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Abstract. Although magnetic resonance imaging is considered to be
non-invasive, there is at least one effect on the patient which has to be
monitored: The heating which is generated by absorbed radio frequency
(RF) power. It is described using the specific absorption rate (SAR). In
order to obey legal limits for these SAR values, the scanner’s duty cycle
has to be adjusted. The limiting factor depends on the patient’s position
with respect to the scanner. Detection of this position allows a better
adjustment of the RF power resulting in an improved scan performance
and image quality. In this paper, we propose real-time methods for accu-
rately detecting the patient’s position with respect to the scanner. MR
data of thirteen test persons acquired using a new “move during scan”
protocol which provides low resolution MR data during the initial move-
ment of the patient bed into the scanner, is used to validate the detection
algorithm. When being integrated, our results would enable automatic
SAR optimization within the usual acquisition workflow at no extra cost.

1 Introduction

Recent developments in magnetic resonance imaging (MRI) lead to improve-
ments in the signal-to-noise ratio (SNR) which are especially needed for high-
resolution and high-speed imaging (e.g., functional imaging). In order to achieve
this, the field strength of the static B0 field is increased (to 3 T in current prod-
ucts) which in turn requires higher frequencies for the B1 field emitted by the
radio frequency (RF) coils. The energy deposition is proportional to the squared
B1 frequency. Together with dielectric effects occurring at wavelengths close to
the dimensions of the human body, this generates more heating of the patient.

This heating is modeled using the specific absorption rate (SAR), given in
W/kg. The international standard [1] requires multiple SAR limits to be com-
plied with (see Section 2.2). They are derived from the requirement of limiting
the temperature rise due to RF energy to 1◦, 2 ◦, and 3 ◦ for head, torso, and
extremities, respectively. Staying within these limits is achieved by adjusting the
duty cycle (through adjusting repetition time or slice thickness), the flip angle,
or the pulse form. If the SAR cannot be estimated accurately, rather large safety
margins are required which in turn reduce scan efficiency and/or image quality.
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Addressing this issue requires the development of more accurate monitoring
and control algorithms for the RF energy applied to the patient. These algo-
rithms in general have to solve two problems: First, a patient model is needed
for simulating SAR values inside humans. Second, for transfering this simulation
data to an actual patient for SAR estimation, the positioning of the patient has
to be detected. The latter is the topic of the work we are presenting here. Since
patients can only be positioned inside a tubular MR scanner in a few different
ways (a patient may not lie diagonal or crossways inside the tube), the detection
of the positioning effectively reduces to a detection of the patient’s axial position
with respect to the scanner.

In order to correctly align an SAR model with the actual patient, current
systems rely on the manual input of a few patient parameters (usually weight,
height, sex, and age) by the doctor. Furthermore, the patient’s head has to be
positioned onto a given spot on the bed.

There are numerous drawbacks associated with this procedure: Not only is it
tedious for the radiology staff but it also takes valuable time from the MRI sys-
tem. In addition, entering parameters and positioning a patient is error-prone
(due to estimation, erroneous weight/height declarations by patients, inexact
positioning, and reluctance to enter reasonable values). Therefore, we investi-
gate the possibility of detecting the position relative to the scanner using image
processing.

Usually, there are at least two sensors already available for performing such
a detection: An optical camera which is used to monitor the patient from the
operating room, and the MR imaging device itself. Since the latter is already
integrated with the workstation software and new protocols for fast scans (called
“move during scan”) will be available in products soon, a fast and low-dose
prescan will provide the desired input.

2 Related Work

2.1 SAR Estimation

To our knowledge, so far only [2] explicitly suggested the design of a “smart
scan software” for better adjusting scan parameters to individual patients. But
of course, the purpose of all the work done on simulating/estimating SAR values
is to improve the scan parameter adjustment. These simulations (e.g., [2,3]) are
often based on the Finite Difference Time Domain (FDTD) method and use
patient models generated from whole body MR scans like The Visible Human
Project R© [4]. The following section is based on the results of [5].

2.2 Critical Limits for SAR

Table 1 is reproduced from the International Electrotechnical Comission’s stan-
dard [1, section 51.103.2] and shows the global SAR limits for two different
operating modes. This standard also defines rules on which subset of limits has
to be obeyed: For exposure with volume RF transmit coils like an integrated
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whole body coil, only the global SAR limits from Table 1 apply. In all other
cases (using local RF transmit coils), additional local limits apply. Since posi-
tion detection is not an issue when using local coils (they are usually positioned
accurately), we will concentrate on body coils.

Table 1. Global SAR limits from [1, section 51.103] for an averaging time of 6 min

Whole Body Exposed Body Parta Head

Normal Mode 2 W/kg 2 W/kg – 10 W/kg 3.2 W/kg
First Level Mode 4 W/kg 4 W/kg – 10 W/kg 3.2 W/kg

a Scaling is coupled to the ratio “exposed body mass / total patient mass”

A simulation of the whole body, exposed body part, and head SAR is shown in
Fig. 1(a). Although restrictions exist for each of these three values, it is clear that
only one of them is a limiting factor to the system. Introducing the SAR-to-limit
ratio (STLR) and replotting this graph (see Fig. 1(b)) clearly shows that the
neck area is crucial, because it defines the transition of the limiting STLR value
from head to whole body. See also the symmetry of the energy (proportional to
squared field strength) of the limit-adjusted B1 field to the head and whole body
STLR, respectively. Therefore, we are especially concerned about neck detection.
The plot of the adjusted B2

1 clearly shows that scan performance / image quality
is lost in the head and feet sections when setting a flat B1 limit (given by the
minimal adjusted B2

1 at the patient’s torso).
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Fig. 1. Simulations for a 3 T scanner with a reference B1 field strength of 11.73 µT

3 Methods

3.1 Low-Dose Prescan / Move During Scan

Protocols where the patient bed is moving while a scan is performed are currently
developed and are already available for testing our position detection algorithm.
The resulting image data comes at no extra cost and is not intended for diagnosis
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as its resolution is quite low. Nevertheless, it is perfectly suited for our application
which only requires the data to be good enough for distinguishing different body
parts. The image data delivered by MR scans depicts the patient’s anatomy,
neglecting environment details such as the patient bed. This is probably the
biggest advantage compared to other types of sensors. Therefore, an MR scan is
a good choice for determining the patient’s parameters, if it is fast and does not
require an SAR estimation itself. However, these two issues are easily overcome
by using a low-dose prescan which is performed during a constant and relatively
fast movement of the patient bed with a very low dose. Although the resulting
image resolution is quite low (64 by 64 pixels per slice, and a slice spacing of
7.5 mm to 15 mm), the image quality is more than sufficient for estimating the
desired parameters. It should be reiterated that the data obtained in this manner
is not intended for diagnosis but just for parameter estimation.

3.2 Position Detection Methods

We only evaluated slice-based methods, since working on 3D data would restrict
the workflow to obtaining a full prescan before starting the actual diagnostic
scan. This is time-consuming and therefore needs to be avoided as often as pos-
sible. Our goal is to develop an algorithm which only requires prescan data from
the body sections that should also be scanned for diagnosis, keeping the work-
flow as-is. In the following subsections, we will shortly summarize the methods
we investigated for detecting the patient’s z position relative to the body coil.
All these methods are able to make decisions in real time which is required for
a smooth workflow.

Area Computations for Thorax and Neck Detection. An obvious measure
for classifying slices into body sections is based on slice area computations. The
threshold for separating patient from background is easily determined once for
all data sets. The derivative of the slice area with respect to the z position
(basically the area difference of two successive slices) is a useful measure enabling
the localization of the neck section by applying a gradient descent after proper
initialization. This initialization is based on the detection of head and thorax
that are going to be explained next.

A very robust method for detecting the thorax region is based on the fact
that the lungs contain air. This results in the lungs having similar intensities as
the background. After thresholding, the lungs build a cavity whose area can be
calculated easily: Performing a region growing on the background (using seed
points on the slice’s top or bottom border), inverting this segmentation, and
subtracting the thresholded slice’s area yields the desired measure (see Fig. 2).
This approach is very robust and is almost impossible to fail in a clinical setting.

Principal Component Analysis. Principal component analysis (PCA), also
referred to as Karhunen-Loève expansion, is a well-known method for reduc-
ing data’s dimension while preserving the most significant information. This is
achieved by computing a new data-specific coordinate system so that the first
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(a) Original (b) Thresholded (c) Inverted re-
gion growing

(d) Difference

Fig. 2. Area computations on a 64 × 64 thorax slice

few axes / coordinates cover most of the data’s variance. PCA originated from
the early work of Pearson [6] and was first introduced into statistics by Hotelling
[7]. It is used in applications as diverse as model reduction for systems of differ-
ential equations and face recognition [8,9], the latter one being quite related to
our problem. Although being a traditional image recognition and representation
technique, PCA is still under investigation. E.g., [10] tries to better adopt PCA
to 2D images. In our context, we apply PCA for reducing the image data’s di-
mension before classifying slices s ∈ R

n2
into classes such as “head slice” or “feet

slice”. This has the two advantages that classification can be done much faster
and that irrelevant information is neglected, thereby improving classification
accuracy.

For creating a new, variance-specific image basis, the covariance matrix of
a large set of representative slices has to be set up. Computing an eigenvalue
decomposition

ΣB = DB,

for the covariance matrix Σ (where D is a diagonal matrix containing Σ’s eigen-
values in descending order), yields the desired new basis B ∈ R

n2×n2
, whose

columns are Σ’s eigenvectors. A representation of a (de-meaned) slice image in
this new basis is obtained by projecting it onto the new basis B. For reduc-
ing the data’s dimensionality, one may omit eigenvectors corresponding to small
eigenvalues and only keep the image’s coefficients that correspond to the first
few coordinates in the new system. (This corresponds to deleting columns of B.)
The number of these “principal components” to be kept is to be chosen so that
all necessary information is retained, while reducing the set of basis vectors as
much as possible. A common method for finding this cut-off is to examine the
ratios of successive eigenvalues.

In our case, PCA is employed to detect basic shapes for distinguishing head
and feet slices. We downsampled all slices to 16 by 16 pixels in order to accelerate
the learning phase. This also enables us to anticipate even faster (and therefore
coarser) prescans and to proof the feasibility of PCA for our classification task.
There exist various criteria on how many principal components should be kept.
This decision has to exhibit a good balance between covered variances, per-
formance of classification, and storage requirements. Extensive testing showed
that this is best achieved by reducing the full 256 dimensional image space to
approximately 50 principal components.
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We did not apply any normalization of the slices to their centers of gravity
for two reasons: First of all, patient movement is very limited in the up/down
or left/right direction due to gravity and narrow patient beds, respectively. Fur-
thermore, a translation of slices to their centers of gravity would even degrade
the results, since slices depicting a single foot for example would become similar
to head slices. A normalization would only be reasonable when being performed
on the full 3D volume, effectively averting the aforementioned problem. But as
mentioned at the beginning of this section, we restrict ourselves to slice process-
ing in order to be able to work on partial scans as well.

The actual classification task is then solved by building training sets for the
head and feet classes and computing their means s̄H and s̄F as well as their
covariance matrices ΣH and ΣF. A new slice can then be classified by comparing
the Mahalanobis distances

dH/F(s) =
√

(s − s̄H/F)T Σ−1
H/F (s − s̄H/F) (1)

to the means of each of these classes. This is a simple distance classificator with
negligible computational cost.

Classification of a patient as “head-first” or “feet-first” is not achieved by eval-
uating just a single slice, but by accumulating Mahalanobis distances along the
z direction until a predefined threshold for this trust value is reached. The accu-
mulation uses the difference of Mahalanobis distances and makes decisions much
more robust and reliable. We define the head trust of a partial scan consisting
of slices s1, . . . , sk as

TH(k) =
k∑

i=1

tH(si), with tH(s) =

{
d−1
H (s), if dF(s) > dH(s) + Δ

0, otherwise
. (2)

The feet trust is defined analoguously. In empirical studies, a difference threshold
of Δ = 10 showed good results.

4 Experiments and Results

4.1 Image Data

We acquired whole body scans of 13 test persons. The subjects were positioned
in different ways. Some were instructed to put a pillow below their feet and
some put their head left of the patient bed’s center line. The resolution used for
acquiring the images was 7.5mm in x and y direction and 7.5mm to 15mm in z
direction. Each slice originally had 64 by 64 pixels. It has to be reiterated that,
before applying PCA, all images were downsampled in x and y direction to 16
by 16 pixels, yielding a resolution of 3 cm.

4.2 Detection Results for Crucial Sections of the Body

In this section, we will summarize the results of our experiments to detect several
sections of the human body. For all detections, we had to define thresholds for
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the corresponding measures. These thresholds were chosen by experience once
for all datasets.

Head and Feet. For testing the PCA classification, the 13 data sets were
divided into 4 learning sets and 9 test sets. After downsampling in x and y
direction, applying PCA, and transforming the images into the new space, slices
were collected for every class to be trained. After this supervised learning phase,
the classification of a data set into “head-first” or “feet-first” was done using the
trust values defined in (2). We were able to robustly detect the head and feet
of all patients in the test set by making a decision only if one of the two trust
values reached a predefined threshold while the other one remained zero. Even
persons with a pillow below their feet or with their head not center-positioned
were accurately classified, since one of the four training data sets shared these
properties. See Figs. 3(a)–3(c) for exemplary distances and trust values of one
data set.
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Fig. 3. Figs. (a)–(c) show the normalized Mahalanobis distances and the trust values
for head / feet first classification. Fig. (d) shows the area measures used for detecting
the same patient’s thorax and neck. The x axis corresponds to the slice number.

Thorax. The area comparison described above works very robust and fast in a
clinical setting. Since every patient has lungs, the only requirement is that they
form a cavity. This is guaranteed unless the patient’s chest is opened during
an intervention. However, for testing, we did not instruct the subjects to wear
scrubs (as this is usually done in clinical routine) instead of their own clothing.
This resulted in artifacts from metal buttons or zips. These artifacts destroyed
the topology by canceling the signal in two data sets. In all other data sets
the thorax was detected accurately. See Fig. 3(d) for the area measures for one
data set.

Neck. As stated in section 2.2, the detection of the patient’s neck is crucial
since in this body section the confining SAR limit changes from the head limit
to one of the other two limits (whole body or exposed body part, depending on
the operation mode). Our approach for detecting the neck is based on a combi-
nation of three methods: The slice classification for detecting the head position,
the region growing on background for detecting the thorax, and a combined
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area / area gradient analysis for determining the neck slices between head and
thorax (see Fig. 3(d)). As long as head and thorax are detected, neck detection
works perfectly.

5 Discussion

Currently, we are working on using a broader range of criteria to base our de-
cisions on. This leads us to the addition of a classification system (e.g., a naive
Bayes classifier would probably do the job) at the end of slice processing in or-
der to robustly combine more features than just PCA, area difference, and area
gradient. This modification may also empower us to detect more body parts
than just head, neck, and feet and additionally would be more robust (regarding
image artifacts). After that, the detection algorithm could be integrated within
the duty cycle management software of MR scanners.

6 Conclusion

In this paper, we described the importance of SAR optimization for a smooth
and safe MRI acquisition. Currently, MR imaging requires manual input from
the radiology staff and is prone to different errors and omissions. We propose
an automatic solution based on the fast and low resolution “move during scan”
protocol. The detection and classification methods used provide a simple and
robust solution for the detection of patient position and the location of the
patient’s neck which is crucial for SAR planning. Results on thirteen test persons
validate the approach.

This paper presents, to the best knowledge of the authors, the first attempt
to automatically detect the patient’s position with respect to the MR scanner
and, therefore, enables a new solution towards designing a safe, fast, and smooth
workflow for magnetic resonance image acquisition.
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