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Abstract

This paper presents a new algorithm for reducing the minimal surface bias
associated with volumetric graph cuts for 3D reconstruction from multiple
calibrated images. The algorithm is based on an iterative graph-cut over nar-
row bands combined with an accurate surface normal estimation. At each
iteration, we first optimize the normal to each surface patch in order to ob-
tain a precise value for the photometric consistency measure. This helps in
preserving narrow protrusions with high curvature which are very sensitive
to the choice of normal. We then apply a volumetric graph-cut on a narrow
band around the current surface estimate to determine the optimal surface in-
side this band. Using graph cuts on a narrow band allows us to avoid local
minima inside the band while at the same time reducing the danger of taking
”shortcuts” and converging to a wrong ”global” minimum when using a wide
band. Reconstruction results obtained on standard data sets clearly show the
merits of the proposed algorithm.

1 Introduction
Reconstructing the shape of an object given a set of calibrated input images is a topic
which has been extensively studied in the computer vision community as recently sur-
veyed in [21]. A first class of methods reconstruct the visual hull of the object [26, 17,
5, 18]. These methods exclusively use silhouette information; consequently, they do not
recover the concavities of the shape. A better shape reconstruction can be obtained using
voxel-coloring or space carving which take the photometric consistency of the surface
across the input images into account and allow the recovery of the photo-hull that con-
tains all possible photo-consistent reconstructions [22, 16, 15, 25]. This approach works
well in general; unfortunately, if a voxel is wrongly carved, it cannot be restored in later
iterations. This can lead to the carving of the whole neighboring region (if not the whole
volume). In addition, since space-carving is a greedy approach, it is hard to enforce
smoothness constraints on the reconstruction. Another class of methods optimizes the
surface integral of a consistency function over the surface shape. One way of minimizing
this cost function is the variational/level set formulation [4, 11, 20]. In this formulation



the surface is iteratively deformed using a gradient descent method. It is also possible to
add regularizers to the cost function, such as smoothness constraints. However, being a
local method it can fall into a local minimum. A second way of minimizing the surface
integral is to use graph cuts [1, 24, 29, 2, 6, 13, 19, 27, 31, 12, 23]. One problem is
that the cost function which is minimized is a minimum surface functional and hence the
global solution is biased towards smaller shapes. Therefore, the global minimum might
not correspond to the actual surface. This is also true for level set methods, but due to
the local convergence properties of level sets, the effect is not as strong as in the case of
graph-cuts. In practice this leads to the carving of narrow protrusions, since the graph-
cut solution prefers shorter cuts over long cuts. This problem has been addressed by
incorporating silhouette constraints [24, 27, 6, 23] or adding a ballooning term [29, 12].
However, using silhouette constraints is only viable when exact silhouettes are available
and a global ballooning term has the side effect of also pushing out concave regions of the
object. In addition to the optimization method, the photometric consistency measure and
its accurate computation also play an important role for the quality of the reconstruction
results. In fact, an incorrect estimation may lead to overcarving the volume and eliminat-
ing protrusions.

In this paper, we propose a method to reduce the bias of graph-cuts for smaller cuts
without requiring exact silhouette images or using a ballooning term. To this end, we use
iterative volumetric graph-cuts over narrow bands to minimize the influence of shortcuts
on the reconstruction coupled with an exact normal optimization for each surface patch
which is used to compute an accurate photoconsistency score. It is through this combina-
tion that we are able to avoid the overcarving of narrow protrusions. Using each technique
by itself does not avoid the overcarving. Using only narrow bands still allows overcarving
when the photoconsistency score is incorrectly estimated, while using an exact photocon-
sistency score in a wide band also has a high probability of overcarving, because of the
high variation in possible path lengths (see figure 1(a)). At each iteration, we first com-
pute the visibility of the current surface estimate and optimize the normals to the surface
in order to obtain a precise value for the photometric consistency measure. Then, we ap-
ply a volumetric graph-cut in order to determine the optimal surface inside a narrow band
around the current surface estimate. The band size can be adjusted to achieve a tradeoff
between the ability to overcome local minima and the ability to preserve protrusions by
discouraging shortcuts. We show that iteratively searching for the correct orientation of
the surface and considering narrow bands is able to deal with the graph-cut’s inherent bias
for smaller shapes without requiring a ballooning term or exact silhouettes. Thereby our
algorithm reduces problems with overcarving and preserves protrusions of the surface.

2 Related Work
The use of graph-cuts on narrow bands was proposed by Xu et al.[30] in the context of
image segmentation. Hornung et al.[13] suggested the use of hierarchical iterated graph-
cuts for 3D reconstruction. However, using graph-cuts on narrow bands alone does not
necessarily preserve protrusions. Another important aspect is the exact computation of
the surface consistency score. This is typically performed by computing the NCC of a
small patch in the tangent plane of the surface over several images. A critical aspect
in this computation is the choice of the normal. The current surface estimate given by



the graph-cut is not well-suited to determining accurate normals to the surface due to
the discretization. In addition, the current surface estimate can be quite different from
the actual surface. Therefore it is not sufficient to only evaluate the consistency measure
using the normal given by the current surface. Instead it has to be optimized in order to
find the most consistent normal over all input images in which the surface point is visible.
This helps significantly in determining correct consistency values even for high curvature
regions which cannot be well represented on the voxel grid. The concept of optimizing
the surface normal appeared in other work related to 3D reconstruction [8, 7, 9, 10, 32].
Habbecke and Kobbelt [9, 10] use a normal optimization in order to find the orientation
of 3D patches which are combined to approximate the surface. A similar idea is used by
Furukawa et al. [7]. Both of these assume a reference patch with respect to which the
normal is optimized. This is in contrast to our work which does not assume a reference
view. None of these consider the use of normal optimization in conjunction with narrow
band graph-cuts.

Prior work related to reducing the minimum surface bias in graph-cut reconstructions
uses either a ballooning term [29, 2, 28, 12] or includes silhouette constraints [27, 6,
23]. The use of a global ballooning term as suggested in [29] has the drawback of also
affecting concavities. It is often not possible to find one single value which achieves
the desired effect of preserving protrusions and not affecting concavities. Hernandez et
al. [12] use an intelligent ballooning term which is based on the evidence of regions
being inside or outside the volume. This yields improved results over using a global
ballooning term. Boykov et al. [2] use the photoflux as an intelligent ballooning term
to drive the reconstruction towards the object boundaries, thereby allowing the recovery
of thin structures. The results they achieve on the gargoyle data set are comparable to
ours. However, we achieve this by using the normal optimization which does not require
to add extra links to the graph for incorporating the intelligent ballooning term. The use
of silhouette constraints is only viable when exact silhouettes are available. This is not
always the case. In addition, the silhouettes only constrain the shape of the surface on the
rims. The method proposed by Yu et al. [31] uses graph-cuts on surface distance grids.
The drawback of their method is that they assume, that the initial estimate is already quite
close to the final result.

3 Volumetric Graph-Cuts

3.1 Consistency Measure
One of the most common measures for evaluating the consistency of a surface patch in the
input images is the NCC due to its invariance to linear illumination changes. Similar to
[6, 23], we compute the NCC for a surface patch over the image projection of its tangent
plane. The tangent plane is sampled with a uniform grid in 3D and each point is projected
into the images in which the surface patch is visible. Since the NCC is only defined
for image pairs, it has to be extended to multiple images in order to get one consistency
score. One way of doing this is to select a reference image and to compute the NCC
between this image and all other images. Using this approach, the reliability of the score
depends very much on the reference image: If the reference image is of bad quality or if
it contains occlusions which have not been captured by the model, the correlation will be
low. Therefore, we choose to compute the mean of the pairwise score of all image pairs.



If the NCC score between images i and j of the voxel x is ηi j(x), the photo-consistency
score is given by

ρ(x) = Ψ

(
2

n(n−1) ∑
i

∑
j>i

ai jηi j(x)

)
(1)

where Ψ(x) = min(1− x,1) normalizes the score to the interval [0,1]. n is the number of
images and ai j is a weight depending on the angle between the two cameras. Since this
consistency measure is based on the tangent plane it is important to obtain a good normal
to the surface. A wrong normal can result in a low consistency score which in turn will
lead to overcarving. Therefore, in our algorithm, we use the normal which results in the
highest photo-consistency score as described in section 4.1.

In our implementation, we sample the tangent plane with a 5× 5 grid. The spacing
between the grid points is chosen so that no pixels in the image are missed. We only use
views forming an angle of less than 60 degrees with the surface normal. The weights ai j
are chosen as the cosine of the angle between the viewing directions of camera i and j
thereby penalizing big angles.

3.2 Surface Optimization with Graph-Cuts
3D reconstruction can be cast as an optimization problem to find the minimum cost sur-
face where the cost of the surface S is modeled as the surface integral over a consistency
score ρ(x) for each surface patch x

E =
∫∫

S
ρ(x)dA (2)

Volumetric graph-cuts provide a way to find an approximately optimal solution to this
minimization problem. This is done by converting the continuous problem into a discrete
formulation over a voxel grid [1].

Given an initial estimate of the surface, a band is constructed around it and the best
surface inside this band is found using a graph-cut [3, 14]. For every voxel x in the band
the consistency score ρ(x) is computed, where a lower cost signifies a better consistency.
In order to be able to compute the consistency for a voxel, it is necessary to know the
visibility and depending on the consistency measure also the normal of the voxel. This
information is propagated from the original surface by assigning the visibility and the nor-
mal from the closest voxel in the original surface. Alternatively, it can also be estimated
for each layer in the band using the surface given by this layer.

Every voxel in the band is represented as a node in the graph. The source of the
graph is placed inside the object while the sink is placed outside. All voxels on the inner
boundary of the band are connected to the source and all voxels on the outer boundary
are connected to the sink by edges of infinite weight. Neighboring voxels xk and xl are
connected by edges of weight

wkl = ckl
ρ(xk)+ρ(xl)

2
(3)

where the term ckl is a weight proportional to the distance between the two voxels [1].
Typical neighborhood systems are the 6- and the 26-neighborhood. All voxels still con-
nected to the source after applying the graph-cut are part of the optimal volume.
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Figure 1: Figure (a) shows the advantages of using a narrow band. When using wide
bands protrusions can be totally filled out. The graph-cut will then prefer the shortcut
through the high-cost region, because its accumulated cost is less than that of the long
path through the low-cost region. When using a narrow band, the graph-cut will take the
low-cost path because there is no shortcut and any deviation from the low-cost path will
incur a high cost. Figure (b) shows the photo-consistency computation. We find the plane
which best approximates the surface passing through a voxel.

In our implementation, we use the 26-neighborhood of the voxel instead of the 6-
neighborhood when constructing the graph. This helps to avoid some of the discretization
artifacts associated with graph cuts.

4 Proposed Reconstruction Method
We use an iterative graph-cut approach to recover the shape of the object. In each iteration,
first the surface visibility is computed. Using this information the normals to the surface
are optimized and used to compute a reliable consistency score. These scores are used in
a volumetric graph-cut over narrow bands around the current surface estimate.

4.1 Surface Normal Optimization
As explained in section 3.1, we need the normal to the surface to compute the consistency
score. The accuracy of the normal plays an important role in obtaining good reconstruc-
tion results. If the used normals are inaccurate the computed consistency score will be
low which in turn will lead to overcarving. This is especially true for surface regions with
high curvature, because a small change in the normal can have a big effect on the consis-
tency score. We therefore find the optimal normals which lead to the highest consistency
score.

Since we use a volumetric representation, we first compute the gradient in the volume
for all surface voxels, giving us the initial normals. However, the normals obtained this
way are usually not very accurate due to the discretization and because the current surface
estimate can be wrong. In particular, there are problems in surface regions with high
curvature. Therefore, we only use these estimated normals as a starting point for an



optimization over the surface orientation. The optimization allows us to obtain a better
normal estimate and consequently a better consistency measure.

We represent the orientation of the surface through the rotation R of a reference plane
with normal n∗ = [0,0,1]> (see figure 1(b)). The rotation is represented using a (3× 3)
rotation matrix R. The consistency score for a voxel x between images i and j depending
on the rotation R is given by

ηi j(x,R) = NCC (Ii(PiM(x,R)X), I j(P jM(x,R)X)) (4)

where Pi and P j are the projection matrices for images Ii and I j respectively. X are
3D points (expressed in homogeneous coordinates) defined on the reference plane. The
matrix M(x,R) is a (4×4) matrix that describes the transformation of these points given
the orientation R and the voxel center x. It is defined as

M(x,R) =
[

R (I−R)x
0 1

]
(5)

The optimal normal and the highest consistency measure are found by determining the
optimum of the cost function

ρ(x) = min
R

{
Ψ

(
2

n(n−1) ∑
i

∑
j>i

ai jηi j(x,R)

)}
(6)

where Ψ is the normalization function defined in section 3.1. In practice we optimize this
cost function by discretely sampling a dense set of normals in the hemisphere into which
the initial normal is pointing. The optimization over the rotation R is restricted such that
it provides a normal vector to the tangent plane inside a cone defined by the initial normal
and an opening angle θ . In our experiments, we set θ to 60 degrees. Empirically we found
that the normal optimization is a very important factor in achieving good reconstruction
results. Without it protrusions and thin structures are carved much more often.

4.2 Narrow Band Graph-Cut
Existing volumetric graph-cut-based methods usually perform only one cut in a fairly big
band around the initial surface estimate. By doing this, they assume that the maximum
displacement of the true surface from the initial estimate is known. This is in particular
not true if only rough silhouette estimates are available. Another disadvantage of one-shot
graph-cuts over big bands is that it is hard to reason about visibility for voxels far from the
initial surface estimate. Therefore, the consistency score computed for these voxels can
be wrong. Another problem is setting the normals for the voxels in the band. Typically,
either the normal of the closest surface point is chosen or the normal is computed using
the surface given by the layer. However, this approximation can quickly become wrong
when going further away from the original surface. Moreover, a big band can completely
fill out protrusions and narrow parts of the object. As graph-cuts prefer short cuts, these
protrusions are easily carved away. In addition, the danger of overcarving increases since,
in a big band, there are more possibilities to find a ”shortcut” than in a narrow band.

We construct a narrow band by expanding the current surface estimate to the outside
and the inside. The inside layers carve inconsistent voxels while the outside layers allow
us to correct segmentation errors in the initial silhouette images. This iterative approach



makes the visibility reasoning and the normal propagation much more stable as we stay
close to the current surface estimate. Using narrow bands makes it possible to avoid the
carving of narrow parts and protrusions since they are not totally filled out. Assuming that
there is a clear low-cost path through the band (if there is one the normal optimization will
find it), the graph-cut does not deviate from this path. In fact, the differences in path length
through the band are so small, that they cannot outweigh the penalty of cutting through a
high-cost region. Using narrow bands also allows us to recover concavities. Indeed, we
are able to recover even deep concavities, as can be seen from the results we obtained
on real-world data sets. While we cannot guarantee to reach a global minimum (which
might not be useful due to the minimal surface bias of the graph-cut), we overcome local
minima inside the band, which is sufficient for most practical scenes. This is an advantage
over using level sets since by choosing the size of the band we can overcome local minima
within the band and achieve a better solution than level sets.

In our implementation, we apply the graph-cuts iteratively until the consistency score
of the surface converges. The number of iterations depends on how close the initial esti-
mate approximates the true surface. In most cases, less than 20 iterations are needed to
converge to a stable reconstruction.

5 Results
We present the evaluation of our method on two standard data sets and one custom data
set that illustrate the advantages of our algorithm. The first data set is the gargoyle set
provided by K. Kutulakos. It shows a stone sculpture and contains 16 images with a
resolution of 719×485 pixels. The difficulty in this data set is that it contains holes which
introduce a fair amount of self-occlusion. The input images were roughly segmented to
obtain an initial estimate of the visual hull (see figure 2(a)). The resolution used is 2003

voxels. We used a 5× 5 grid to sample the plane used for estimating the voxel score.
As in all of our experiments, we allowed a movement of one voxel layer outside and
inside the current estimate for every iteration of the graph-cut. Therefore the width of
the band is three layers. The width of the band stays unchanged during the optimization.
The reconstruction time was 60 minutes. As shown in figure 2(a), we obtain an accurate
reconstruction of the gargoyle. In particular, we correctly reconstruct protrusive parts of
the object like the ears and the nose without the need of an ’ad-hoc’ ballooning term. At
the same time, we recover the concavities of the object, for instance around the eyes and
in particular in the region between its body and the stick it is holding. The reconstruction
converges after 19 iterations, while most of the surface details are already recovered after
10 iterations. Only the deep concavity between the belly and the stick requires more
carving cycles. This shows that our method is able to recover even deep concavities.
Our reconstruction is of at least the same quality as the one presented in [2] where the
photoflux is used to preserve thin structures.

The second data set we used our method on is the dinoSparseRing data set provided
by [21]. This set contains 16 images of a plaster dinosaur model with a resolution of
640× 480 pixels. The reconstruction time was 62 minutes. The particular difficulty of
this data set is the lack of texture. We used a resolution of 200× 234× 200 and a 5× 5
grid for this reconstruction. The algorithm converged after 21 iterations and recovered
most of the surface details as seen in figure 2(b). The concavities between the legs and
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Figure 2: Reconstruction results. The first row of each result shows three input images
and three views of the visual hull which is used as a starting point for the reconstruction.
The second row shows the untextured and the textured reconstruction results.

the scales on the back were both recovered. The surface on the back of the model is fairly
smooth while the surface on the front is a little rough due to the very uniform intensity.
When compared to the reconstruction result of [29] on the same data set, we can see a
clear improvement especially around the tail area and around the legs. Compared to [27],
we obtain a more accurate surface estimate with more details especially around the legs.
Our reconstruction achieved an accuracy of 0.89mm (defined as the distance that brings
90% of the reconstruction result within the ground-truth surface) and a completeness of
95.0% (defined as the percentage of the ground-truth that lies within 1.25mm of the recon-



struction results) in the Middlebury multi-view evaluation. These results reflect that our
method provides accurate reconstructions which surpass the results of [29] (using a bal-
looning term) (1.18mm/90.8%) and [27] (using silhouette constraints) (1.26mm/89.3%)
in both accuracy and completeness.

The third data set consists of 24 images of a shell at a resolution of 1600×1200. The
reconstruction time was 112 minutes. Since the shell has many small protrusions and
concave regions, it is a perfect test object to show the properties of our reconstruction
method. We roughly segmented the shell by drawing a bounding polygon around the
object. We used a voxel grid of size 415× 276× 200 and sampled the tangent plane
with an 11× 11 grid due to the bigger image resolution. The reconstruction converged
after 35 iterations because we started far from the true surface. This also shows that the
method is not critically dependent on the initial surface estimate. Figure 2(c) shows our
reconstruction results. We correctly recover the concavities and the small protrusions on
the shell. The reconstruction also recovers the undulations on the base of the shell. This
shows that our method can successfully preserve protrusions and at the same time recover
concavities without relying on a ballooning term or on exact silhouette images.

6 Conclusion
We presented a novel iterative reconstruction algorithm designed to overcome problems
resulting from the graph-cut inherent bias for shorter cuts. At each iteration, we optimize
the surface normals of the current surface and apply a volumetric graph-cut over narrow
bands around the current surface estimate.

Experimental results obtained on standard and custom data sets show that our method
preserves protrusions and at the same time recovers concavities. We applied the proposed
algorithm on ground-truth data and compared the obtained results with the results of ex-
isting volumetric graph-cut-based methods that rely on a global ballooning term [29] and
on silhouette constraints [27]. We obtained a reconstruction with higher accuracy and
completeness.
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