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Abstract. This paper addresses an approach toward tomographic re-
construction from rotational angiography data as it is generated by C-
arms in cardiac imaging. Since the rotational acquisition scheme forces a
trade-off between consistency of the scene and reasonable baselines, most
existing reconstruction techniques fail at recovering the 3D + ¢ scene.
We propose a new reconstruction framework based on variational level
sets including a new data term for symbolic reconstruction as well as
a novel incorporation of motion into the level set formalism. The re-
sulting simultaneous estimation of shape and motion proves feasible in
the presented experiments. Since the proposed formulation offers a great
flexibility in incorporating other data terms as well as hard or soft con-
straints, it allows an adaption to a wider range of problems and could
be of interest to other reconstruction settings as well.

1 Introduction

The clinical motivation for providing a 3D(+t) reconstruction of the coronary
arteries from rotational angiography data is to provide the physician with intra-
interventional 3D data. Currently, patients with chest pain and other symptoms
for a cardiac infarction either get a conventional CT (for a definite rule-out)
or are directly sent to the catheter lab where diagnosis and intervention are
performed at once using a C-arm system. In the former case, the physician may
obtain a 3D reconstruction which is not intra-interventional whereas in the latter
case, there are only series of 2D X-rays available for diagnosis and navigation.

Bringing the two worlds together requires a reconstruction from calibrated
angiographic projections which can be obtained during a rotational run (190°)
of the C-arm around the patient (see Fig. 1). Such a run takes about 4 s to
5 s which is a hard limit for technical as well as security reasons. Therefore, a
human heart beats about 4 to 7 times during imaging. The resulting inconsistent
projection data inhibits 3D reconstruction. This is the reason why a simultaneous
reconstruction of shape and motion is needed in order to compensate for the
heart motion during the reconstruction of the shape.
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Fig. 1. Rotational angiography of a dynamic scene. (image is derived from work by Patrick J.

Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist. http://creativecommons.org/licenses/by/2.5/)

The ill-posedness of a direct tomographic 4D reconstruction suggests to seek
a symbolic/binary reconstruction first and then use the recovered motion for a
later tomographic reconstruction. Such a symbolic reconstruction is performed
on the coronaries since they are contrasted and cover the motion in the relevant
area around the patient’s heart.

2 Related Work

To the authors’ knowledge, all previous work on cardiac cone beam CT makes
strong use of the assumption that the heart motion can be grouped into several
phases (usually defined by a percentage value between two adjacent R-peaks).
Within such a phase (e.g. 10% — 20%), the heart is assumed to re-position to
the same state in each of the phase’s images. This permits a retrospective gating
using the simultaneously recorded ECG signals. Based on this, Blondel et al. [1],
Hansis et al. [2], and Movassaghi et al. [3] mostly rely on epipolar geometry and
triangulation. Temporally distant but spatially consistent projections (yielding a
wider baseline) are used to reconstruct 3D points and track them over time. Using
traditional computed tomography solutions (like filtered back projection [4] or
algebraic reconstruction [5,6]) Priimmer et al. [7] and Schéfer et al. [8] perform
phase-wise tomographic reconstructions. These phase-wise reconstructions can
then be fused if the motion between cardiac phases is somehow known. [8] focuses
on the motion-compensated FDK-reconstruction algorithm assuming a known
motion field whereas [7] also proposes to do multiple sweeps for acquiring enough
projection data.

For the following reasons we propose a level set framework for symbolic re-
construction instead of using tomographic- or triangulation-based methods: Due
to the bad image quality of contrasted angiographic X-ray projections, an algo-
rithm not explicitly using correspondences but just a soft coupling of points in
3D space would be desirable. Although healthy hearts beat in a more or less reg-
ular manner, assuming exact re-positioning and perfectly periodic ECG signals
is a quite strong requirement. This is in particular problematic for patients with
pathologies like congenital cardiac defects or a prior bypass-surgery. To this end,



a soft coupling in time domain could also prove to be advantageous. Level sets
have the further advantage of being able to handle the unknown tree structure.

Although we will present novel data terms and a new space-time coupling,
we still want to point the reader to the following works which we share some
ideas with: Yoon et al. [9] perform a CT-like reconstruction from X-ray data
using multiphase level sets. This work enables the reconstruction of piece-wise
constant tissue from very few projections but does not deal with motion. Rathi
et al. [10] and Cremers et al. [11] perform deformable tracking on 2D images
using active contours which is related to our time-coupling.

Additionally, there is a lot of related work on 3D reconstruction from optical
images using level sets, graph cuts, or voxel occupancy techniques. For the sake
of brevity, we do not delve into this field but just want to mention Franco et al.
[12] who give a nice derivation and solution to the problem of 3D reconstruction
from probabilistic silhouette images in a synchronized multi-view environment.

3 Methods

Having laid out our motivation for developing a level set framework (offering
the desired soft coupling) for symbolic reconstruction we now proceed to its
modeling. The main theoretical contributions of this paper are the development
of energy terms, fitting a level set function to the given image data, and its usage
with a dynamic?® level set function.

3.1 Dynamic Level Sets

Since we seek to obtain a symbolic or binary reconstruction of our 3D scene
over time, we have chosen to model the “inside” and “outside” of reconstructed
objects using a level set function

[R¥*=R
o : { xo — Po(x0) M

on some reference domain with coordinates @y and the convention @(xz¢) < 0 for
“inside” or reconstructed points. In order to establish a temporal relationship
of the reconstruction frames, this level set function is made dynamic by intro-
ducing a warping transformation ¢. Similar to what was presented in [13], this
transformation maps points from location x at time ¢ to coordinates x( in the
reference frame where the shape is reconstructed using one single level set func-
tion @(. For the experiments presented in this paper, we modeled a rigid motion
over time using 6 temporal B-splines (with 10 degrees of freedom each) for the
time-dependent rotation matrix R and translation vector T yielding coefficients
o € R6X10.

~ [R3 xR x R6X10 - R3 5
P (@,t,0) — R(t, @)+ T(t, ) 2)

3 “Dynamic” in this context means the deformation of the level set function over the
real time variable ¢ (as opposed to an evolution of the level set function over artificial
time during iterations).



Note that the reference frame is arbitrary and not fixed to any point in time.
This way, we avoid any bias toward a specific time.

Putting together equations (1) and (2), we obtain the dynamic level set
function @ : R3 x R x R6*10 R

D(x,t,a) = Py (p(,t, ) . (3)

Note that one could also choose to directly model a 4D level set function &(x, t).
But using a dynamic warping function ¢ has several advantages:

— The shape reconstruction is implicitly regularized over time, since there is
only one shape model.

— The motion can be recovered directly, simplifying its later use in a tomo-
graphic reconstruction as well as enabling a direct motion regularization.

— Memory requirements are much lower compared to a 4D grid if ¢ is parametrized.

3.2 Reconstruction Energies

Having built a model for the shape and motion to be reconstructed, we now
proceed to setting up an energy functional that fits the reconstruction parameters
@y and a to the given L projection images I; acquired at times ¢;, 1 <[ < L.
The projection images’ pixels are assumed to contain intensity values in [0, 1]
corresponding to the probability that the associated ray hit a vessel. Imposing
penalties on false positive and false negative reconstructed points in space works
in a manner similar to what was first presented by Chan and Vese [14] but taking
into account the projective character of the imaging device:

Let V be the reconstruction volume, P; : R? — R? the projection operator
for frame [, and H the Heaviside step function (or rather a mollified version of
it, see [14] for examples). The false positive term then is

Epp(Pp, ) =

L
Z/SFP<IZ(PZ(33)))~ [1— H(So(p(a,t, )] - [1— L(Pi(x))] dz, (4)

=17
where Spp(i) = H (3 —4) is a switching function, enabling the false positive
penalty for low intensities/probabilities i € [0, %] only. In this formula, the first
two factors filter out the false (1%% factor) positive (2°¢ factor) reconstructions,
whereas the 3'4 factor is a weighted penalty. This way, reconstructed points are
penalized every time they are hit by a “non-vessel ray”.

Penalizing false negatives works in a similar way. However, the big difference
is that we cannot accumulate penalties in volume space. Due to the images
being probabilistic projections, we may only impose a false negative penalty if,
and only if, no object is reconstructed along the whole ray corresponding to a

high intensity pixel.# Thus, whole rays have to be considered instead of single

4 Note that another approach would be to focus on a point in space and impose a false
negative penalty iff all projected intensities enforce an object. However, this would
favor “empty” reconstructions due to the initially inconsistent data.



points:

L

Epx(®o, ) :Z/SFN(Il(p)) H( min Q)O(‘P(mytha))) “I(p) dp (5)
A

X
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Here, A C R? is the projection image space, X;(p) is the set of volume points
corresponding to pixel p in image I, and Spx(i) = H (z — %) is the switch-
ing function enabling the term for falsely reconstructed points only. The three
factors here are responsible for selecting pixels which indicate a vessel to be
reconstructed on the ray to pixel p (15% factor), selecting rays where all ¢ val-
ues are positive, i.e. there is no object reconstructed (2"¢ factor), and adding a
weighted penalty (3¢ factor), respectively.

The two data terms seem to be of very different type. This is remedied by
either appropriately weighting them or reformulating the false negative term to

a volume integral using the coarea formula.

3.3 Regularization

In terms of regularization we only need to care about shape regularization at this
point since the motion parameters are inherently regularized due to the usage of
B-Splines with an appropriate number of knots. For obtaining a smooth shape
reconstruction in the reference frame, we use

Eshape(Po) = v 6(Po(x)) - VDo ()| de (6)

for penalizing the level set surface and thereby favoring reconstructions with low
surface curvatures.

3.4 Implementation
Optimizing the system
E(®o, ) = Apn - Ern(Po, @) + App - Erp(Po, &) + Ashape - Eshape(Po) ,  (7)

resulting from putting together the terms (4)—(6), is rather complex as two sets of
parameters must be computed simultaneously, namely the shape model &3 and
the deformation parameters a. The former is minimized using the variational
derivative of %, the latter by calculating the gradient V4 FE. Computing these
terms from their analytic forms involves deriving the minimum functional from
equation (5), several numerical approximations, and a step size management
during gradient descent for @y and a.

The most demanding issue to solve is the computation of Fry and its deriva-
tive. It involves ray casting (customized to using 3 X 4 projection matrices and
applying the estimated motion for every sample point) for computing the mini-
mum contained in the equation’s second factor. Updates to @ have to be applied



at the sample points (which are in general not at grid locations of @¢) and thus
be “backward-interpolated”.

Several approaches to implement such a scheme are possible, including GPU-
based methods. After considering aspects related to memory usage and speed
of computation, we decided to use a CPU-based procedure, optimized using
the OpenMP framework. Even though GPUs appear to be a natural choice for
ray casting, their bad support for arbitrary writes disqualifies them for this
algorithm.

4 Experiments and Discussion

We tested our method using synthetic and phantom data. The “synthetic” data
was created by modeling tubes of considerable diameter clearly visible in the
projection images (see Fig. 2(a) and (b)) while the “phantom” data was physi-
cally built, scanned, reconstructed (without motion) and segmented. It contains
thin vessels of just 1 or 2 voxels diameter as visible in Fig. 2(d). In both cases, we
used 3 x 4 projection matrices, obtained from the calibration of a real stationary
C-arm, to generate synthetic views of the data. During the virtual image ac-
quisition process we applied a dynamic but rigid motion with realistic intervals
and amplitudes. An image inhancement step as necessary in the real applica-
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Fig. 2. Two examples of the imaging and reconstruction process. Top row: “Synthetic”
data without noise. Bottom row: “Phantom” data with 50 % noise. From left to right:
Ground truth models, exemplary projection, and the final reconstruction. Note that
the projections do not show a static setting, but a snapshot of a moving artery tree.



tion could be omitted grace to the use of symbolic ground truth data. Instead,
we randomly added Gaussian noise (with zero mean and standard deviations
of 25 % and 50 % of the full intensity range) to the projection images in order
to test the proposed algorithm’s sensitivity to noise. Sample projections with
different magnitudes of noise are shown in Fig. 2.

As a result of these steps, we obtained a series of projection images of the
moving artery tree, and their corresponding projection matrices. In order to
speed up testing, we worked on rather coarse data using 48 projections at 155 x
120 pixels each (compared to 200-400 images at 620 x 480 pixels each in a real
setting). The reconstruction volume V' covered a cube of size (15cm)?, discretized
as grid of 503 voxels.

All experiments have been run on high-performance hardware, including
quad-core and 24-core equipment. The execution time depends on several factors
such as noise and complexity of both motion and image content. For the 24-core
machine, an average execution time of roughly 5 min for 100 iterations has been
attained, after which the result was stable.

In order to compute a meaningful error measure, we collected all spatial
points Xj—1. g corresponding to vessel voxels in the ground truth data. Af-
terwards, for each moment ¢;, we warped these points using both the ground
truth motion R(%;), T'(¢;) and the reconstructed motion R(#;, o), T'(¢;, o) and
computed the reconstruction error

H [R(t)- X, + T(t)] — [R(t, @) - X5 + T, a)]H2 ®)

for every point X at every moment ¢;.

A comparison of errors for two data sets and three noise levels is given in
Table 1. Obviously, the algorithm supports a fair amount of noise. Still, low-
noise images (25 %) compare best to the segmented vessel images to be used in
the final application. The phantom data set performs worse than the synthetic
model. However, this problem can most likely be traced to the coarse resolution
we used despite the fine structures of this data set (see Fig. 2, bottom row).
Nevertheless, the motion was usually still well estimated, in these cases. The
average errors for reasonably posed problems with max. 25 % noise does not
exceed 1 mm (and thus is sub-voxel accurate) even though we downsampled all
data by factor four in space and time compared to the real setting.

5 Conclusion

The method presented in this paper is a promising alternative to other cardiac
cone beam reconstruction procedures. Its major benefit is that it does not depend
on hard constraints such as perfect ECG signals (although they may be included
as a soft constraint at a later point) or an exact re-positioning of cardiac anatomy
between heart beats.

However, in its present form, the motion description does not yet cover all
possible motions that one encounters in the clinical setting. Future work will



Table 1. Comparison of the reconstruction errors. The two data sets “Synthetic” and
“Phantom” were reconstructed at three different noise levels. All errors are given in
mm and have been evaluated for a series of 5-10 experiments.

Data Set Noise Mean St.D. Max. Med. Data Set Noise Mean St.D. Max. Med.

Synthetic 0% 0.54 0.30 2.19 0.47 Synthetic 0 — 50% 1.20 1.70 11.73 0.64
Synthetic 25% 0.68 0.36 3.14 0.60 Phantom 0 —50% 1.98 2.22 9.79 1.03

Synthetic 50% 2.36 2.53 11.73 1.18 both 0% 081 0.47 4.41 0.72
Phantom 0% 0.91 0.48 4.41 0.82 both 25% 0.83 0.45 4.37 0.75
Phantom 25% 0.88 0.46 4.37 0.81 both 50% 3.68 2.77 11.73 3.07

Phantom 50% 4.15 2.70 9.79 3.86

thus aim at more universal descriptions providing more degrees of freedom, such
as affine transformations and fully deformable models. Especially in the latter
case, application-specific soft constraints (e.g. relating ECG and motion) will
most likely become necessary.
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