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Abstract

In this paper, we present an approach to color image understanding that can be used to segment and

analyze surfaces with color variations due to highlights and shading.  The work is based on a theory - the

Dichromatic Reflection Model - which describes the color of the reflected light as a mixture of light from

surface reflection (highlights) and body reflection (object color).  In the past, we have shown how the

dichromatic theory can be used to separate a color image into two intrinsic reflection images: an image of

just the highlights, and the original image with the highlights removed.  At that time, the algorithm could

only be applied to hand-segmented images.  This paper shows how the same reflection model can be

used to include color image segmentation into the image analysis.  The result is a color image

understanding system, capable of generating physical descriptions of the reflection processes occurring

in the scene.  Such descriptions include the intrinsic reflection images, an image segmentation, and

symbolic information about the object and highlight colors.  This line of research can lead to physics-

based image understanding methods that are both more reliable and more useful than traditional

methods.
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1. Introduction
When humans are asked to describe a picture, they generally give a list of objects and their relative

positions in the scene.  A closer look at the image reveals that they have omitted a lot of detail in the

description. Objects cast shadows, possibly upon other objects.  The brightness on the objects varies,

appearing much darker at object parts that are tilted away from the light than where surfaces face the light

directly. Moreover, some objects have highlights; we may even see a mirror image of one object on

another object.  These optical effects are caused by various physical processes by which light interacts

with matter.  If a vision system is expected to generate descriptions similar in quality to the ones given by

humans, the system it will have to discount the influence of these physical processes.

Physical processes in the scene have not been a strong point of interest in the traditional line of

computer vision research.  It has been common practice to divide the image understanding problem into

two phases, a low-level segmentation or feature extraction phase and a higher-level reasoning phase in

which the image features are related to object features described in object models of the scene [9, 17].

Within this line of research, image segmentation has been considered to be a statistical image processing

problem with the major concern being to determine statistically significant changes of pixel values under

the presence of noise - under the implicit assumption that such significant changes generally correspond

to object boundaries in the scene.  However, the generated edge or region images outlined not only

material boundaries, but also shadows, highlights, and object edges along which the surface orientation

changes abruptly.  The segmentation was then passed to a higher-level phase which tried to combine

regions across highlights or shadows either by matching image features with objects models [9] or by

determining the physical cause of edges or regions [6, 28].

Recently, work in image understanding has started to use intrinsic models of physical processes in the

scene to analyze intensity or color variations in the image [2, 6, 11, 14, 16, 18, 19, 28, 32, 35]. But such

analyses have not been applied to image segmentation.  This paper presents an approach to color image

understanding that uses an intrinsic reflection model, called the Dichromatic Reflection Model [30], to

generate an image segmentation, along with descriptions of object and highlight colors and intrinsic

reflection images, showing how shading and highlight reflection vary in the image.  The color image

analysis system alternates between generating hypotheses about the scene from the image data and

verifying whether the hypotheses fit the image.  The hypotheses relate object color, shading, highlights

and camera limitations to the shapes of color clusters in local image areas. They are used to segment

the images and to separate them into two intrinsic images, one showing the scene without highlights, and

the other one showing only the highlights.  In this way, the algorithm is driven by a physical model of light

reflection to incrementally identify local and global properties of the scene and to use them in interpreting

and segmenting pixels in the images. The system adapts the image interpretation process to local scene

characteristics and reacts differently to color and intensity changes at different places in the image.  This

line of research is aimed at developing physics-based low-level image analysis methods that are both

more reliable and more useful than traditional approaches.
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2. The Dichromatic Reflection Model
This section provides a short overview of Shafer’s Dichromatic Reflection Model [30]. A more detailed

description and discussion can be found in [20, 22, 30].

The Dichromatic Reflection Model describes the light, L(λ,i,e,g), which is reflected from a point on a

dielectric, non-uniform material as a mixture of the light L (λ,i,e,g) reflected at the material surface and thes

light L (λ,i,e,g) reflected from the material body (see Figure 1).  The parameters i, e, and g describe theb

angles of the incident and emitted light and the phase angle; λ is the wavelength parameter. L is calleds

the surface reflection component. It generally has approximately the same spectral power distribution as

the illumination and appears as a highlight or as gloss on the object. L is called the body reflectionb

component. It provides the characteristic object color and exhibits the properties of object shading.

L(λ,i,e,g) = L (λ,i,e,g) + L (λ,i,e,g) (1)s b

Figure 1: Light reflection of dielectric materials

The model separates the spectral reflection properties of L and L from their geometric reflections b

properties, modeling them as a products of spectral power distributions, c (λ) or c (λ), and geometrics b

scale factors, m (i,e,g) or m (i,e,g), which describe the intensity of the reflected light.  Substituting theses b

terms into equation (1), we obtain the Dichromatic Reflection Model equation:

L(λ,i,e,g) = m (i,e,g)c (λ) + m (i,e,g)c (λ) (2)s s b b

The model thus describes the light that is reflected from an object point as a mixture of two distinct

spectral power distributions, c (λ) and c (λ), each of which is scaled according to the geometric reflections b

properties of surface and body reflection.  In the infinite-dimensional vector space of spectral power

distributions (each wavelength defines an independent dimension in this vector space [15, 29]), the

reflected light can be described as a linear combination of the two vectors c (λ) and c (λ).s b

3. Object Shape and Spectral Variation
The Dichromatic Reflection Model describes the spectral properties separately for every single pixel on

an object.  In itself, this description is not yet very helpful in computer vision since it describes the light at

each object point by a set of four (so far unknown) factors.  It does not provide a mechanism to uniquely

determine these factors from the reflected light beam.  This section explores the observation that the light

reflected from all points on an object uses the same two spectral vectors and that these two factors are

thus constant over an object.  We will now show how object shape determines spectral variation on the

object and how this spectral variation is related to the body and surface reflection vectors.

3.1. Basic Principles
An investigation of the geometrical properties of surface and body reflection reveals that the light

mixtures form a dense spectral cluster in the dichromatic plane.  The shape of this cluster is closely

related to the shape of the object.  Figure 2 shows a sketch of a shiny cylinder.  The left part of the figure

displays the magnitudes of the body and surface reflection components.  The lighter curves show the loci
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of constant body reflection, assuming perspective viewing and illumination geometry and Lambertian

body reflection. The darker curves are the loci of constant surface reflection.  Since m (i,e,g) decreasess

sharply around the object point with maximal surface reflection, m , these curves are shown only in asmax

small object area.  We call the points in this area highlight points. The remaining object points are matte

points. The right part of the figure shows the corresponding spectral histogram in the dichromatic plane.

As we will describe below, the object points form two linear clusters in the histogram.

Figure 2: The shape of the spectral cluster for a cylindrical object

Light reflection at matte points is primarily determined by the body reflection process.  In principle,

matte points may contain a some surface reflection, as the result of light diffusion at a rough material

surface. However, the following analysis assumes that this surface reflection component can be

neglected. The observed light at matte points then depends mainly on c (λ), scaled by m (i,e,g) accordingb b

to the geometrical relationship between the local surface normal of the object and the viewing and

illumination directions.  Consequently, the matte points form a matte line in the dichromatic plane in the

direction of the body reflection vector, c (λ), as shown in the right part of Figure 2.b

Highlight points exhibit both body reflection and surface reflection. However, since m (i,e,g) is muchs

more sensitive to a small change in the photometric angles than m (i,e,g), the body reflection componentb

is generally approximately constant in a highlight area, as displayed by the curve with label m in FigurebH

2. Accordingly, the second term of the Dichromatic Reflection Model equation (2) has a constant value,

m c (λ), and all spectral variation within the highlight comes from varying amounts of m (i,e,g). ThebH b s

highlight points thus form a highlight line in the dichromatic plane in the direction of the surface reflection

vector, c (λ). The line departs from the matte line at position m c (λ), as shown in Figure 2.  Mores bH b

precisely, the highlight cluster looks like a slim, skewed wedge because of the small variation of the body

reflection component over the highlight.

The combined spectral cluster of matte and highlight points looks like a skewed T. The skewing angle

of the T depends on the spectral difference between the body and surface reflection vectors while the

position of the highlight line depends on the illumination geometry, as described below.

3.2. Relationship between Illumination Geometry and Spectral Histogram Shape
There exists a close relationship between the illumination geometry and the amounts of body and

surface reflection on an object depend.  This relationship influences the shape of the clusters in the

spectral histogram.  It describes constraints that an image analysis program can use when it analyzes

spectral variation.  We will now derive such a constraint, the 50%-heuristic, for spherical objects.  The

heuristic states that, under reasonable assumptions, the highlight cluster starts in the upper 50 percent of

the matte cluster.  It will be used in section 5 for image segmentation to distinguish spectral changes

between matte and highlight points on one object from spectral changes between neighboring objects.

The amount of body reflection under the highlight depends on the phase angle g between the

illumination and viewing direction:  If g is very small, i.e.: the camera is very close to the light source, the
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incidence direction of the light at the highlight is close to the surface normal and the underlying amount of

body reflection is very high. The highlight line then starts near the tip of the matte line, and the skewed T

becomes a skewed L or a "dog-leg" [6, 7]. When the phase angle g increases, the highlight moves away

from the area with maximal body reflection, and the amount of body reflection under the highlight

decreases. The highlight line moves accordingly away from the tip of the matte line.

The following analysis investigates this relationship more precisely for the case of a spherical object

with radius r, viewed and illuminated under perspective projection (see Figure 3).  The analysis assumes

that the sphere is illuminated by a point light source at some distance d from the object center.  It further

assumes that the camera is positioned at the same distance d from the object center and that an arbitrary

phase angle g exists between the viewing and the illumination direction.  Although these assumptions on

the illumination geometry and the object shape are limiting, the following analysis provides general insight

into the relationship between object shapes and the shapes of spectral clusters.

Figure 3: Assumed illumination geometry

Distance d determines the size of the cone that illuminates the sphere (described by γ), as well as the

range of phase angles [−g , g ] under which the camera sees a part of the illuminated area:max max

r
γ = arc tan (3)

2 2√d −r

2 2√d −r
g = 180° − 2γ = 2 arc tan ( ) (4)max r

Figure 4 describes how the highlight and its underlying body reflection component m are related tobH

phase angle g. Since camera and light source are positioned at the same distance d from the object

center, the maximal surface reflection component occurs where the surface normal, n , bisects the phaseH

angle. Under perspective projection, the illumination angle i at the highlight depends on the position ofH

the highlight which, in turn, depends on g. Using the law of sines and the law of cosines, i can beH

described as

d sin (g/2)
i = arc sin (5)H

2 2√d +r −2dr cos (g/2)

Assuming Lambertian body reflection, m (i,e,g) = cos i, the underlying body reflection component, m ,b bH

at the highlight is then given by

2 2d sin (g/2)
m = cos (i ) = √1 − (6)bH H 2 2d +r −2dr cos (g/2)

Figure 4: Photometric angles at highlight
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According to equations 5 and 6, m approaches 1 when g goes to 0°, confirming the informalbH

description at the beginning of this section that the spectral cluster looks like a skewed L when camera

and light source are close.  When g approaches g , on the other hand, m decreases to 0. Whenmax bH

relating m to the length of the matte color cluster, we need to take into account that the point withbH

globally maximal body reflection, m , is not always visible from the camera.  If it is occluded, the mattebMax

line in the spectral histogram does not extend entirely to m c (λ) but only to the point representing thebMax b

brightest visible point, m c (λ). Figure 5 displays the illumination geometry for the brightest mattebMaxVisible b

point that is visible from the camera.  The surface normal, n , at this object point is determined byMaxVisible

the angle α, which is given as

g − (g /2) if g ≥ g /2α = max (g − (90° − γ), 0) = (7)max max{0 otherwise

Figure 5: Brightest matte point that is visible from the camera

Following the derivation of equations 5 and 6, the angle between the illumination vector and the

surface normal at the local maximum, as well as the amount of body reflection at that point are given by

equations 8 and 9:

d sin α
i = arc sin (8)MaxVisible

2 2√d +r −2dr cos α

2 2d sin α
m = cos (i ) = √1 − (9)bMaxVisible MaxVisible 2 2d +r −2dr cos α

The starting point of the highlight line on the matte line can now be described relative to the length of

the matte line.  The ratio q of body reflection at the highlight in relation to the maximally visible amount of

body reflection is expressed as:

mbH
q = (10)

mbMaxVisible

Figure 6 shows how q varies as a function of g and d. Each curve in the figure describes for a different

fixed d how q depends on g. In all curves, q approaches 0.5 as g approaches g . Note, however, that qmax

is not defined for g = g where i = i = 90° and thus m = m = 0. Distance d is variedmax bMaxVisible bH bMaxVisible bH

between the curves. For small values of d, the curves exhibit a minimum in the middle of the curve.  With

increasing d, this minimum becomes less pronounced and q becomes a monotonically decreasing

function with an inflection point.  In the extreme, when d = ∞, the curve for q assumes the shape of a

cosine function for phase angles g under which the globally brightest point is visible (g ≤ 90°), and the

shape of a cosecant function, if the brightest point is invisible.  A detailed derivation of the formula is

given in [20].

cos (g/2) if g ≤ 90°q (g) = (11)∞ {1 / (2 sin (g/2)) if g ≥ 90°
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Figure 6: Starting point q of the highlight line as a function of phase
angle g and distance d

The figure indicates that if d is a moderate or large multiple of r (d ≥ 5r), q does not drop below 0.5. The

body reflection component under the highlight then is always at least half as large as the body reflection

component at the brightest visible matte point.  Under such illumination geometries, the highlight line

always starts in the upper 50% of the matte line.  Since laboratory set-ups for scenes with several objects

in the field of view generally use camera and illumination distances that are larger than the fivefold object

size, we use the above finding as the 50%-heuristic in the segmentation algorithm in section 5.

4. A Camera Model
To account for camera limitations in real images, we combine the Dichromatic Reflection Model with a

camera model.  This section describes briefly how some characteristics of CCD-cameras influence the

pixel values in real images.  A more detailed description, including color pictures with color clusters from

real images, can be found in [20, 22].

• Spectral Integration:
Instead of using the infinite-dimensional vector space of spectral color distributions, research
in computer color vision generally analyzes a three-dimensional color space. This color
space comes from color images obtained by taking three pictures of the scene, through a
red, a green and a blue color filter.  The process transforming the spectrum of an incoming
light beam into a color triple C = [R,G,B] is called spectral integration. It is a linear
transformation from the infinite-dimensional vector space to the three-dimensional color
space [8, 29]. The Dichromatic Reflection Model is then describable as a function of two
three-dimensional vectors, C = [R ,G ,B ] and C = [R ,G ,B ] which span a dichromatics s s b b bs b
plane in the three-dimensional color space:

(12)

C = m C + m Cs bs b

• Color Clipping:
Real cameras have only a limited dynamic range to sense the brightness of the incoming
light. This restricts our analysis of light reflection to a color cube. If the incoming light is too
bright at some pixel position, the camera cannot sense and represent it adequately and the
light is clipped in one or more color bands.

• Blooming:
In CCD-cameras, too much incident light at a pixel may completely saturate the sensor
element at this position.  This causes blooming in the camera as a result of which adjacent
pixels increase their values.  We call such neighboring pixels bloomed color pixels.

• Color Balancing:
CCD-Cameras are generally much less sensitive to blue light than to red light.  To provide an
equal scaling on the three color axes in the color space, we rescale the pixel data separately
in the color bands by changing the aperture. We refer to this procedure as aperture color
balancing. We also use a total IR suppressor in front of our camera to eliminate the CCD-
camera’s sensitivity to infrared light.

• Gamma Correction:
The color pixels depend on the camera response to incident light flux.  Due to
gamma-correction, the camera output is generally related by an inverse power law to the
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incident flux. It introduces curvature into the color space, distorting the linear properties of
the Dichromatic Reflection Model.  We linearize the color data, reversing the gamma-
correction process.

• Chromatic Aberration:
Since the refraction index of optical glass is a function of wavelength, picture taking suffers
from chromatic aberration: The focal length, f, of the camera increases with wavelength and,
for a fixed focal length, only one color band of an image can be perfectly in focus.  The other
two image bands show slightly magnified or shrunk images of the scene.  Chromatic
aberration has a strong influence on color changes in the outer image areas.  Since the color
bands do not increase or decrease simultaneously, pixels in the rising and falling parts of the
profiles generally exhibit color changes that have little relationship to the physical processes
in the scene. This effect depends on the quality of the camera lens.  It appears quite strongly
in some of our images [20]. Since we have not yet been able to eliminate this effect, it limits
the performance of our algorithm.

So far, we have discussed how optical and camera properties influence the image function.  We will

now present an image understanding system that demonstrates how physical knowledge can be used for

interpreting images.  The system consists of two major components which will be presented in the next

sections: a color image segmentation algorithm and a method to split color pixels into their body and

surface reflection components.

5. Color Image Segmentation
The goal of segmentation is to identify objects in an image, as delimited by material boundaries.

Because most current color segmentation methods are based on a very simple interpretation of color

changes in an image, they generally segment images not only along material boundaries but also along

other lines exhibiting color or intensity variations, such as highlight and shadow boundaries, or internal

object edges with significant shading changes.  The Dichromatic Reflection Model provides a more

sophisticated interpretation scheme relating the physics of light reflection to color changes in the image

and in the color space. We use the Dichromatic Reflection Model in a segmentation algorithm to

distinguish color changes at material boundaries from color changes due to shading changes or

highlights.

5.1. Using the Dichromatic Reflection Model in Color Image Understanding
The Dichromatic Reflection Model and the sensor model describe processes that occur in the scene

and in the camera. The previous sections have projected the influence of these processes from scene

properties onto image properties. We will now invert this line of reasoning and design an algorithm which

concludes from the color variations in the image which processes have taken part in the image formation

process. Unfortunately, the interpretation process is locally ambiguous because the influence of any

optical process causes local color variation.  The algorithm needs to accumulate local color variations

over extended image areas to determine distinguishing characteristics of the processes, such as the

T-shape of a color cluster. But how can the optimal extent of an area be determined?  There seems to be

a circular problem of, on one hand, needing a prior segmentation to relate color variation to physical

processes and, on the other hand, needing an understanding of the physical processes to provide a good
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segmentation.

Conceptually, there are two different ways to approach this problem.  The algorithm may start out with

very large image areas and subsequently shrink or split them until the regions correspond to objects in

the scene.  Alternatively, it may start with small local areas and then merge or grow them. Within the

framework of the Dichromatic Reflection Model, the first method identifies object areas by projecting the

entire image into the color space and then distinguishing between several skewed T’s in the color space.

It may encounter problems when several objects with very similar colors exist in the scene, such that

color clusters from different objects overlap.  This problem is illustrated in Figure 2.  The figure displays

the color histogram of the image in Figure 1, showing a scene of eight plastic objects under white light.

The various clusters overlap significantly.  The second method starts out with small image areas and

merges or grows them, including neighboring pixels or areas that fit the same skewed T. Since local color

variation on flat or dark objects may be similar in magnitude to camera noise, the local approach has to

know how to distinguish camera noise from systematic color variation.  This paper presents an algorithm

that uses this local approach to color image understanding.

Color Figure 1: Scene with eight plastic objects

Color Figure 2: Color histogram of the scene with eight plastic objects

Our segmentation method alternates between generating optical hypotheses from local image data and

verifying whether the hypotheses fit the image (see Figure 7).  The hypotheses relate object color,

shading, highlights and camera limitations to the shapes of color clusters in local image areas.  The

algorithm looks in a bottom-up process for color clusters from local image areas that exhibit the

characteristic features of the body and/or surface reflection processes. When it finds a "promising"

cluster in an image area, it generates a hypothesis that describes the object color and/or highlight color in

the image area and determines the shading and highlight components of every pixel in the area. The

algorithm then applies the new hypothesis to the image, using a region-growing approach to determine

the precise extent of the image area to which the hypothesis applies.  This step verifies the applicability of

the hypothesis.  The physical knowledge embedded in the new hypothesis can be used to split every

pixel in the new image area into its intrinsic body and surface reflection components, as will be shown in

section 6.  The resulting intrinsic images and the hypotheses together instantiate the general concepts of

shading and highlights of the Dichromatic Reflection Model, describing the specific reflection processes

that occur in this part of the scene.

Figure 7: Using an Intrinsic Model for Image Understanding

The physical knowledge from all hypotheses instantiated so far can be used to incrementally adapt the

image analysis steps to the already established knowledge about the scene.  Our algorithm performs its

generate-and-test analysis in several stages, each of which is related to a particular aspect of the

Dichromatic Reflection Model or the sensor model. It starts out with the simplest and most common

aspects and then uses the established knowledge to address the more complicated aspects.  In this

fashion, the algorithm performs the following steps:
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1. Compute an initial, rough description of color variation in local image areas.

2. Generate hypotheses on matte color clusters.  Exploit these hypotheses for image
segmentation.

3. Extend the matte hypotheses into hypotheses on skewed T’s in dichromatic planes.
Resegment the image, exploiting these hypotheses.

4. Analyze the effects of blooming and color clipping.

5. Exploit the hypotheses to split the pixels into their reflection components.

Each of these steps will be described in detail below.

This control structure exploits a physical model of light reflection to incrementally identify local and

global properties of the scene, such as object and illumination colors.  It uses these properties to interpret

the pixels in the images.  By using this control structure, the algorithm can adapt its image interpretation

process to local scene characteristics and react differently to color and intensity changes at different

places in the image.

5.2. Generating Initial Estimates for Color Clusters
To start the image analysis process, our algorithm generates some initial estimates about the color

variations in the image.  These initial estimates are too coarse to be useful as hypotheses without further

considerations. But they form the basis for the formulation of hypotheses about linear and planar color

variation in the next sections.

5.2.1. A Classification Scheme for Local Color Variation

To estimate and classify local color variation in the image, the algorithm divides the image into small,

non-overlapping windows of fixed size.  It projects the color pixels from one window at a time into the

color space and finds the principal components of the color distributions, as indicated by the eigenvectors

and eigenvalues of the covariance matrix of the cluster [1, 10]. The eigenvalues and eigenvectors

determine the orientation and extent of the ellipsoid that optimally fits the data. For convenience, the

eigenvalues are sorted by decreasing size such that a reference to the first eigenvalue corresponds to the

largest one, the second eigenvalue to the medium one and the third eigenvalue to the smallest one.

Principal component analysis is not a new concept in color image segmentation.  Gershon and Ohta

used it to determine optimal color feature axes for a histogram-based, recursive region-splitting approach.

They expected the major principal component to indicate color changes between objects - a color feature

along which they could best separate objects from one another.  Such use of principal component

analysis implicitly assumes that the significant color changes in an image occur at the object boundaries

while color variation within a single object area is minimal.  This is a special case of the dichromatic

framework which we will develop below:  the assumption holds only for matte clusters from dark or flat

objects for which the color clusters from single objects form points or small spheres in the color space -

no linear or even planar color variation on an object is accounted for.  We will now present a more general

investigation of the relationship between the principal components of the color clusters and physical



10

scene properties.

The shape of the ellipsoids provides information which relates local color variation to physical

interpretations. We distinguish between eight classes of ellipsoids, for each of which exist a few physical

interpretations. The classification is based on the number of eigenvalues that are approximately zero,

within the limit of pixel value noise, σ , in the image.  The decision for each eigenvalue is based on a0
2 2χ -test with (n −1) parameters, where n is the window size.  The algorithm then classifies each color

cluster according to how many eigenvalues are determined to be significantly greater than zero.  A

summary of the classification is given in Table 1.

Table 1: Summary of Color Cluster Interpretations

• In zero-dimensional (pointlike) clusters, all three eigenvalues of the window are very small.
No significant color variation exists in such a window and the body and surface reflection
components are nearly constant.  This is the case, if the window lies on a very flat object
such that the photometric angles are nearly constant within the window.  Alternatively, a
pointlike cluster can originate from a matte dark object, independently of the surface
curvature of such object.  In the extreme, a perfectly black object does not exhibit any
shading variation.

• One-dimensional (linear) clusters are clusters for which only the first eigenvalue is
significantly larger than the estimated camera noise.  Pixels in such a window may come
from a matte object area forming part of a matte cluster.  They can also come from the
interior of a highlight area such that they form part of a highlight cluster.  As a third possibility,
the window may overlap the matte object areas of two neighboring objects that are very dark
or flat.  Such a window consists of two pointlike color clusters or of one dark pointlike cluster
and one linear cluster which together fit well into one linear ellipsoid.

• Two-dimensional (planar) clusters have large first and second eigenvalues.  The local color
data fits a plane in the color cube.  Such clusters occur at windows that cover some matte
and some highlight pixels of one object.  In this case, the third eigenvector of the color cluster
determines the normal to the dichromatic plane of the object.  But planar clusters also arise
in windows that overlay matte pixels from two neighboring regions.  Such windows have
planar clusters because the matte clusters of all objects converge at dark pixels such that
matte clusters are pairwise coplanar.

• In three-dimensional (volumetric) clusters, all three eigenvalues are large.  Such color
clusters may arise in the middle of highlights where color clipping and blooming significantly
increase the noise in the pixel measurements. Volumetric color clusters also occur along
material boundaries when three or more objects in different colors share a window or when a
window overlays matte pixels of one object and matte and highlight pixels of another object.

Figure 3 shows the classification of the color clusters from Figure 1, using windows that each contain

10 x 10 pixels. Pointlike clusters are displayed in yellow, linear clusters in red, planar clusters in green,

and volumetric clusters in blue.  The image shows that the classifications relate in the expected way to

scene properties:  most matte object areas are covered by linear windows, while windows at material

boundaries and at highlights are planar or volumetric.

Color Figure 3: Color cluster classification for initial image areas,
scene with eight plastic objects
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5.2.2. Determining Compatible Color Variation

If the window size is chosen appropriately, it is small compared to the sizes of the objects in the scene.

Most windows lie then inside object areas and only few windows overlay material boundaries.  There will

generally be many windows within a single object area.  All linear clusters of such windows indicate the

direction of the same matte or highlight cluster and all planar clusters support the same hypothesis about

a dichromatic plane.  This subsection describes how our algorithm merges such windows to gather

increased support for a small number of estimates about color clusters in the image.

The algorithm merges neighboring windows that have similar color characteristics.  It proceeds in

row-major order, testing for all pairwise combinations of neighboring areas whether the two can be

merged. In order not to merge windows across material boundaries, it only merges windows, if both of
2them, as well as the resulting larger window, have the same classification.  It uses the χ -test described

above to classify the larger window.  Accordingly, it combines windows with pointlike clusters into larger

pointlike windows; it merges linear windows into larger linear windows; and it merges planar windows into

larger planar windows.  It does not merge volumetric color clusters since there is no constraint on the

resulting cluster.  This process continues until no more areas can be merged.  The results are initial

hypotheses about the positions and orientations of pointlike, linear, and planar clusters in color space and

their respective approximate extents in the image.

Figure 4 presents the results of merging neighboring windows of the same class from Figure 1.  The

image shows a few large image areas.  Such image areas correspond roughly to the center of matte

object areas.  They are generally surrounded by many smaller areas close to material boundaries or

highlights. Only very few planar windows in highlight areas have been merged, probably due to the

increased spread of higlight pixels from color clipping and blooming.

Color Figure 4: Initial grouping into approximate image areas,
scene with eight plastic objects

5.3. Linear Hypotheses
In its subsequent steps, our algorithm uses the initial estimates of color clusters to generate and exploit

hypotheses about the existing color variation in the image.  The above discussion and Figure 4 show that

the initial estimates are rather coarse indications of local color variation:  there are far more image areas

than objects and, due to the coarse initial window width, the area boundaries do not coincide with the

material boundaries. We now need to combine neighboring areas at a much finer granularity,

resegmenting the image by considering every pixel on an individual basis.  The algorithm reanalyzes and

combines the estimates of local color variation by selecting suitable initial hypotheses for local color

variation and using them to resegment the image.  The hypotheses relate the color clusters to properties

of the Dichromatic Reflection Model, describing color pixels as matte or highlight pixels or as pixels

showing camera problems.
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5.3.1. Generating Linear Hypotheses

The algorithm starts by choosing large image areas with linear color clusters as linear hypotheses.

Large linear clusters generally correspond to the internal parts of large matte object areas. Such large

areas are less influenced by estimation errors in local color variation than small image areas along

material boundaries and in highlight centers with increased camera noise from color clipping and

blooming. Linear color clusters are also easier to interpret than planar, pointlike or volumetric color

clusters because their first eigenvector describes the orientation of major color variation in the cluster;

information which can be related to a physical interpretation.  The eigenvectors of planar clusters (e.g.: in

areas close to highlights) are less useful because the directions of the first and second eigenvectors are

linear combinations of the directions of several linear clusters (e.g.: of a matte and a highlight cluster).

Their direction does not describe the branches of the skewed T of a dichromatic cluster and they cannot

be related to the physical properties of body and surface reflection.

5.3.2. Exploiting Linear Hypotheses

The merging algorithm of the previous section has used a bottom-up approach to extract information

about the scene from the image.  In a top-down step, we now use a selected hypothesis to locally

resegment the image.  The linear hypothesis provides a model of what color variation to expect on the

object part on which the image area lies.  The mean value and the first eigenvector describe the position

and orientation of a linear color cluster, while the second and third eigenvalues determine the extent of

the color cluster perpendicular to the major direction of variation.  According to the Dichromatic Reflection

Model, color variation along the major axis can be attributed to a physical property of the scene, e.g.: a

changing amount of body or surface reflection or a material boundary.  At this stage, we attribute color

variation perpendicular to the first eigenvector to random noise.  Accordingly, we model the linear color

cluster as a cylinder (see Figure 8).  The radius depends on the estimated camera noise.  Our algorithm

excludes dark color pixels from its color analysis because all matte clusters merge near the dark corner of

the color cube.  By this dark heuristic, the cylinder is delimited at its dark end by a sphere which is

centered at the black corner.

We us the color cylinder of the current hypothesis to locally resegment the image.  The algorithm

selects a start pixel from the image area associated with the color cluster.  This pixel must have a color

that is contained within the color cylinder.  The algorithm then grows a four-connected region from this

starting point, recursively examining the four neighbors of pixels on the fringe of the region, and including

them if their color lies within the color cylinder.  The result is an image area of pixels that are consistent

with the current linear hypothesis.  The boundary of this new region may be very different from the image

area that was intially associated with the linear hypothesis.  Due to the coarse initial window size, the

initial image area may have contained pixels from neighboring objects or highlight pixels with some

amount of surface reflection. Such pixels are excluded from the new region.  The initial window may also

have contained dark pixels in very shaded object areas or - as is the case in Figure 1 - pixels from a dark

background. Due to the dark heuristic, such pixels are also excluded from the new region.  On the other

hand, the initial segmentation may have had several neighboring image areas on the same matte object

part that could not be merged because the characteristics of the color clusters were biased by pixels that
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came from other objects.  Many pixels in such neighboring image areas may lie on the current matte

object part and be consistent with the current linear hypothesis.  They are included into the new image

area. As a consequence, the new region can be significantly different from the initial image area.

Since there is generally more than one object in the scene, the algorithm iterates the above steps for

each large image area with a linear cluster, selecting the areas by decreasing size.  It stops when the

next selected area is too small.  Since all matte clusters converge at dark pixels, there exists a potential

conflict between neighboring matte areas.  The dark heuristic eliminates the most difficult cases; yet, the

cylinders of neighboring clusters may still intersect beyond the selected dark threshold.  This depends on

the cylinder radius and on the angle between the two cylinders.  Neighboring objects with very similar

colors have conflicts even at fairly bright colors.  Our algorithm assigns pixels with a color conflict to the

cluster with the closest axis, as shown in Figure 8.  This is called the proximity heuristic.

Figure 8: Proximity heuristic to resolve a color conflict between the color clusters
of two neighboring matte object areas

In principle, the resulting "linear" regions may be related in any of several different ways to the physical

processes in the scene.  As discussed in section 5.2.1, a linear color cluster may be a matte cluster or a

highlight cluster or even a combination of two clusters across a material boundary.  However, linear color

clusters from highlights and across material boundaries are generally much smaller than clusters from

matte object parts.  Since this section considers only linear hypotheses of large image clusters, the

following sections assume that all newly grown regions correspond to matte linear clusters.

Figure 5 shows the results of selecting and applying linear hypotheses to the image with the eight

plastic objects.  The region boundaries outline the matte object parts in the scene, with the material

boundaries being well observed.  The highlight areas on the objects have not yet been analyzed. This

sometimes divides the matte pixels on an object into several matte areas, as shown on the green donut in

the lower right part of the image.

Color Figure 5: Linear segmentation, scene with eight plastic objects

5.4. Planar Hypotheses
The Dichromatic Reflection Model states that color variations on a single object lie in a plane in the

color space.  The linear hypotheses and the linear segmentation generated so far provide a good starting

point to describe color variation in an image.  But they do not account for the effects of surface reflection.

The hypotheses will now be extended into planar hypotheses that describe dichromatic planes and

skewed T’s.

5.4.1. Generating Planar Hypotheses

In principle, information on color variation in a dichromatic plane may be obtained from inspecting the

characteristics of the initially determined planar color clusters.  However, such information is generally not

very reliable, due to the small size of most planar image areas.  Furthermore, the eigenvectors of such



14

planar clusters do not describe the skewed-T structure of the color cluster because the directions of the

first and second eigenvectors are linear combinations of the directions of several linear clusters (e.g.: of a

matte and a highlight cluster).  Their direction does not describe the branches of the skewed T of a

dichromatic cluster and they cannot be related to the physical properties of body and surface reflection.

Instead of using such planar color information, our algorithm uses the existing linear hypotheses as a

basis describing already one branch of skewed T’s.  It now determines the orientations and positions of

the second branch of the skewed T’s.

In this process, the algorithm considers all neighbors of a linear region as prospective highlight

candidates. Some of such neighboring regions may be matte object areas of neighboring objects while

others may be a part of a highlight on the current object. Such types of regions must be distinguished

from one another such that the algorithm does not wrongly combine color information from two

neighboring matte image areas into a planar hypothesis. To distinguish neighboring matte regions from

highlight regions, Gershon has tested whether two clusters are nearly parallel or whether they intersect,

suspecting that parallel clusters are neighboring matte clusters [7]. We replace this test by the more

precise 50% heuristic of section 3:  the color clusters of a matte and a highlight region on the same object

intersect in the upper 50 percent of the matte cluster, while color clusters from neighboring matte regions

converge at dark pixels.  Accordingly, our algorithm tests whether the two clusters form a skewed T and

meet in the upper 50 percent of the matte cluster. For this purpose, it searches for the brightest matte

point in the color cluster to determine the length of the matte line. However, the matte cylinder may

contain some highlight points from the foothill of the highlight cluster, as shown in Figure 9.  Such

highlight points may be brighter than the brightest matte point.  To distinguish them from matte points, we

exploit the observation that highlight clusters always grow inwards into the color cube, due to the additive

nature of body and surface reflection.  Accordingly, the algorithm chooses the brightest matte point only

from pixels with color values on the outside of the matte line.

Figure 9: Finding the brightest matte pixel

Once the length of the matte line is determined, the algorithm computes the intersection points of the

current matte cluster and of the neighboring prospective highlight cluster.  It uses their color means and

first eigenvectors to describe a matte and a prospective highlight line and to determine the two points on

the two lines that are closest to one another.  Comparing the distance to the camera noise, algorithm

decides whether the clusters meet in a skewed T. Similarly, the algorithm tests whither the clusters

intersect in the upper 50% of the matte cluster.  We also check whether the neighboring cluster has a

positive direction - a test related to the additive properties of body and surface reflection.  If this is not the

case, the window of the highlight candidate probably overlays a material boundary, partially covering

pixels from the current matte region just outside its color cylinder and partially covering pixels from a

neighboring matte region.  Candidates that fail nay of these tests are discarded.

After all these tests, there may still exist several highlight candidates because the highlight on the

object may consist of a series of small windows that had not been merged.  Since many such highlight

areas are very small and since they may contain some clipped and bloomed pixels, the orientations of
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their color clusters may vary significantly.  To select a good representative of the entire highlight, the

algorithm averages the intersection points of all highlight candidates, weighted by the number of pixels in

the regions.  It then selects the highlight region whose intersection point is closest to the average.

Since the surface reflection color of dielectrics is generally very similar to the illumination color, all

highlight clusters are parallel to one another and to the illumination color vector.  As a consequence, all

dichromatic planes intersect along one line, which is the illumination vector.  The algorithm uses this

constraint to further reduce the error in estimating the orientations of the highlight clusters.  It computes

the average direction of all highlight clusters to combine all highlight hypotheses into a single hypothesis

on the illumination color vector.  The algorithm then generates planar hypotheses, combining the existing

linear hypotheses with the direction of the illumination vector, as well as with information on the starting

points of the respective highlight clusters.  Such hypotheses describe the skewed-T shapes of the color

clusters in terms of the positions and orientations of the matte and highlight clusters. The cross product

of the illumination vector and the first eigenvector of a matte cluster determine the normal to the

dichromatic plane of a color cluster. The position of the dichromatic plane in the color space is given by

the color mean.

5.4.2. Exploiting Planar Hypotheses

Starting from the previously generated linear segmentation, the algorithm now resegments the image to

account for the effects of surface reflection on objects.  Applying the planar hypotheses one at a time, it

proceedes iteratively until no more unprocessed planar hypotheses for large image areas exist.

The chosen planar hypothesis describes the position and orientation of a dichromatic plane in the color

space, as well as the shape of the color cluster within the plane.  To account for camera noise, the

algorithm extends the plane into a slice, as shown in Figure 10.

Figure 10: A planar slice

When the algorithm uses the chosen planar slice to locally resegment the image, it starts, in principle,

from the selected matte region and expands it until no more pixels at the region boundaries fall into the

planar slice.  This planar region growing method is augmented with special provisions to handle coplanar

color clusters from neighboring objects.  Such coplanar color clusters occur when the illumination vector

lies in the plane spanned by the matte vectors of two neighboring objects. The color clusters of such

objects lie in the same dichromatic plane and cannot be distinguished in a simple planar region growing

approach. The resulting segmentation would generally be quite counterintuitive since the matte object

colors of objects with coplanar clusters may be very different and even complementary. For example, a

red body reflection vector (255,0,0) and a white illumination vector (255,255,255) span a dichromatic plane

with normal (0, −1/√2, 1/√2). This plane contains all body reflection vectors (r,g,g) for which the

g-component and the b-component are identical. In particular, the plane contains the vector (0,255,255)

which describes a cyan object color, as shown in Figure 11.  In this case, a simple region growing method

would not be able to distinguish a red object from a cyan object.
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Figure 11: Coplanar color clusters

To avoid such segmentation problems, the algorithm exploits the previously gathered knowledge about

existing matte color clusters.  When the planar region growing process encounters pixels from a

previously grown matte region other than the starting region, it only continues growing if the pixel lies

within the matte color cylinder of the starting region.  It thus applies the unrestricted planar growing

criterion only to pixels that have not been previously recognized as matte pixels, while it falls back to the

linear region growing method when matte pixels are concerned.  This reflects the observation that if

several matte areas exist in an object area, separated by highlight regions, all such matte areas form a

single matte cluster.  The algorithm also applies the proximity heuristic described in 5.3.2 to resolve

ambiguities for color pixels at the intersection of dichromatic planes.

Figure 6 displays the results of segmenting the scene using the generated planar hypotheses.  In

comparison to the linear segmentation in Figure 5, the segmented image areas have grown into the

highlight areas.  As a result, the two matte image areas on the green donut - previously separated by a

highlight - are now united.  Due to camera limitations, not all pixels in the centers of the highlights are yet

integrated into the object areas.  This will be discussed and remedied in the next subsection.

Color Figure 6: Planar segmentation, scene with eight plastic objects

5.5. Accounting for Camera Limitations
Unfortunately, real images generally do not fully comply with the Dichromatic Reflection Model.  Among

other things, color clipping and blooming may significantly distort the color of pixels in and around

highlights. As a result, the color pixels in the centers of highlights generally do not fall into the planar slice

defined for the dichromatic plane of an object area.  The planar segmentation excludes such pixels, as

can be observed in Figure 6.

Since color information is so unreliable for these pixels, our algorithm does not use it.  Instead, it uses a

geometric heuristic to include distorted pixels into the region.  Since pixels with distorted colors generally

occur in the middle of the highlight areas, the algorithm starts from highlight pixels and expands the

planar regions into areas that are next to highlight pixels and contain very bright pixels (i.e: brighter than

the intersection point between the matte and highlight cluster).  This heuristic successfully includes

highlight centers with clipped colors into the object areas, while leaving other bright image areas without

neighboring highlight pixels untouched.

Figure 7 displays the results of segmenting the scene while using the generated planar hypotheses

and accounting for camera limitations.  Nearly all pixels in the highlight centers have now been integrated

into the segmented regions, and the image segments correspond quite well to the objects in the scene.  A

few pixels on the highlights have been excluded, due to the heuristic of only integrating very bright pixels.

Any image processing method for filling holes in image segments, such as a region expansion operation

followed by region shrinking [27], should be able to include these pixels.
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Color Figure 7: Final segmentation, scene with eight plastic objects

5.6. Optical Effects Beyond the Scope of the Segmentation Algorithm
Figure 7 shows that some pixels at object boundaries have not been included into the object areas.

These exclusions are related to effects in the scene that are not modeled in the Dichromatic Reflecion

Model, such as shadow casting and inter-reflection between objects.

• A small area in the lower right part of the yellow donut was not included into the large image
segment covering the donut.  The color of these pixels has been significantly altered by
inter-reflection from the orange cup which reflected a part of its body color onto the donut,
influencing the reflected body color of the yellow donut.

• A small area at the upper left edge of the yellow donut has wrongly been assigned to the red
donut above it.  In the original image, this area is covered by a shadow, resulting in very dark
pixel values.  Since the color clusters of the two donuts are already merged at these color
values, the assignment was based on the distance from the two cylinder axes, which
happened to be smaller for the red donut.  Inter-reflection may also have influenced the color
values, biasing them towards the red body reflection vector.

• There is a mirror image of the yellow cup on the side of the orange cup, resulting in yellow
surface reflection.  Such yellow surface reflection is added to the orange body reflection -
which, in addition, has also been influenced by the light reflected from the yellow cup.  As a
consequence, the segmentation does not include these pixels into the region representing
the orange cup.

• Similarly, inter-reflection between the orange and green cup causes a few pixels on the
uppermost planar surface of the polyhedral part of the green cup to be excluded from the
region representing the green cup.

• Finally, some yellow light from the yellow donut underneath the blue donut illuminates the
lower side of the blue donut and influences the surface reflection components of the blue
pixels. The pixel values at the lower boundary of the blue donut thus have a more yellowish
color than the rest of the donut.  This case of inter-reflection was too subtle to be detected by
the algorithm under the chosen width of the planar slice.  Figures 5 and 6 show that such
yellow pixels have been separated from the blue ones in the linear segmentation step but
were merged during the planar segmentation step because the yellow inter-reflection cluster
was close to the dichromatic plane of the blue donut under white light.

There seems to be a good mapping between pixel areas in which our algorithm ’fails’ and object areas

with optical properties outside the scope of the model.  Such results are quite different from ’traditional’

segmentation results for which the algorithm’s perform correctly on some instances of an optical

phenomenon (e.g. highlights) but incorrectly on others (as shown in section 7.2.).

6. Separating Pixels into their Reflection Components
As one application of the above method to analyze and segment color images, we can now use the

gathered information about the color clusters to split every color pixel into its two reflection components.

We thus generate two intrinsic images of the scene, one showing the objects as if they were completely

matte, and the other showing only the highlights.

We have previously reported a method to detect and remove highlights from hand-segmented images

[21, 22]. That method projected the pixels from a selected image area into the color space and fitted a
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skewed T to the entire color cluster, thus determining the body and surface reflection vectors of the area.

Since our new segmentation algorithm already provides this information as a result of its analysis of local

color variations, we can now skip this step.  However, due to possible estimation errors in the

segmentation process and due to camera problems such as blooming and chromatic aberration, the

vectors may not yet fit perfectly.  In order to obtain a more precise fit to the data, we retest every pixel in

the segmented area and label it as a matte or highlight pixel, depending on whether it is closer to the

matte line or to the highlight line.  We then refit the matte and highlight line to the matte and highlight

pixels by determining the first eigenvectors and the color means of the clusters.

The orientations of the corresponding reflection vectors are shown in Table 2.  In principle, the length

of the reflection vectors, C and C , depends on the brightness of the object such that a white and a greyb s

reflection vector have the same orientation but different lengths.  However, it is impossible to determine

these lengths from the color clusters since the length of a cluster depends both on the magnitude of the

reflection curve of the material and on the geometric influence from the photometric angles: a strongly

curved, dark object may produce a color cluster of the same length as a brighter, but relatively flat object.

For this reason, the vectors in Table 2, C and C , are unit vectors, describing only the orientations of theb s

reflection vectors.  The table also provides the average surface reflection vector and an independent

estimate of the illumination color which has been obtained by taking a color picture of a grey chart under

the given illumination. The surface reflection vectors and their average vector are generally close

illumination vector.  This demonstrates that the surface reflection components of dielectric materials have

the same color as the illumination and that the surface reflection vectors from real images can be used to

determine the illumination color - information which is useful for color constancy algorithms [4, 23, 24].

Table 2: Body and surface reflection vectors of the eight plastic objects
under white light

Our algorithm then uses C and C of every segmented region to split the pixels into their reflectionb s

components. Since the physically correct length of C and C is not known, the algorithm can determineb s

the reflection components only up to a scale factor a that depends on the brightness of the material:

~ ~C (x,y) = m C + m C = m C + m C (13)s b s bs b s b

with

||C ||s~m = m ⋅ a , ||C || = 1 =s s s a

||C ||b~m = m ⋅ a , ||C || = 1 =b b b a

To split the pixels into their reflection components, we use C , C and their cross product, C xC , tob s b s

define a new (not necessarily orthogonal) coordinate system in the color cube. This coordinate system
~ ~describes every color in the cube in terms of the amounts of body reflection m , surface reflection m andb s

noise ε. There exists an affine transformation, and thus a linear transformation matrix T, which transforms
T ~ ~ Tany color vector [R,G,B] into a vector [m ,m ,ε] . After computing T from C and C , we can thusb s b s
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transform every color pixel in the image area into its constituent body and surface reflection components,
~ ~ ~m and m . By selecting the m -components of all pixels, we generate the body reflection image of theb s b

~region. By selecting the m -components, we generate the corresponding surface reflection image. Thes

ε-components provide the intrinsic noise image.

Figure 12: Decomposing a color pixel into its constituent body and
surface reflection components

We cannot apply this method immediately to bloomed and clipped pixels since their color is altered by

the sensing process in the camera.  In order to restore the physically correct color of such pixels, we

exploit the observation that in many cases, clipping and blooming occurs only in one or two color bands.

The pixels may thus have correct data in the other color bands.  We assume that the smallest of the three

values of a color pixel comes from a color band without clipping and blooming.  We then replace the

clipped or bloomed pixel by a pixel on the matte or highlight line that has the same value in the

undistorted band (see [22] for a detailed description).

Figures 8 - 10 display the resulting intrinsic images of the scene with the eight plastic objects.  The

images demonstrate that we are able to determine the body and surface reflection components of the

various objects reasonably well.  When evaluated qualitatively, the body reflection image provides smooth

shading across most highlight areas.  We expect that this image may therefore be a useful tool to

determine object shapes from shading information [14]. There exist thin dark rings in the body reflection

image around the highlight on the green donut.  This error is due to chromatic aberration in the camera

[20] which currently limits the performance of our algorithm.

Color Figure 8: Intrinsic body reflection image of the scene with eight plastic objects

Color Figure 9: Intrinsic surface reflection image of the scene with eight plastic objects

Color Figure 10: Intrinsic noise image of the scene with eight plastic objects

The surface reflection image exhibits gradual changes between areas with no surface reflection and

areas with very high amounts of surface reflection, demonstrating that surface reflection is a function of

the photometric angles. The surface reflection images may be useful input for methods that determine

object shapes from highlights [12]. A careful inspection of the surface reflection image reveals that the

surface reflection component also increases at the material boundaries. This effect is related to aliasing

occuring at pixels that integrate light from two neighboring objects.  The colors of such pixels are a linear

combination of two matte object colors.  Depending on the orientations of the dichromatic planes, they

may be included in either of the two object areas in the image, or they may be left unassigned.  If they are

included into one of the object areas, they generally do not lie close to the matte line, thus resulting in

higher surface reflection components.

The intrinsic noise image displays the distance ε of every pixel in an image area from the associated

dichromatic plane, scaled relative to the width of the planar slices and of the cylinders.  Grey pixels

represent color pixels that lie on the dichromatic plane.  Increased noise values are displayed as
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increasingly bright or dark pixels, depending on whether the color pixels lie on the front side or on the

back side of the dichromatic plane.  Very bright or dark areas in the noise image indicate places where

the Dichromatic Reflection Model is not satisfactory in explaining color variation as a mere combination of

body and surface reflection with added random camera noise.  Such areas generally occur at material

boundaries where light from two neighboring objects is integrated into the pixels values. The colors of

such pixels are a linear combination of the two matte object colors of the neighboring objects.  Higher

noise values also occur in the centers of the highlights at clipped and bloomed pixels and at internal

object edges where the surface orientation changes abruptly.  Chromatic aberration causes increased

noise values at the highlight on the green donut in the lower right corner [20]. Finally, large noise values

exist at places of inter-reflection between objects, such as on the yellow donut, between the orange and

yellow cup and on the right half of the green cup.

To illustrate the changing amounts of body and surface reflection more quantitatively, Figure 11

displays the reflection profiles for a row of pixels in the intrinsic body and surface reflection images of the

plastic scene in Figure 1.  It also shows the amounts of noise, ε, at these pixels.  The selected row runs

across the yellow donut, the orange cup and the yellow cup.  The body reflection profile shows that the

highlights have been removed reasonably well from the objects.  Some error was introduced in the body

reflection components of restored clipped and bloomed pixels.  The surface reflection profile consists of a

series of spikes at the positions of the highlights on the objects.  Each spike has the form of a peak which

falls off to the sides, demonstrating the quantiative nature of the highlight analysis.  A few small peaks

exist at the object boundaries.  These are pixels on material boundaries where light from more than one

object is mixed into a single pixels value.  Since such pixels generally do not lie close to the matte line,

they generate a disproportionately high surface reflection component.

Color Figure 11: Profiles of the intrinsic reflection images along row 226, plastic scene

7. Discussion
The previous sections have presented an approach to color image understanding that exploits the

Dichromatic Reflection Model.  The description of the algorithms was accompanied by a few examplary

results that demonstrated how the algorithm performs on real images.  This section now presents more

results and discusses strengths, limitations and extensions of the approach.

7.1. Further Results
We have tested our algorithm on a series of color images of scenes with dielectric objects under

varying illumination conditions.  The upper left quarters of Figures 12 - 14 show the images of three

plastic cups under yellow, white and pink light.

Color Figure 12: Color image segmentation and reflection analysis,
scene with three plastic cups under yellow light

Color Figure 13: Color image segmentation and reflection analysis,
scene with three plastic cups under white light
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Color Figure 14: Color image segmentation and reflection analysis,
scene with three plastic cups under pink light

The upper right quarters of the figures display the segmentations that were generated by our algorithm.

They demonstrate that our segmentation method performs well on a variety of dielectric materials under

varying illumination conditions. In all images, the segmentations outline the material boundaries of the

objects very well.  Because the algorithm models matte and highlight color variations as physical

reflection processes, it ignores color changes along highlight boundaries and it also tolerates shading

changes on the objects.

The lower quarters of Figures 12 - 14 show the intrinsic reflection images that were generated using

the body and surface reflection vectors of Tables 3 - 5.  The intrinsic images demonstrate that our

algorithm detects and removes highlights well on a variety of dielectric materials under varying

illumination colors.  When evaluated qualitatively, the body reflection vectors have reasonable

orientations and the body reflection images generally describe smooth shading across the highlight area.

The surface reflection images in the lower right quarters show that the highlights from the original images

have been detected well.  The surface reflection images exhibit gradual changes between areas with no

surface reflection and areas with very high amounts of surface reflection, demonstrating that surface

reflection is a function of the photometric angles.  The surface reflection vectors in Tables 3 - 5 are

generally reasonably close to the estimated illumination colors.  The reflection images may be a useful

tool to determine object shapes from shading or from highlights while the surface reflection vectors can be

used in color constancy algorithms as an indication of the illumination color.

Table 3: Body and surface reflection vectors of the three plastic cups
under yellow light

Table 4: Body and surface reflection vectors of the three plastic cups
under white light

Table 5: Body and surface reflection vectors of the three plastic cups
under pink light

7.2. Comparison with a Traditional Color Image Segmentation Method
Figure 15 shows the results of applying a traditional color segmentation method to Figure 1.  It has

been obtained by using Phoenix [31], a segmentation program that recursively splits color images into

smaller regions until the regions are homogeneous.  To decide how to split regions, Phoenix uses a set of

user-defined color features, such as R, G, B, intensity, hue, saturation, etc., each of which is encoded as

a separate image band.  When a region is considered for further splitting, Phoenix generates for every

feature a histogram of all pixels in the region and looks for distinctive valleys in the histograms.  It then

splits the region according to the feature with the most prominent valley.  If it cannot find a significant

valley in any feature histogram, it decides that the region is homogeneous. Phoenix is one of a class of

’Ohlander-style’ color image segmentation methods which all recursively split the image into segments by

seeking for valleys in histograms of some color features.  Extensions to the original method [25] centered

around determining the color feature axes dynamically through principal component analysis [6, 26] rather
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than by user input.  We compare our results with Phoenix results since this system is available to us.

Color Figure 15: Region segmentation by Phoenix,
scene with eight plastic objects

Figure 15 was generated by running Phoenix on three features:  intensity, hue and saturation (IHS).

The IHS color features are often used to describe human color perception. We chose this color basis,

because our sample scene is composed of objects with relatively few, quite distinct hues, and a

comparison on this basis seemed more favorable to Phoenix than a comparison on the RGB-basis.

Some of the highlights in Figure 15 are separated from the surrounding matte object parts while other

highlights are integrated with the matte areas. In addition, the matte areas are sometimes split into dark

and bright areas, as can be seen on the right half of the green cup, as well as on the dark red donut and

on the green donut.  It is not easy to predict how Phoenix will perform on a given image because its

decisions are not directly related to the influences of physical processes.  Phoenix uses a pre-defined,

fixed set of color features.  It measures color variation only in relationship to these features and segments

image areas using only one feature at a time.  Projecting the color information from a three-dimensional

color space to a one-dimensional feature space, Phoenix looses most of the information about the three-

dimensional structure of the color variation.

In comparison to Phoenix, our color cylinders and dichromatic planes capture color variations in a

much more flexible way.  The color cylinders and planes of the linear and planar hypotheses are

determined by analyzing color clusters in their three-dimensional structure.  Their position and orientation

is independent of a chosen coordinate system in the color space, as well as of a user-defined set of

features. Consequently, linear and planar hypotheses can be expected to capture color variation on

objects much better and to generate better segmentations of the objects, possibly even under ambient

light [34]. This is evident when Figure 15 is compared with Figures 5, 6, and 7.  Since the linear, planar

and final segmentations account for shading variation on matte object areas, for highlight reflection and

finally for camera limitations, they include all matte and higlight pixels, as well as bloomed and clipped

pixels into a single object area.

7.3. Control Parameters
We use a few control parameters and simplifying heuristics when we analyze color images.  They are

related to camera limitations, as well as to the limitations of color information and to the basic

assumptions of the Dichromatic Reflection Model.  This subsection shows the influence of the parameter-

settings on the performance of our algorithm while the following subsections discuss the influence of the

heuristics and the principle limitations of the dichromatic theory.

The control parameters, as well as the parameter values that were chosen to generate the results

above, are listed in Table 6.  It seems that most of the parameters are related in quite an intuitive way to

the camera limitations and to the reflection model and that they are thus relatively easy to set.

Table 6: Control parameters of the algorithm
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• Clipping Threshold and Noise Density:
The clipping threshold and the noise density parameter are related to the limited dynamic
range of cameras.  The density parameter expresses a heuristic to discard bloomed pixels
(see section 4 and [22]).

• Camera Noise:
σ describes the estimated camera noise of the camera.  We estimate it by repeatedly taking0
a black-and-white picture of a white board, measuring the intensity of the center pixel and
then computing its statistics. σ corresponds to twice the value of the standard deviation σ of0
these measurements such that the integral of the Gaussian curve in the range [µ−σ , µ+σ ]0 0
describes about 96% of all measurements.

• Minimal Intensity:
To avoid conflicts in dark image areas where matte clusters overlap, dark pixels are excluded
from the color analysis by setting a threshold for minimal intensity.  If this threshold is too low,
color clusters from neighboring objects overlap beyond the threshold and bleeding may occur
between the image areas.  If, on the other hand, the threshold is unnecessarily high, color
clusters of dark objects may have lost most of their matte cluster such that their body
reflection vectors can no longer be estimated reliably.

• Cylinder Width:
Due to inter-reflection and other optical effects in real scenes for which the Dichromatic
Reflection Model does not account, the matte color clusters generally are not perfectly
cylindrical. For such reasons and also because of possible estimation errors in the direction
of the color vector, our algorithm needs to use fairly thick cylinders and planar slices to
include most of the pixels on an object into the segmented area. The drawback of
unnecessarily thick cylinders and planar slices is a loss of sensitivity to the color properties of
the image.

• Initial Window Size:
The algorithm also depends on the window size in the initialization step of the algorithm.  If
the windows are too large, many of them overlap several objects, and many local color
clusters are classified to be volumetric.  If, on the other hand, the windows are too small,
color variation on a relatively flat or dark object cannot be detected and the color clusters of
such windows are classified as pointlike clusters. The intitialization step then does not
provide sufficient information to the subsequent steps of generating and applying linear or
planar hypotheses.

• Minimal Area Size:
In order to first concentrate on matte object areas - which are easier to analyze - our
algorithm currently inspects only color clusters of image areas beyond a minimal number of
pixels. It assumes that linear color clusters of such image areas represent matte branches of
skewed T’s and it subsequently tries to find the related highlight branches.  In principle,
however, linear color clusters can also exist in highlight areas or at material boundaries.  The
size of such highlight areas with linear color properties depends on the surface curvature of
the object.  Thus, if the selected threshold for the minimal area size is too low, highlight areas
of flat objects are selected as candidates for matte branches of skewed T’s.  If, on the other
hand, the threshold is too high, small objects in the scene cannot be detected.

Table 6 shows that most of the parameter settings were fairly constant for all images.  Slight

adjustments had to be made in a few cases.  The changes were triggered by the changing illumination

color in the scene and the resulting change in contrast in the color images.  A detailed case study

showing color pictures of different parameter settings is given in [20]. It may be possible to automatically

select - or even to locally adapt - the values of some of the control parameters, such as the window size,

the cylinder width and the area size.  We expect that such learning mechanisms fit well into the generate-

and-test control structure of our algorithm and into our strategy of starting with the simplest image areas
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and then progressing into areas where a more complex (or less conservative) analysis is required.

7.4. Simplifying Heuristics
Our algorithm relies on a few simplifying heuristics.  They are all related to the problem of determining

the structure of a color cluster.  Our algorithm currently works with a built-in, very rigid model of what color

cluster shapes to expect, assuming that clusters always consist of two linear subclusters that form a

skewed T. We now discuss these heuristics.

• Large Linear Clusters are Matte Clusters:
As discussed above, the algorithm assumes that linear hypotheses from large image areas
describe matte pixels on an object.  This heuristic depends on the curvature on the objects in
the scene, as well as on their distance from the camera.

• Color Clusters have Only One Highlight Branch:
When the algorithm selects a surface reflection vector from a list of highlight candidates, it
implicitly assumes that the clusters of all highlight candidates are part of the same highlight
cluster. This may not be the case for convex objects.  The two planar faces in Figure 13
each reflect a highlight into the camera.  The incidence angle between the illumiation ray and
the surface normal is larger at point P than at point P . Accordingly, the body reflection1 2
component under the highlight at P is smaller than the body reflection component under the1
highlight at P and the two highlight generate two separate highlight clusters in the2
dichromatic plane.

• 50%-Heuristic:
The 50%-heuristic also makes limiting assumptions on the scene.  It has only been evaluated
so far for spherical objects that were illuminated and viewed from the same distance.
Different conditions may exist on cylindrical, elliptical or planar objects.  The heuristic does
not apply to convex objects since, on such objects, the brightest visible matte point may lie
on one surface while the highlight is on another surface with different illumination conditions.
The highlight may then start at an arbitrary place on the matte line.

Figure 13: Cluster shapes for concave objects

7.5. Limitations of the Dichromatic Theory and Extensions
The Dichromatic Theory imposes some limitations on our approach. Since we attribute any linear color

variation to the changing illumination geometry of a single material, we are unable to find material

boundaries between objects with collinear matte clusters.  We will need a geometrical analysis, linking

intensity gradients to object shape, to distinguish between such objects.  The same will be needed to

analyze dark image areas which are currently exluded because their color information is too unreliable.

The model also makes simplifying assumptions about the illumination conditions and the materials in

the scene.  A color cluster from an object in an unconstrained scene will generally not be a skewed T

composed of linear subclusters because the illumination color may vary on different parts on the object

surface, and the reflection properties of the object may also change, due to illumination changes and to

pigment variations in the material body.  The necessary extensions to the model will be the subject of

future work.

Furthermore, our method to split color pixels into their reflection components (but not the segmentation)

relies on a characteristic color change between the matte object color and the highlight color.  There
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needs to be a certain angle between the orientations of the body and surface reflection vectors of an

object. How big the angle needs to be depends on the cylinder width.  If the matte and highlight clusters

are approximately collinear, we cannot separate the reflection components.  This is the case, if an object

has the same color as the light source or if the object is a uniform reflector, such as grey objects or pale

pastels. We also have problems when one of the two linear clusters does not exist or is very small for an

object. The matte cluster is missing, if the viewed object is very dark, or if the scene is illuminated with a

narrow-band illuminant that does not overlap with the wavelengths at which the material reflects light.

Matte clusters also do not exist for metallic objects.  On the other hand, the highlight cluster may be

missing, if an object does not reflect a highlight into the camera, due to its position in the scene and the

illumination geometry.  As a third case, we need to consider objects with very rough surfaces such that

every pixel in the image area has both a significant body and surface reflection component. The color

cluster may then fill out the entire dichromatic plane.  A common special case of this are so-called "matte"

or "Lambertian" materials - as opposed to glossy materials - which reflect a constant amount of surface

reflection in every direction and thus never exhibit a highlight in the common sense of the word.  The

corresponding color clusters are linear clusters, translated from the origin of the color space according to

the constant surface reflection component.  Our current method is not capable of distinguishing between

all these cases.  In combination with exploiting previously determined scene properties, such as the

illumination color, we will need to analyze the intensity gradients along the linear axes and relate them to

the properties of m and m , as described in a geometrical model of light reflection.s b

The Dichromatic Reflection Model also makes several simplifying assumptions which restrict the

illumination conditions and the materials in the scene.  Because of these assumptions the model can

currently only be used to understand scenes taken under very restricted conditions.  The results of using

the reflection model in analyzing real images, such as the image in Figure 1, have shown that even

images of carefully selected scenes often contain areas in which the model does not apply (see Figure

10). To provide a broader applicability of the method, the model needs to be extended to account for

more physical processes, especially for more general illumination conditions.  Inter-reflection and

shadow-casting between objects exist in nearly every moderately complicated scene.  Furthermore, many

realistic scenes will contain more than a single, point-like light source.  There will generally be some

amount of ambient light and possibly even several light sources that shed differently colored light onto the

scene. A first step in the direction of modeling more complicated illumination conditions has been

suggested by Shafer and others [3, 30], adding a constant color term to the reflection model to account

for ambient light.  Tong and Funt have presented promising first results on analyzing real images with

ambient light [34]. Their results indicate that the extended Dichromatic Model is appropriate for

describing color variations under direct and ambient light.  We expect our segmentation algorithm to be

applicable to images taken under such illumination conditions.  Since ambient light adds a constant

amount of light to each pixel in an object area, it translates the entire color cluster away from the origin of

the color space - without any change to the shape of the cluster.  The principal component analysis

captures the effect of translational color transformations in the mean color value of the cluster.  Our

segmentation algorithm uses both the color mean and the principal directions for positioning color
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cylinders and color planes in the cube and thus should work as well under ambient light as it does

without. However, the intrinsic reflection images are now presenting more complicated body or interface

reflection processes since they are influenced by two types of illumination.  The ambient light (a constant)

may have to be subtracted out before a shape-from-shading or a shape-from-highlights method can be

applied.

8. Conclusions
In this paper, we have demonstrated that it is possible to analyze and segment real color images by

using a physics-based color reflection model. Our model accounts for highlight reflection and matte

shading, as well as for some characteristics of cameras.  By developing a physical description of color

variation in color images, we have developed a method to automatically segment an image while

generating hypotheses about the scene.  We then use the knowledge we have gained to separate

highlight reflection from matte object reflection. The resulting intrinsic reflection images have a simpler

relationship to the illumination geometry than the original image and may thus improve the results of

many other computer vision algorithms, such as motion analysis, stereo vision, and shape from shading

or highlights [5, 12, 14, 33]. Since the surface reflection component of dielectric materials generally has

the same color as the illumination, we can also determine the illumination color from the intrinsic surface

reflection image, information which is needed by color constancy algorithms [4, 13, 23, 24].

The key points leading to the success of this work are our modeling of highlights as a linear

combination of both body and surface reflection and our modeling of the camera properties.  With few

exceptions [4, 6, 23, 28], previous work on image segmentation and highlight detection has assumed that

the color of highlight pixels is completely unrelated to the object color.  This assumption would result in

two unconnected clusters in the color space:  one line or ellipsoid representing the object color and one

point or sphere representing the highlight color.  Our model and our color histograms demonstrate that, in

real scenes, a transition area exists on the objects from purely matte areas to the spot that is generally

considered to be the highlight.  This transition area determines the characteristic shapes of the color

clusters which is the information that we use to distinguish highlight boundaries from material boundaries

and to detect and remove highlights.  This view of highlights should open the way for quantitative shape-

from-gloss analysis, as opposed to binary methods based on thresholding intensity.

By modeling the camera properties, we are able to obtain high quality color images (through color

balancing and spectral linearization) in which most pixels maintain the linear properties of light reflection,

as described in the Dichromatic Reflection Model.  We can also detect most distorted color pixels in an

image and thus generate an intrinsic error image which then guides our algorithm to separate only

undistorted color pixels into their reflection components.  We expect that the intrinsic error image will be

similarly useful in guiding other computer vision algorithms, such as shape from shading. It may also

enable us to automatically control the camera aperture so that we can obtain color images with minimal

clipping and blooming.

Our hypothesis-based approach towards image analysis may provide a new paradigm for low-level
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image understanding.  Our method gains its strength from using an intrinsic model of physical processes

that occur in the scene.  The result are intrinsic images and hypotheses which are closely related in their

interpretation to the intrinsic model, being instantiations of concepts formulated in the model.  Our system

alternates between a bottom-up step which generates hypotheses and a top-down step which applies the

hypotheses to the images.  Our analysis thus consists of many small, complete interpretation cycles that

combine bottom-up processing with feed-back in top-down processing.  This approach stands in contrast

to traditional image segmentation methods which do not relate their analysis to intrinsic models and that

also generally have a strictly bottom-up control structure.  We feel that many low-level image

understanding methods such as shape-from-x methods, stereo and motion analysis may be viewed and

approached under this paradigm.  We hope to extend our approach into a more complete low-level image

analysis system which combines color analysis with a geometrical analysis of the scene, exploiting the

body and surface reflection images.  Along these lines, we may generate hypotheses about object

shapes and about the object materials (see [13]). The highlight image may also provide strong evidence

for the position of the light source.

Although the current method has only been applied in a laboratory setting, its success shows the value

of modeling the physical nature of the visual environment.  Our work and the work of others in this area

may lead to methods that will free computer vision from its current dependence on statistical signal-based

methods for low-level image analysis.
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