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Abstract

We propose an algorithm for clustering large sets of im-
ages of a scene into smaller subsets covering different parts
of the scene suitable for 3D reconstruction. Unlike the
canonical view selection of [13], we do not focus only on
the visibility information, but introduce an alternative simi-
larity measure which takes into account the relative camera
orientations and their distance from the scene. This allows
us to formalize the clustering problem as a graph partition-
ing and solve it using spectral clustering. The obtained
image clusters bring down the amount of data that has to
be considered by the reconstruction algorithms simultane-
ously, thereby allowing traditional algorithms to take ad-
vantage of large multi-view data sets processing them sig-
nificantly faster and at smaller memory costs compared to
using the full image datasets. We tested our approach on a
number of multi-view data sets and demonstrated that the
clustering we obtain is suitable for 3D reconstruction and
coincides with what a human observer would consider as a
good clustering.

1. Introduction
The availability of high quality digital cameras at rea-

sonable prices allows an easy acquisition of large numbers
of high-quality images. This motivated Computer Vision
researchers to intensify their research on 3D reconstruction
problems, proposing new solutions which exploit those rich
sources of information. The recent advances in static 3D
reconstructions from calibrated cameras exploit the spatial
redundancy among the images and produce high-quality re-
construction results [10, 5, 9, 6, 7]. This usually requires
using all available images of the objects of interest at once.
This is reasonable when a limited number of images is used,
but becomes prohibitive when the number of available im-
ages is large and they are high-resolution. This is espe-
cially the case with large scenes such as those of Figure
4. For this reason breaking the collection of images into
meaningful clusters, ideally covering different parts of the

Figure 1. Clustering on the Castle sequence. The first two rows
contain images showing representative views for each cluster. In
the first image of the third row the camera clusters found by our al-
gorithm are depicted. The following images show the object points
visible in each cluster.

object, has to be addressed. The community has already
addressed the problem of handling huge collections of im-
ages available on the internet [15]. This required addressing
several problems such as structure from motion [16], sum-
marizing images by finding canonical views [13] or finding
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paths through the photos and turning them into controls for
image based rendering [14]. Unlike these approaches, and
similar to [19], our objective is to cluster a collection of im-
ages of a particular object into smaller image subsets suit-
able for 3D reconstruction as shown in Figure 1. In contrast
to [13] and [19], we do not focus only on the visibility of
the scene in the cameras, but introduce an alternative simi-
larity measure which takes into account the relative camera
orientations and their distance from the scene. This mea-
sure prefers camera configurations suitable for 3D recon-
struction, i.e. those with a short baseline and similar dis-
tance from the scene. We represent the collection of images
as a fully connected graph with the nodes corresponding
to the cameras and the edges between them corresponding
to the introduced similarity measure. This formulation of
the problem allows us to define the clustering problem as a
graph partitioning and solve it using spectral clustering. The
clusters we obtain bring down the amount of data that has
to be considered by the reconstruction algorithms simulta-
neously. We tested our approach on a number of multi-view
data sets and demonstrated that the clusters we obtain are
suitable for 3D reconstruction and coincide with what a hu-
man observer would consider as a good clustering. We also
show that the total reconstruction time spent when using
the camera clusters to reconstruct the scene is significantly
smaller than the time spent when using all images at once.
In addition, it is obvious that the memory requirements are
much smaller when clusters of cameras are used, compared
to using the full image dataset with all cameras.

The remainder of the paper is structured as follows: In
section 2 we discuss previous work dealing with camera
clustering. Section 3 introduces our proposed clustering
approach, while results on clustering in general and multi-
view reconstruction in particular are presented in section 4.
We conclude with section 5.

2. Related Work
The problem of processing large sets of images for

the purpose of 3D reconstruction has in particular been
brought to the attention of the community through the Photo
Tourism project [15]. This led to improved solutions for
many related problems, such as structure from motion from
unorganized image collections [16], scene navigation [14],
object segmentation in the scene [12] and scene summa-
rization [13]. In all those problems camera clustering has
been considered. The SFM problem of [16] concentrates
on reducing a full set of available images to a skeletal sub-
set which is sufficient to provide a full sparse reconstruc-
tion, where other image views can be quickly added us-
ing pose estimation. The skeletal image set is computed
by a maximum leaf t-spanner [1] of the graph with cameras
at its nodes and the edges being joint position covariances
between the pairs of cameras. In the other works, espe-

cially the one of Simon et al. [13], the goal is typically not
finding a good partitioning of the cameras, but instead the
selection of canonical views. These views are desired to
be orthogonal to each other, while at the same time show-
ing a representative view of the object. The proposed ap-
proach of [13] was used for scene summarization through a
set of orthogonal canonical views. They assume the avail-
ability of 3D scene points together with visibility informa-
tion and use an ad-hoc greedy method to automatically find
their canonical views. While this seems to give good re-
sults they only make use of the point visibility, disregarding
information about camera configurations. In our implemen-
tation of their greedy algorithm the number of clusters is
highly dependent on the choice of some weighting param-
eters proposed also in the original algorithm. In [4] Den-
ton et al. propose a method to find canonical views for a
set of silhouette images of an object, in order to use them
for view-based 3D object recognition. To solve the prob-
lem the authors use semidefinite programming (SDP) on a
graph which models the similarity between the views. In the
context of robot localization in [2], the environment is rep-
resented by a large number of collected images stored in a
database. To speed up the search of the most similar image,
the database is reduced to the set of representative canoni-
cal views. This is done using a graph representation of the
database images with weights measuring image similarity.
The problem is solved using the graph pruning technique
known as the Connected Dominant Set problem in graph
theory. While we also use a graph for representing the rela-
tion between different views, we are looking for a partition-
ing of the graph and not for canonical views. In addition
we use spectral clustering [18, 11] based on spectral graph
theory, which is significantly easier to implement than re-
lated approaches and yields good results. Zaharescu et al.
[19] also consider the topic of camera clustering. Similar to
our approach they directly find the clusters. However, they
only use visibility information and apply the k-means algo-
rithm for clustering requiring advance knowledge about the
number of clusters. Hornung et al. [8] also select images
for multi-view reconstruction, but their focus is on remov-
ing less useful views instead of clustering them. To be more
precise they add views maximally contributing to the qual-
ity of the initial rough reconstruction.

Compared to previous work, we perform camera cluster-
ing based on geometric information about both the scene
and the camera positions. We do not need to know the
number of clusters in advance and only need a rough proxy
geometry, which can be obtained either by a sparse bun-
dle adjustment or the use of the visual hull computed from
camera images. Especially in the context of multi-view re-
construction silhouettes are typically available, making our
algorithm easy to integrate into an existing reconstruction
pipeline.



(a) Spectral Camera Clustering (b) Canonical view selection [13]

Figure 2. Comparison of the clustering given by our method (left)
and the one given by the canonical views algorithm [13] (right).
The canonical views fail in this case, since the scene is planar and
all cameras see the same points. Our method takes the positions of
the cameras into account and therefore performs a more reasonable
clustering.

3. Camera Clustering

We represent the camera clustering problem as a graph
partitioning problem by modeling the relationship between
the cameras as a graph. This allows us to apply powerful
methods from graph theory to find a solution to our prob-
lem. Each vertex in the graph represents a camera, while
the edges connecting two vertices represent the similarity
between these two views. Hence, the first step in our algo-
rithm is to define an appropriate similarity measure. While
some existing clustering algorithms only use point visibil-
ity, we also incorporate the viewing angle between camera
pairs and the distance to the scene to obtain more mean-
ingful clusters. This is demonstrated in Figure 2 where
we compare the performance of our method to that of the
canonical views algorithm [13], which we extended to pro-
vide clusters instead of only canonical views by assigning
each view to its most similar canonical view. Since the
scene is mostly planar and every camera can see it, we only
obtain one cluster using the canonical views. The cameras
are spatially quite well clustered, but due to the use of the
non-discriminate visibility information the algorithm can-
not take advantage of this. Our method on the other hand
successfully finds the clusters, since it also takes the camera
geometry into account.

Before we introduce our similarity measure, let us first
define some notation. For each camera we have its projec-
tion matrix Pi, a set of surface points X and the visibility
matrix V , which collects the information about the visibil-
ity of X in each view, i.e. the row-vector Vi contains the
visibility of the scene points with respect to camera i. In
addition we also use Vi to represent the set of points which
are visible in camera i. The 3D scene points X can be ob-
tained in one of two ways. The first possibility is to run a
bundle-adjustment procedure (e.g. [5] or [15]). However,
this can be time consuming, especially for large scenes. In
order to speed this process up and since we only need a
rough object proxy geometry we downsample the images

Algorithm 1 Method Outline
1: Compute the graph laplacian L = D −W .
2: Solve the generalized eigenvalue problem Lv = λDv.
3: Select the eigenvectors corresponding to the k smallest

non-zero eigenvalues after which there is a visible jump
in the eigenvalues, disregarding the eigenvector corre-
sponding to λ = 0.

4: Construct the matrix E from the k smallest non-zero
eigenvectors and perform a clustering on its rows using
the mean-shift algorithm.

and use a sparse sampling (as it is possible in the Furukawa
method). The second possibility is to make use of silhouette
images when available by building the object’s visual hull
and then using the mesh vertices for X .

Once this information has been obtained we can compute
our scene similarity measure. We want to be able to take
into account both scene geometry and camera configuration.
This is achieved by using the visibility information (scene
geometry) and the viewing angles and scene distances for
each camera-point pair (camera geometry). Our similarity
measure between view i and j is given by:

Sij =
∑

X∈(Vi∩Vj)

‖Vi ∩ Vj‖
αSangle + βSdistance

Sangle = arccos(
(Ci −X)>(Cj −X)
‖Ci −X‖‖(Cj −X‖

)

Sdistance = abs(‖Ci −X‖ − ‖Cj −X‖)

where Ci and Cj are the camera centers of view i and j
respectively. The term ‖Vi∩Vj‖, computed as the dot prod-
uct between rows i and j of the visibility matrix, gives the
number of scene points visible in both cameras i and j at
the same time. The parameters α and β are weights to con-
trol the influence of the angular and the distance term (both

(a) (b) (c)

Figure 3. Eigenvalues and the clustering in the feature space of the
Castle sequence of Figure 1. (a) The 10 smallest eigenvalues. Note
the jump between eigenvalues λ3 and λ4 indicating that only two
eigenvectors are needed for classification. (b) Plot of the entries
of the eigenvectors corresponding to the two smallest eigenvalues
(excluding the one being zero). (c) Same as (b) but overlayed with
the Gaussian kernel used in mean-shift. Note that the layout of
(b) resembles the camera positions, and that the maxima of (c)
represent the clusters obtained by the mean-shift algorithm.



α and β are set to 1 in our experiments). The angular term
is representing the angle between the viewing directions of
the two cameras Ci and Cj with respect to the point X .
The smaller it is, the less perspective distortion will occur
between the points seen in the two cameras. This in turn
will allow a more accurate and stable reconstruction. The
distance term is meant to help with scene parts seen at dif-
ferent scales. Since many image-based similarity measures
are not very robust with respect to scale changes, we try
to group the cameras in such a way, that their distances to
the scene are similar. This avoids unnecessary resampling
of the images leading to more accurate reconstruction re-
sults. The nominator normalizes the score with respect to
the number of common points visible in both cameras, in
order to avoid any bias towards camera pairs which have a
lot of points in common. This is desirable, since the proxy
geometry we use might be more densely sampled (i.e. con-
tain more points) in certain scene regions. By normalizing
the similarity measure we are independent of the sampling
density in the proxy geometry.

Our goal is to find the optimal partitioning of the graph,
so that the nodes of the graph, i.e. the cameras, are sep-
arated in different groups according to their similarity. In
other words, we want to find the partitioning of the graph
such that the edges between the different graph parts have
very small weight (similarity), and the edges within the
same part have high weight, i.e. the views are very simi-
lar. This problem is NP-hard, but there exist approximative
algorithms based on spectral graph theory, such as the nor-
malized cuts [11]. It can be shown that the graph partition-
ing can be computed based on the solution to the general-
ized eigenvalue problem of the graph Laplacian [18]. Let
W be the symmetric weighting matrix describing the edge
weights, i.e. Wij = Sij , and D a diagonal matrix with
Dii =

∑N
j=1Wij . The Graph Laplacian is then defined as

L = D−W . We solve the generalized eigenvalue problem
Lv = λDv and take the eigenvectors u1, u2, . . . uk associ-
ated to the k smallest eigenvalues λ1, λ2, . . . , λk. Typically
k is determined by observing all eigenvalues and taking the
k smallest of them after which there is a visible jump in
the eigenvalues (see Figure 3). This is known as the eigen-
gap heuristic. Note that the smallest eigenvalue is zero and
its eigenvector is constant, since every row of L adds up
to zero. Therefore, we count from the first non-zero eigen-
value. In practice, we use k = 2 or k = 3 depending on
when the jump in the eigenvalues occurs. We then use the
eigenvectors corresponding to those eigenvalues, as shown
in Figure 3 for the sequence of Figure 1, and perform a
clustering on them. As it can be seen this representation
resembles the real 3D positions of the cameras and already
indicates the existence of separate clusters in this represen-
tation. Let E be the matrix containing the eigenvectors
corresponding to the k smallest non-zero eigenvalues as its

columns. Then, usually, the final step in the literature is to
perform k-means clustering on the rows ofE. However, this
would require us to know the number of clusters in advance.
Therefore we chose to adapt the mean-shift algorithm [3],
which does not need to know the number of clusters in ad-
vance. The only parameter we have to choose is the width of
the kernel. To choose the best value we applied a heuristic
approach, i.e. we choose the kernel width as the mean of the
k smallest eigenvalues. This heuristic gives very reasonable
results. Our method is summarized in algorithm 1.

4. Results
We performed several experiments on real and synthetic

datasets to validate our approach. Since there is no com-
monly agreed on definition of what constitutes a ”good”
clustering, we can only evaluate the obtained clusters in
terms of their suitability for 3D reconstruction. Therefore,
we desire the clusters to be coherent and local with respect
to the part of the scene they are viewing. In addition, we
check our results by reconstructing some datasets using the
obtained clusters and compare the results to a full recon-
struction using all the images.

The first dataset we used is the castle sequence provided
by Christoph Strecha [17] consisting of 19 high-resolution
images. We obtained a proxy geometry by reconstructing
the scene using the method of Furukawa [5] after downsam-
pling the images in order to speed up the run-time of the
procedure. Our clustering algorithm finds five clusters as
shown in Figure 1. To help assess the quality of the cluster-
ing we also colored the scene points. A point is considered
to belong to a cluster when it is seen by at least two cameras
in the cluster. This gives a good visual indication of which
parts of the scene can be reconstructed using a cluster. The
clusters exhibit a fair amount of overlap in the scene points
which is important in order to obtain a good fitting between
the reconstructed scene parts.

We also ran tests on the well-known dino and temple se-
quences from the Middlebury multiview evaluation [10] as
shown in Figure 6. Here we used the visual hull, shown in
the images as a proxy geometry. This is significantly faster
than performing a multiview stereo reconstruction. For the
dino we obtain three clusters, one covering each side and
one looking at the head of the dino. This makes sense be-
cause the head part contains high curvatures and therefore
should be reconstructed independently from the sides which
are mostly planar. We reconstructed the dino model using
the Furukawa method [5] and obtained a runtime of 59 min-
utes for the full reconstruction and 42 minutes for recon-
structing the three clusters independently. This is a signifi-
cant increase in performance while a visual comparison of
the two reconstruction results shows no significant differ-
ences. For the temple we also obtain three clusters, one
covering the front, one for the back and one for the narrow



Figure 4. Clustering on the La Sarraz dataset. The scene is clustered into 7 separate clusters, which mostly follow the streets. See Figure 5
for representative views of each cluster and our reconstruction results.

side.
To show the validity on large scale scenes, we used

a sequence of 125 high-resolution images provided by
Christoph Strecha who also provides a multiview stereo re-
construction of the scene which we use as our proxy geom-
etry. The sequence shows streets in the town of La Sarraz
in Switzerland, where some streets have been traversed in
opposite directions as indicated by the camera orientations
in Figure 4. As you can see from our results in Figure 4 and
Figure 5 we get a reasonable clustering, which mostly fol-
lows the streets. This result would not have been possible
to obtain with the canonical views algorithm, since there
is no point overlap between the first and the last views of
most clusters, so that they would not have been clustered
together. Also the running time of the canonical views is
prohibitive due to the large amount of points in the scene
(50433 points). After 15 minutes of computation it still
hadn’t converged to a solution. Our method on the other

hand took only a few seconds to cluster the scene. We also
performed a reconstruction on this dataset using the method
of Furukawa [5] as shown in Figure 5. We reconstructed
each cluster we found independently and merged the results.
This took a total of 624 min. Reconstructing the full se-
quence on the other hand took over 25 hours and yielded an
incomplete reconstruction with a lot of outliers. We suspect
that this is due to the large number of images which lead to
a much higher probability of having incorrect matches dur-
ing the feature matching stage of the algorithm. This clearly
shows that the use of good clusters not only speeds up the
reconstruction times significantly, but can also help to ob-
tain better results without having to deal with the higher
complexity of the reconstruction task at the level of the re-
construction algorithm.



(a) Cluster 1 (red) (b) Cluster 2 (green)

(c) Cluster 3 (blue) (d) Cluster 4 (light blue)

(e) Cluster 5 (purple) (f) Cluster 6 (turquoise)

(g) Cluster 7 (yellow)

Figure 5. Representative images for each cluster in the La Sarraz dataset shown in Figure 4 together with our reconstruction results.

5. Conclusion

We presented a method for camera clustering of large im-
age sets into subsets. We modeled the camera clustering as
a graph partitioning problem and introduced a new similar-
ity measure which is used to weight the edges in the graph.
It is based on the relative orientations between the cameras
and their distance to the scene, and naturally favors config-
urations with a short baseline and similar distance from the
scene. These properties are important for obtaining a good
3D reconstruction. We then use spectral clustering to par-
tition our graph into suitable camera clusters. We showed
that our algorithm provides reasonable results and runs very
fast on large data sets. Even though the clustering is not

intended to be used by any specific 3D reconstruction algo-
rithm, we plan, in the future, to integrate it with a 3D recon-
struction algorithm, so that we can alternate the clustering
and the reconstruction to obtain high resolution reconstruc-
tion results in a reasonable time.
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