last stage of vote filtering and take the N = 100 most
confident votes for the final hypotheses to decide for the best hypothesis and
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Fig. 8. Scene sampling, vote maps and detection output for two objects on the Tejani
dataset. Red sample points were skipped due to missing depth values.

Stage Runtime (ms)

Scene sampling 0.03
CNN regression 477.3
k-NN & voting 61.4
Vote filtering 1.6
Verification 130.5

Total 670.8

Table 2. Average runtime on
[30]. Note that the feature regres-
sion is done on the GPU.

Sequence LineMOD LC-HF Our approach

Camera (377) 0.589 0.394 0.383
Coffee (501) 0.942 0.891 0.972

Joystick (838) 0.846 0.549 0.892
Juice (556) 0.595 0.883 0.866
Milk (288) 0.558 0.397 0.463

Shampoo (604) 0.922 0.792 0.910

Total (3164) 0.740 0.651 0.747

Table 3. F1-scores for each sequence on the re-
annotated version of [30]. Note that we show the
updated LC-HF scores provided by the authors.

use the factor km = 0.1 in their proposed error measure. To evaluate against
Tejani et al. we instead follow their protocol and extract the N = 5 strongest
modes in the voting space and choose km = 0.15. Since the dataset provides one
object ground truth per sequence, we use only the codebook that is associated to
that object for retrieving the nearest neighbors. Two objects, namely ’cup’ and
’bowl’, are missing their meshed models which we manually created. For either
protocol we eventually verify each hypothesis via a fast projective ICP followed
by a depth and normal check. Results are given in Tables 4 and 5.

We compute the precision average over the 13 objects also used in [5] and
report 95.2%. We are thus between their plane-trained model with an average of
98.3% and their noise-trained model of 92.6% on pure synthetic data. We fare
relatively well with our detections and can position ourselves nicely between the
other state-of-the-art approaches. We could observe that we have a near-perfect
recall for each object and that our network regresses reliable features allowing to
match between synthetic and real local patches. We regard this to be the most
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important finding of our work since achieving high precision on a dataset can
be usually fine-tuned. Nonetheless, the recall for the ’glue’ is rather low since
it is thin and thus occasionally missed by our sampling. Based on the overall
observation, our comparison of the F1-scores with [30] gives further proof of the
soundness of our method. We can present excellent numbers and also show some
qualitative results of the votes and detections in Figure 9.

ape bvise bowl cam can cat cup driller duck eggb glue holep iron lamp phone

Us 96.9 94.1 99.9 97.7 95.2 97.4 99.6 96.2 97.3 99.9 78.6 96.8 98.7 96.2 92.8
[15] 95.8 98.7 99.9 97.5 95.4 99.3 97.1 93.6 95.9 99.8 91.8 95.9 97.5 97.7 93.3
[18] 96.1 92.8 99.3 97.8 92.8 98.9 96.2 98.2 94.1 99.9 96.8 95.7 96.5 98.4 93.3
[27] 95.0 98.9 99.7 98.2 96.3 99.1 97.5 94.3 94.2 99.8 96.3 97.5 98.4 97.9 95.3
[16] 93.9 99.8 98.8 95.5 95.9 98.2 99.5 94.1 94.3 100 98.0 88.0 97.0 88.8 89.4

Table 4. Detection rate for each sequence of [15] using the original protocol.

ape bvise bowl cam can cat cup driller duck eggb glue holep iron lamp phone

Us 98.1 94.8 100 93.4 82.6 98.1 99.9 96.5 97.9 100 74.1 97.9 91.0 98.2 84.9
[15] 53.3 84.6 - 64.0 51.2 65.6 - 69.1 58.0 86.0 43.8 51.6 68.3 67.5 56.3
[30] 85.5 96.1 - 71.8 70.9 88.8 - 90.5 90.7 74.0 67.8 87.5 73.5 92.1 72.8

Table 5. F1-scores for each sequence of [15]. Note that these LineMOD scores are
supplied from Tejani et al. with their evaluation since [15] does not provide them. It is
evident that our method performs by far better than the two competitors.

4.4 Challenge dataset

Lastly, we also evaluated on the ’Challenge’ dataset used in [1] containing 35
objects in 39 tabletop sequences with varying amounts of occlusion. The related
work usually combines many different cues and descriptors together with elabo-
rate verification schemes to achieve their results. We use this dataset to convey
three aspects: we can reliably detect multiple objects undergoing many levels of
occlusion while attaining acceptable detection results, we show again generaliza-
tion on unseen data and that we accomplish this at low runtimes. We present a
comparison of our method and related methods in Table 6 together with the av-
erage runtime per frame in Figure 11. Since we do not employ a computationally
heavy verification the precision of our method is the lowest due to false positives
surviving the checks. Nonetheless, we have a surprisingly high recall with our
feature regression and voting scheme that brings our F1-score into a favorable
position. It is important to note here that the related works employ a combina-
tion of local and global shape descriptors often directly processing the 3D point
cloud, exploiting different color, texture and geometrical cues and this taking up
to 10-20 seconds per frame. Instead, although our method does not attain such
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Fig. 9. Showing vote maps, probability maps after filtering and detection output on
some frames for different objects on the LineMOD dataset.
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Fig. 10. Detection output on selected frames from the ’Challenge’ dataset.

Method Precision Recall F1-score

GHV [1] 1.00 0.998 0.999
Tang [29] 0.987 0.902 0.943
Xie [33] 1.00 0.998 0.999

Aldoma [2] 0.998 0.998 0.997
Our approach 0.941 0.973 0.956

Table 6. Precision, recall and F1-scores on
the ’Challenge’ dataset.

Fig. 11. Average runtime per frame on
the ’Challenge’ dataset with a changing
amount of objects in the database.

accuracy, it still provides higher efficiency thanks to the use of RGB-D patches
only, as well as good scalability with the number of objects due to our discrete
sampling (leading to an upper bound on the number of retrieved candidates)
and approximate nearest-neighbor retrieval relying on sub-linear methods.

5 Conclusion

We showed that convolutional auto-encoders have the ability to regress mean-
ingful and discriminative features from local RGB-D patches even for previously
unseen input data, facilitating our method and allowing for robust multi-object
and multi-instance detection under various levels of occlusion. Furthermore, our
vote casting is inherently scalable and the introduced filtering stage allows to
suppress many spurious votes. One main observation is that CAEs can abstract
enough to reliably match between real and synthetic data. It is still unclear how a
more refined training can further increase the results since different architectures
have a tremendous impact on the network’s performance.

Another problematic aspect is the complexity of hypothesis verification which
can increase exponentially with the amount of objects and votes. Having a
method that can combine local and holistic voting together with a learned ver-
ification into a single framework could lead to a higher detection precision. A
proper in-depth analysis is promising and demands future work.
Acknowledgments The authors would like to thank Toyota Motor Corpora-
tion for supporting and funding this work.
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Supplementary Material

6 Self-evaluation with changing parameters

Our method is mainly governed by three parameters: τ for constrained voting,
k as the number of retrieved neighbors from the codebook, and the sampling
density. We ran multiple experiments on the dataset of Tejani et al. and give
further insight.

We first wanted to convey the importance of constrained voting via the left
graph in Figure 12. Apparently, the threshold needs to reflect the dimensionality
of the features, i.e. if the feature is of higher dimensionality, the norm difference
||f(x)− f(y)|| grows accordingly. Nonetheless, larger features are more descrip-
tive: while initially both networks underperform since many correct votes are
disallowed from being casted, CAE-64 reaches its peak performance already at
around τ = 7 and from there on additional votes add to more confusion and
false positives in the scene. CAE-128 peaks at around τ = 10 and shows a
similar behavior as CAE-64 for larger thresholds, albeit of smaller effect.

Fig. 12. Evaluation of parameter influence. From left to right: threshold τ , number of
retrieved neighbors k, sampling step size in pixels.

The number of retrieved neighbors k and the change in the F1-score can be
seen in the center plot from Figure 12. Interestingly, the choice of k does not
impact our general accuracy too much, apart from the inital jump from k = 1
to k = 3. This means that a good match beween real and synthetic data is most
often found among the first retrieved neighbors. Furthermore, our verification
usually always decides correctly for the geometrically best fitting candidate if
multiple hypotheses coincide at the same spatial position (centroids are closer
than 5 cm). We also show in the right plot that a denser sampling improves
the overall accuracy as expected. This was especially observable for the small
”camera” as well as the ”shampoo” that exhibits only its thin side at times and
can be missed during sampling.

Unfortunately, with a higher k the runtime increases drastically since the
number of hypotheses after mean shift can range in the hundreds per extracted
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mode. This is due to the fact that we cluster together all votes from the immedi-
ate neighbors for each local maximum. In turn, this can lead to multiple seconds
of pose refinement and subsequent verification. The same happens with a finer
sampling of the scene since the total number of scene votes has an upper bound
of #samples · k, extremely cut down by τ in practice. We therefore fixed k = 3
and a sampling step of 8 as a reasonable compromise.

7 Feature retrieval quality

For a visual feedback of the feature quality we refer to Figure 13. For each de-
picted object we took the first frame of the respective sequence and show the
closest neighbor from the codebook (τ =∞). It is obvious that the features rep-
resent well the underlying visual appearance since the putative matches resemble
each other well in color and depth.

Fig. 13. Putative RGB-D patch matches. For each scene input patch, we show the
retrieved nearest neighbor from the synthetic model database. For easier distinction,
we divided the matches up into correct (left column) and wrong (right column). As can
be seen, the features do reflect the visual similarity quite well, even for wrong matches.


