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Abstract. Direct application of conventional models for sub-voxel edge
detection to modalities with intricate image formation like MRI results
in systematic edge dislocations on a sub-voxel scale (edge aberration). By
quantitative experimental analysis of this effect, a simple correction term
can be calibrated, which is demonstrated to improve edge localization
precision by a factor of 2.5 to surpass voxel size by 2 orders of magnitude.

Kurzfassung. Die direkte Anwendung herkémmlicher Modelle zur Sub-
voxel-Kantendetektion auf Modalitdten komplizierter Bildentstehung wie
MRT fiihrt zu systematischen Kantenpositionsfehlern im Subvoxelbereich
(Kantenaberration). Mittels quantitativ-experimenteller Untersuchung
dieses Effekts kann ein einfacher Korrekturterm bestimmt werden, wel-
cher die Kantenlokalisierungsprézision um den Faktor 2.5 auf 2 Groflen-
ordnungen iiber der Voxelgrofle zu verbessern gezeigt wird.
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1 Introduction

In raster image formation, a continuous so-called underlying function p is dis-
cretized into an image function f which maps voxels to (for example) grayscale
values. Following a widely-used formulation, f is determined by

f(z) =[Axp](z) at « being a voxel center, (1)

where, via the convolution *, A(z), called vozel aperture (VA), plays the role of
a weighting and averaging function for p, thus substantially determining (small
scale) image semantics—besides the nature of p and imaging geometry.

Due to the convolution with A, an underlying function p exhibiting an edge
separating two regions within one voxel generally results in some intermediate
gray value for this voxel. This so-called partial volume effect can be exploited
to locate the edge in p more accurately than the grid resolution of f, which is
referred to as sub-pizel or sub-vozel edge detection (fig. .

However, such techniques assume an ideal case where A is a boxcar function
and its carrier is the voxel itself. Their application to differently formed im-
ages (non-box A) such as MRI datasets therefore is in principle erroneous, but
common practice. In this paper, we shall assess the systematic sub-voxel edge
dislocations thereby introduced (edge aberration) and present a simple heuristic
correction.

State of the Art. Initially, sub-pixel edge detection has been developed regardless
of a specific application [I]. It proved to be very useful and accurate in optic,
notably aerial, imaging [2], where image formation is close to the ideal case.

In MRI, sub-voxel edge detection techniques are typically employed for seg-
mentation of small structures like knee cartilage [3/4] and the brain [5]. Also,
edge enhancing filters may implicitly perform sub-voxel edge detection [6].

In these contributions, an MRI-specific VA is taken into account only in [5],
albeit in the form of simple filtering of a super-sampled putative segmentation
in a discrete domain. The authors of [6] explicitly assume a box-shaped VA.

Implicitly or explicitly, sub-voxel edge detectors first locally fit an edge model
to the discrete image f or the discrete gradient image V f, thus estimating a
piecewise-continuous approximation of p [I] or Vp [3/4], often consisting of a

Fig. 1. Sub-pixel edge points extracted from 2D images.

Left. Synthetic 2D straight step edge sampled using box voxel aperture.

Right. MRI slice of edge phantom (planar bottom of water-filled container; voxel
dimensions 0.27 x 0.27 x 3mm?, magnetic field strength 1.5 T, 3D FLASH sequence,
Siemens “Sonata” scanner) exhibiting slight wave-like systematic edge dislocation.
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polynomial [I4]. The approximation is then analyzed and (up to) one edge
point for each voxel is computed [IJ2I4], or contours are optimized based on the
approximation [3U5].

All cited edge-point and contour techniques for volume data use a slice-by-
slice approach, in which edges are located in 2D slices and assembly of surfaces
in the volume constitutes a post-processing step.

2 Materials and Methods

Applying our previously-reported edge detector [4] to MRI slices of an edge phan-
tom, we evaluate the difference in measured edge locations when the phantom
is moved by fractions of a voxel along one of the image axes. This leads us to a
correction term for (1D) locations of single edge points, extrapolatable to 2D.

In what follows, we shall w.1l.0.g. assume x = 0 at the center of the voxel
under consideration and unit voxel width, denoted 1 vx.

Edge Detection Algorithm. The employed 2D edge detector [4] first computes
the gradient image g(x) = ||V f(x)|| via the Sobel operator. Next, g is locally
approximated in every voxel’s 3 x 3 neighborhood by a second-order bivariate
polynomial §(x). Let §(¢) denote § evaluated along the straight line given by
the local image gradient, parameterized in t. Then if §(¢) has a local maximum
inside the voxel under consideration, the location of the maximum is accepted
as an edge point. Thus up to one edge point per voxel is obtained (fig. .

Quantification of Systematic Errors and Error Correction. Practical considera-
tions led us to an experimental setup in which the phantom is fixed in the scanner
and the scanner’s field of view (FOV) is moved by small offsets Az. While this
facilitates relative positioning of the phantom with respect to the FOV, the true
position of the edge, x, remains unknown.

However, we can extract edge positions z,; and z2 from the image before
and after the translation of the FOV. We define Az, = 22 — £m1 and x,, =
(Tm1 + Tm2)/2. As the error in Az, is small and has a component systematic
in z,, we can view the ratio f = Az /Az,, as a “function” of z,,,. We observe

Tm

= () %[05 B(xm)dey, — 0.5vx ,  (2)

Az N dx
Az, dag

B(rm) =

which gives us a correction function for measured edge positions z,,. We call
a(rm) = 2(zm) — xm the additive correction term to .

Using the normalized local image gradient (ny,ny) = Vf(z,y)/ ||V f(z, )],
a measured 2D edge point (zm,ym) can be corrected via

(#,9) = (zm + nxa(sgn(n)em), ym + nya(sgn(ng)ym)) (3)
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Measurements. A test tube filled with Gd-based contrast agent served as edge
phantom, producing a disk in MR slices. 6 volume datasets of 8 slices each
were aquired with a Th-weighted fat-saturation spoiled spin-echo 2D sequence
in a Siemens “TrioTim” 3T whole-body scanner with an 8-channel knee coil. In
successive acquisitions, the FOV was translated by about 0.1 mm in-plane along
x (row direction, phase encoded), while the phantom remained fixed. Voxel size
was 0.625 x 0.625 x 3mm? at 3mm slice thickness, T = 11ms, Tg = 3.5s, and
SNR = 141. Ground-truth data for Az was obtained from the center-of-mass
shift of the noise-corrected slices.

First, 3 slices of each volume were analyzed. From each slice, 3 voxel rows
perpendicular to the border of the tube were selected, where x-coordinates of
the edge points from the left and right border of the tube were taken for each of
the 6 FOV positions (fig. . For each of the 3 voxel rows in each of the 3 slices,
5 edge offsets for Az ~ 0.1 mm, 4 offsets for Az =~ 0.2 mm, and so on down to 1
offset for Az ~ 0.5 mm were thus measured, for left and right edges respectively.

Next, the measured offsets for Ax =~ 0.1 mm were used to approximate a
correction function according to eq. . Applying this, the remaining 5 slices
were analyzed in a similar fashion to evaluate the correction technique.

3 Results

Plotting the ratio 8 against the measured intra-voxel position x,, clearly reveals
a systematic component that can be fitted by a polynomial. For this study,
we find an additive correction term a(zy,) = 21.32,7 + 1.462,° — 10.92,,° —
0.3012,* + 1.132,,3 — 0.08302,,% + 0.06772,+ 0.0168, with a and , in vx. (See
fig. B}

Edges to which the correction has been applied are shown in fig. The
smoothing effect visible in the figure indicates that precision has been increased.

Fig. 2. Edges extracted from one slice at the
left side of the phantom in 6 different positions
(detail). The slice from which the rightmost
edge was extracted is shown in the background.
Edge points used for calibration and quantita-
tive evaluation marked : .

Left. Edge points as returned by the edge de-
tector.

Right. Heuristic 2D edge point correction ac-
cording to eq. () applied.

Smoother edges when corrected demonstrate
improved precision after correction.
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In numbers, we find an RMS absolute error in edge offset measurement for
arbitrary displacements of 0.039 vx before and 0.016 vx after correction. The
overall average signed offset error is 0.0022 vx and —0.0024 vx before and after
correction, respectively. Fig. |4 shows the error distribution for different offsets.

4 Discussion

Although [5] addresses the MRI-specific VA in simulation of MR images, both
MR physicists and the computer vision community seem to be unaware of the
effective VA in MRI and the assumed VA in edge detection not coinciding—
clearly a semantic mismatch of image formation and image analysis.

‘We have shown the resulting errors to be systematic and in principle amenable
to correction by means of a simple additive term to the edge detector, calibrated
by measurement of an edge phantom. Our focus was not on building a robust
edge detector, and neither did we devise a generally-valid formula. Also, noise
as well as the heuristic extrapolation from 1D to 2D demand further attention.

The proposed correction technique does not significantly change overally ac-
curacy of about 1/500 vx because it is unaffected by edge aberration due to quite
balanced over- and underestimation (fig. [3]). Promisingly however, precision of
offset measurement is improved by a factor of 2.5, resulting in an estimated single
edge localization precision of 0.016 vx/v/2 = 0.011 vx = 6.9 ym which is 2 orders
of magnitude better than the image grid and much closer to ground-truth preci-
sion than before correction (fig. . This is most relevant for applications relying
on single edge points, e. g. for detection of subtle changes in local thickness.

It should be noted that the proposed technique, as every single-edge detec-
tion technique, requires a certain minimal distance of edges to one another, i.e.

L3 - 1 Fig. 3. Calibration of edge cor-
12 4 rection term. Plots against mea-
11 L ,/_\\ | sured intra-voxel position xm,
L / N\ oriented along image gradient.
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thickness of structures. This—in our case—2-vx radius around each edge point
(1vx from the Sobel operator and the bivariate quadratic approximation each)
is assumed to contain constant gray values except for the edge to be detected.
Strictly speaking, an image model incorporating two edges (see, e. g., [2]) would
be required for structures thinner than 3vx (accounting for grid-relative posi-
tioning effects).

In terms of clinical applications, we believe this technique to be most help-
ful for high-precision tissue morphology analysis in the early stages of slowly
progressing deseases. Also, it might prove useful in adapting implants to the
patient’s anatomy.
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