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Abstract

This paper addresses the problem of estimating the depth
map of a scene given a single RGB image. We propose
a fully convolutional architecture, encompassing residual
learning, to model the ambiguous mapping between monoc-
ular images and depth maps. In order to improve the out-
put resolution, we present a novel way to efficiently learn
feature map up-sampling within the network. For optimiza-
tion, we introduce the reverse Huber loss that is particu-
larly suited for the task at hand and driven by the value
distributions commonly present in depth maps. Our model
is composed of a single architecture that is trained end-to-
end and does not rely on post-processing techniques, such
as CRFs or other additional refinement steps. As a result,
it runs in real-time on images or videos. In the evaluation,
we show that the proposed model contains fewer parame-
ters and requires fewer training data than the current state
of the art, while outperforming all approaches on depth es-
timation. Code and models are publicly available5.

1. Introduction
Depth estimation from a single view is a discipline as

old as computer vision and encompasses several techniques
that have been developed throughout the years. One of the
most successful among these techniques is Structure-from-
Motion (SfM) [34]; it leverages camera motion to estimate
camera poses through different temporal intervals and, in
turn, estimate depth via triangulation from pairs of consecu-
tive views. Alternatively to motion, other working assump-
tions can be used to estimate depth, such as variations in
illumination [39] or focus [33].
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In absence of such environmental assumptions, depth es-
timation from a single image of a generic scene is an ill-
posed problem, due to the inherent ambiguity of mapping
an intensity or color measurement into a depth value. While
this also is a human brain limitation, depth perception can
nevertheless emerge from monocular vision. Hence, it is not
only a challenging task to develop a computer vision system
capable of estimating depth maps by exploiting monocu-
lar cues, but also a necessary one in scenarios where direct
depth sensing is not available or not possible. Moreover,
the availability of reasonably accurate depth information is
well-known to improve many computer vision tasks with
respect to the RGB-only counterpart, for example in recon-
struction [23], recognition [26], semantic segmentation [5]
or human pose estimation [35].

For this reason, several works tackle the problem of
monocular depth estimation. One of the first approaches
assumed superpixels as planar and inferred depth through
plane coefficients via Markov Random Fields (MRFs) [30].
Superpixels have also been considered in [16, 20, 37],
where Conditional Random Fields (CRFs) are deployed for
the regularization of depth maps. Data-driven approaches,
such as [10, 13], have proposed to carry out image match-
ing based on hand-crafted features to retrieve the most sim-
ilar candidates of the training set to a given query image.
The corresponding depth candidates are then warped and
merged in order to produce the final outcome.

Recently, Convolutional Neural Networks (CNNs) have
been employed to learn an implicit relation between color
pixels and depth [5, 6, 16, 19, 37]. CNN approaches have
often been combined with CRF-based regularization, ei-
ther as a post-processing step [16, 37] or via structured
deep learning [19], as well as with random forests [27].
These methods encompass a higher complexity due to ei-
ther the high number of parameters involved in a deep net-
work [5, 6, 19] or the joint use of a CNN and a CRF [16, 37].
Nevertheless, deep learning boosted the accuracy on stan-
dard benchmark datasets considerably, ranking these meth-
ods first in the state of the art.

In this work, we propose to learn the mapping between

1

https://github.com/iro-cp/FCRN-DepthPrediction


a single RGB image and its corresponding depth map using
a CNN. The contribution of our work is as follows. First,
we introduce a fully convolutional architecture to depth pre-
diction, endowed with novel up-sampling blocks, that al-
lows for dense output maps of higher resolution and at the
same time requires fewer parameters and trains on one or-
der of magnitude fewer data than the state of the art, while
outperforming all existing methods on standard benchmark
datasets [23, 29]. We further propose a more efficient
scheme for up-convolutions and combine it with the con-
cept of residual learning [7] to create up-projection blocks
for the effective upsampling of feature maps. Last, we train
the network by optimizing a loss based on the reverse Huber
function (berHu) [40] and demonstrate, both theoretically
and experimentally, why it is beneficial and better suited for
the task at hand. We thoroughly evaluate the influence of
the network’s depth, the loss function and the specific lay-
ers employed for up-sampling in order to analyze their ben-
efits. Finally, to further assess the accuracy of our method,
we employ the trained model within a 3D reconstruction
scenario, in which we use a sequence of RGB frames and
their predicted depth maps for Simultaneous Localization
and Mapping (SLAM).

2. Related Work
Depth estimation from image data has originally re-

lied on stereo vision [22, 32], using image pairs of the
same scene to reconstruct 3D shapes. In the single-view
case, most approaches relied on motion (Structure-from-
Motion [34]) or different shooting conditions (Shape-from-
Shading [39], Shape-from-Defocus [33]). Despite the am-
biguities that arise in lack of such information, but inspired
by the analogy to human depth perception from monocular
cues, depth map prediction from a single RGB image has
also been investigated. Below, we focus on the related work
for single RGB input, similar to our method.

Classic methods on monocular depth estimation have
mainly relied on hand-crafted features and used probabilis-
tic graphical models to tackle the problem [8, 17, 29, 30],
usually making strong assumptions about scene geometry.
One of the first works, by Saxena et al. [29], uses a MRF
to infer depth from local and global features extracted from
the image, while superpixels [1] are introduced in the MRF
formulation in order to enforce neighboring constraints.
Their work has been later extended to 3D scene reconstruc-
tion [30]. Inspired by this work, Liu et al. [17] combine the
task of semantic segmentation with depth estimation, where
predicted labels are used as additional constraints to facili-
tate the optimization task. Ladicky et al. [15] instead jointly
predict labels and depths in a classification approach.

A second cluster of related work comprises non-
parametric approaches for depth transfer [10, 13, 18,
20], which typically perform feature-based matching (e.g.

GIST [24], HOG [3]) between a given RGB image and the
images of a RGB-D repository in order to find the nearest
neighbors; the retrieved depth counterparts are then warped
and combined to produce the final depth map. Karsch et
al. [10] perform warping using SIFT Flow [18], followed
by a global optimization scheme, whereas Konrad et al. [13]
compute a median over the retrieved depth maps followed
by cross-bilateral filtering for smoothing. Instead of warp-
ing the candidates, Liu et al. [20], formulate the optimiza-
tion problem as a Conditional Random Field (CRF) with
continuous and discrete variable potentials. Notably, these
approaches rely on the assumption that similarities between
regions in the RGB images imply also similar depth cues.

More recently, remarkable advances in the field of deep
learning drove research towards the use of CNNs for depth
estimation. Since the task is closely related to semantic
labeling, most works have built upon the most successful
architectures of the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) [28], often initializing their net-
works with AlexNet [14] or the deeper VGG [31]. Eigen et
al. [6] have been the first to use CNNs for regressing dense
depth maps from a single image in a two-scale architecture,
where the first stage – based on AlexNet – produces a coarse
output and the second stage refines the original prediction.
Their work is later extended to additionally predict normals
and labels with a deeper and more discriminative model –
based on VGG – and a three-scale architecture for further
refinement [5]. Unlike the deep architectures of [5, 6], Roy
and Todorovic [27] propose combining CNNs with regres-
sion forests, using very shallow architectures at each tree
node, thus limiting the need for big data.

Another direction for improving the quality of the pre-
dicted depth maps has been the combined use of CNNs and
graphical models [16, 19, 37]. Liu et al. [19] propose to
learn the unary and pairwise potentials during CNN train-
ing in the form of a CRF loss, while Li et al. [16] and Wang
et al. [37] use hierarchical CRFs to refine their patch-wise
CNN predictions from superpixel down to pixel level.

Our method uses a CNN for depth estimation and dif-
fers from previous work in that it improves over the typical
fully-connected layers, which are expensive with respect to
the number of parameters, with a fully convolutional model
incorporating efficient residual up-sampling blocks, that we
refer to as up-projections and which prove to be more suit-
able when tackling high-dimensional regression problems.

3. Methodology

In this section, we describe our model for depth predic-
tion from a single RGB image. We first present the em-
ployed architecture, then analyze the new components pro-
posed in this work. Subsequently, we propose a loss func-
tion suitable for the optimization of the given task.



Figure 1. Network architecture. The proposed architecture builds upon ResNet-50. We replace the fully-connected layer, which was part
of the original architecture, with our novel up-sampling blocks, yielding an output of roughly half the input resolution

3.1. CNN Architecture

Almost all current CNN architectures contain a contrac-
tive part that progressively decreases the input image reso-
lution through a series of convolutions and pooling opera-
tions, giving higher-level neurons large receptive fields, thus
capturing more global information. In regression problems
in which the desired output is a high resolution image, some
form of up-sampling is required in order to obtain a larger
output map. Eigen et al. [5, 6], use fully-connected layers as
in a typical classification network, yielding a full receptive
field. The outcome is then reshaped to the output resolution.

We introduce a fully convolutional network for depth
prediction. Here, the receptive field is an important aspect
of the architectural design, as there are no explicit full con-
nections. Specifically, assume we set an input of 304× 228
pixels (as in [6]) and predict an output map that will be
at approximately half the input resolution. We investigate
popular architectures (AlexNet [14], VGG-16 [31]) as the
contractive part, since their pre-trained weights facilitate
convergence. The receptive field at the last convolutional
layer of AlexNet is 151 × 151 pixels, allowing only very
low resolution input images when true global information
(e.g. monocular cues) should be captured by the network
without fully-connected layers. A larger receptive field of
276×276 is achieved by VGG-16 but still sets a limit to the
input resolution. Eigen and Fergus [5] show a substantial
improvement when switching from AlexNet to VGG, but
since both their models use fully-connected layers, this is
due to the higher discriminative power of VGG.

Recently, ResNet [7] introduced skip layers that by-pass
two or more convolutions and are summed to their out-
put, including batch normalization [9] after every convo-
lution (see Fig. 1). Following this design, it is possible

to create much deeper networks without facing degrada-
tion or vanishing gradients. Another beneficial property of
these extremely deep architectures is their large receptive
field; ResNet-50 captures input sizes of 483 × 483, large
enough to fully capture the input image even in higher res-
olutions. Given our input size and this architecture, the last
convolutional layers result in 2048 feature maps of spatial
resolution 10 × 8 pixels, when removing the last pooling
layer. As we show later, the proposed model, which uses
residual up-convolutions, produces an output of 160 × 128
pixels. If we instead added a fully-connected layer of the
same size, it would introduce 3.3 billion parameters, worth
12.6GB in memory, rendering this approach impossible on
current hardware. This further motivates our proposal of
a fully convolutional architecture with up-sampling blocks
that contain fewer weights while improving the accuracy of
the predicted depth maps.

Our proposed architecture can be seen in Fig. 1. The fea-
ture map sizes correspond to the network trained for input
size 304× 228, in the case of NYU Depth v2 data set [23].
The first part of the network is based on ResNet-50 and ini-
tialized with pre-trained weights. The second part of our
architecture guides the network into learning its upscaling
through a sequence of unpooling and convolutional layers.
Following the set of these up-sampling blocks, dropout is
applied and succeeded by a final convolutional layer yield-
ing the prediction.

Up-Projection Blocks. Unpooling layers [4, 21, 38], per-
form the reverse operation of pooling, increasing the spa-
tial resolution of feature maps. We adapt the approach de-
scribed in [4] for the implementation of unpooling layers,
in order to double the size by mapping each entry into the
top-left corner of a 2 × 2 (zero) kernel. Each such layer



Figure 2. From up-convolutions to up-projections. (a) Standard
up-convolution. (b) The equivalent but faster up-convolution. (c)
Our novel up-projection block, following residual logic. (d) The
faster equivalent version of (c)

is followed by a 5 × 5 convolution – so that it is applied
to more than one non-zero elements at each location – and
successively by ReLU activation. We refer to this block
as up-convolution. Empirically, we stack four such up-
convolutional blocks, i.e. 16x upscaling of the smallest fea-
ture map, resulting in the best trade-off between memory
consumption and resolution. We found that performance
did not increase when adding a fifth block.

We further extend simple up-convolutions using a similar
but inverse concept to [7] to create up-sampling res-blocks.
The idea is to introduce a simple 3 × 3 convolution after
the up-convolution and to add a projection connection from
the lower resolution feature map to the result, as shown in
Fig. 2(c). Because of the different sizes, the small-sized
map needs to be up-sampled using another up-convolution
in the projection branch, but since the unpooling only needs
to be applied once for both branches, we just apply the 5×5
convolutions separately on the two branches. We call this
new up-sampling block up-projection since it extends the
idea of the projection connection [7] to up-convolutions.
Chaining up-projection blocks allows high-level informa-
tion to be more efficiently passed forward in the network
while progressively increasing feature map sizes. This en-
ables the construction of our coherent, fully convolutional
network for depth prediction. Fig. 2 shows the differences
between an up-convolutional block to up-projection block.
It also shows the corresponding fast versions that will be
described in the following section.

Fast Up-Convolutions. One further contribution of this
work is to reformulate the up-convolution operation so to
make it more efficient, leading to a decrease of training time
of the whole network of around 15%. This also applies to
the newly introduced up-projection operation. The main in-
tuition is as follows: after unpooling 75% of the resulting

Figure 3. Faster up-convolutions. Top row: the common up-
convolutional steps: unpooling doubles a feature map’s size, fill-
ing the holes with zeros, and a 5 × 5 convolution filters this map.
Depending on the position of the filter, only certain parts of it
(A,B,C,D) are multiplied with non-zero values. This motivates
convolving the original feature map with the 4 differently com-
posed filters (bottom part) and interleaving them to obtain the same
output, while avoiding zero multiplications. A,B,C,D only mark
locations and the actual weight values will differ

feature maps contain zeros, thus the following 5× 5 convo-
lution mostly operates on zeros which can be avoided in our
modified formulation. This can be observed in Fig. 3. In
the top left the original feature map is unpooled (top mid-
dle) and then convolved by a 5 × 5 filter. We observe that
in an unpooled feature map, depending on the location (red,
blue, purple, orange bounding boxes) of the 5 × 5 filter,
only certain weights are multiplied with potentially non-
zero values. These weights fall into four non-overlapping
groups, indicated by different colors and A,B,C,D in the
figure. Based on the filter groups, we arrange the origi-
nal 5 × 5 filter to four new filters of sizes (A) 3 × 3, (B)
3× 2, (C) 2× 3 and (D) 2× 2. Exactly the same output as
the original operation (unpooling and convolution) can now
be achieved by interleaving the elements of the four result-
ing feature maps as in Fig. 3. The corresponding changes
from a simple up-convolutional block to the proposed up-
projection are shown in Fig. 2 (d).

3.2. Loss Function

A standard loss function for optimization in regres-
sion problems is the L2 loss, minimizing the squared eu-
clidean norm between predictions ỹ and ground truth y:
L2(ỹ − y) = ||ỹ − y||22. Although this produces good re-
sults in our test cases, we found that using the reverse Huber
(berHu) [25, 40] as loss function B yields a better final error
than L2.

B(x) =

{
|x| |x| ≤ c,
x2+c2

2c |x| > c.
(1)

The Berhu loss is equal to the L1(x) = |x| norm when
x ∈ [−c, c] and equal to L2 outside this range. The ver-



Architecture Loss #params rel rms log10 δ1 δ2 δ3

AlexNet FC L2 104.4× 106 0.209 0.845 0.090 0.586 0.869 0.967

berHu 0.207 0.842 0.091 0.581 0.872 0.969

UpConv L2 6.3× 106 0.218 0.853 0.094 0.576 0.855 0.957

berHu 0.215 0.855 0.094 0.574 0.855 0.958

VGG UpConv L2 18.5× 106 0.194 0.746 0.083 0.626 0.894 0.974

berHu 0.194 0.790 0.083 0.629 0.889 0.971

ResNet FC-160x128 berHu 359.1× 106 0.181 0.784 0.080 0.649 0.894 0.971

FC-64x48 berHu 73.9× 106 0.154 0.679 0.066 0.754 0.938 0.984

DeConv L2 28.5× 106 0.152 0.621 0.065 0.749 0.934 0.985

UpConv L2 43.1× 106 0.139 0.606 0.061 0.778 0.944 0.985

berHu 0.132 0.604 0.058 0.789 0.946 0.986

UpProj L2 63.6× 106 0.138 0.592 0.060 0.785 0.952 0.987

berHu 0.127 0.573 0.055 0.811 0.953 0.988

Table 1. Comparison of the proposed approach against different
variants on the NYU Depth v2 dataset. For the reported errors rel,
rms, log10 lower is better, whereas for the accuracies δi < 1.25i

higher is better

sion used here is continuous and first order differentiable at
the point c where the switch from L1 to L2 occurs. In ev-
ery gradient descent step, when we compute B(ỹ − y) we
set c = 1

5 maxi(|ỹi − yi|), where i indexes all pixels over
each image in the current batch, that is 20% of the maximal
per-batch error. Empirically, BerHu shows a good balance
between the two norms in the given problem; it puts high
weight towards samples/pixels with a high residual because
of the L2 term, contrary for example to a robust loss, such
as Tukey’s biweight function that ignores samples with high
residuals [2]. At the same time, L1 accounts for a greater
impact of smaller residuals’ gradients than L2 would.

We provide two further intuitions with respect to the dif-
ference between L2 and berHu loss. In both datasets that
we experimented with, we observe a heavy-tailed distribu-
tion of depth values, also reported in [27], for which Zwald
and Lambert-Lacroix [40] show that the berHu loss function
is more appropriate. This could also explain why [5, 6] ex-
perience better convergence when predicting the log of the
depth values, effectively moving a log-normal distribution
back to Gaussian. Secondly we see the greater benefit of
berHu in the small residuals during training as there the L1

derivative is greater than L2’s. This manifests in the error
measures rel. and δ1 (Sec. 4), which are more sensitive to
small errors.

4. Experimental Results

In this section, we provide a thorough analysis of our
methods, evaluating the different components that comprise
the down-sampling and up-sampling part of the CNN archi-
tecture. We also report the quantitative and qualitative re-
sults obtained by our model and compare to the state of the
art in two standard benchmark datasets for depth prediction,
i.e. NYU Depth v2 [23] (indoor scenes) and Make3D [30]
(outdoor scenes).

NYU Depth v2 rel rms rms(log) log10 δ1 δ2 δ3

Karsch et al. [10] 0.374 1.12 - 0.134 - - -

Ladicky et al. [15] - - - - 0.542 0.829 0.941

Liu et al. [20] 0.335 1.06 - 0.127 - - -

Li et al. [16] 0.232 0.821 - 0.094 0.621 0.886 0.968

Liu et al. [19] 0.230 0.824 - 0.095 0.614 0.883 0.971

Wang et al. [37] 0.220 0.745 0.262 0.094 0.605 0.890 0.970

Eigen et al. [6] 0.215 0.907 0.285 - 0.611 0.887 0.971

Roy and Todorovic [27] 0.187 0.744 - 0.078 - - -

Eigen and Fergus [5] 0.158 0.641 0.214 - 0.769 0.950 0.988

ours (ResNet-UpProj) 0.127 0.573 0.195 0.055 0.811 0.953 0.988

Table 2. Comparison of the proposed approach against the state
of the art on the NYU Depth v2 dataset. The values are those
originally reported by the authors in their respective paper

4.1. Experimental Setup

For the implementation of our network we use
MatConvNet [36], and train on a single NVIDIA GeForce
GTX TITAN with 12GB of GPU memory. Weight layers
of the down-sampling part of the architecture are initialized
by the corresponding models (AlexNet, VGG, ResNet) pre-
trained on the ILSVRC [28] data for image classification.
Newly added layers of the up-sampling part are initialized
as random filters sampled from a normal distribution with
zero mean and 0.01 variance.

The network is trained on RGB inputs to predict the cor-
responding depth maps. We use data augmentation to in-
crease the number of training samples. The input images
and corresponding ground truth are transformed using small
rotations, scaling, color transformations and flips with a 0.5
chance, with values following Eigen et al. [6]. Finally, we
model small translations by random crops of the augmented
images down to the chosen input size of the network.

For the quantitative evaluation that follows, the same er-
ror metrics which have been used in prior works [5, 6, 15,
16, 19] are computed on our experimental results.

4.2. NYU Depth Dataset

First, we evaluate on one of the largest RGB-D data
sets for indoor scene reconstruction, NYU Depth v2 [23].
The raw dataset consists of 464 scenes, captured with a
Microsoft Kinect, with the official split consisting in 249
training and 215 test scenes. For training, however, our
method only requires a small subset of the raw distribu-
tion. We sample equally-spaced frames out of each train-
ing sequence, resulting in approximately 12k unique im-
ages. After offline augmentations of the extracted frames,
our dataset comprises approximately 95k pairs of RGB-D
images. We point out that our dataset is radically smaller
than that required to train the model in [5, 6], consisting of
120k unique images, as well as the 800k samples extracted
in the patch-wise approach of [16]. Following [6], the origi-
nal frames of size 640×480 pixels are down-sampled to 1/2
resolution and center-cropped to 304× 228 pixels, as input



Figure 4. Depth Prediction on NYU Depth Qualitative results showing predictions using AlexNet, VGG, and the fully-connected ResNet
compared to our model and the predictions of [5]. All colormaps are scaled equally for better comparison

to the network. At last, we train our model with a batch size
of 16 for approximately 20 epochs. The starting learning
rate is 10−2 for all layers, which we gradually reduce every
6-8 epochs, when we observe plateaus; momentum is 0.9.

For the quantitative evaluation of our methods and com-
parison to the state of the art on this data set, we compute
various error measures on the commonly used test subset
of 654 images. The predictions’ size depends on the spe-
cific model; in our configuration, which consists of four up-
sampling stages, the corresponding output resolutions are
128×96 for AlexNet, 144×112 for VGG and 160×128 for
ResNet-based models. The predictions are then up-sampled
back to the original size (640× 480) using bilinear interpo-
lation and compared against the provided ground truth with
filled-in depth values for invalid pixels.

Architecture Evaluation. In Table 1 we compare differ-
ent CNN variants of the proposed architecture, in order to
study the effect of each component. First, we evaluate the
influence of the depth of the architecture using the convo-
lutional blocks of AlexNet, VGG-16 and ResNet-50. It be-
comes apparent that a fully convolutional architecture (Up-
Conv) on AlexNet is outperformed by the typical network
with full connections (FC). As detailed in Sec. 3.1, a rea-
son for this is the relatively small field of view in AlexNet,
which is not enough to capture global information that is
needed when removing the fully-connected layers. Instead,
using VGG as the core architecture, improves the accuracy
on depth estimation. As a fully-connected VGG variant for
high-dimensional regression would incorporate a high num-
ber of parameters, we only perform tests on the fully con-
volutional (UpConv) model here. However, a VGG-based
model with fully-connected layers was indeed employed

by [5] (for their results see Table 2) performing better than
our fully convolutional VGG-variant mainly due to their
multi-scale architecture, including the refinement scales.

Finally, switching to ResNet with a fully-connected layer
(ResNet-FC) – without removing the final pooling layer –
achieves similar performance to [5] for a low resolution out-
put (64 × 48), using 10 times fewer data; however increas-
ing the output resolution (160 × 128) results in such a vast
number of parameters that convergence becomes harder.
This further motivates the reasoning for the replacement of
fully-connected layers and the need for more efficient up-
sampling techniques, when dealing with high-dimensional
problems. Our fully convolutional variant using simple up-
convolutions (ResNet-UpConv) improves accuracy, and at
last, the proposed architecture (ResNet-UpProj), enhanced
with the up-projection blocks, gives by far the best results.
As far as the number of parameters is concerned, we see a
drastic decrease when switching from fully-connected lay-
ers to fully convolutional networks. Another common up-
sampling technique that we investigated is deconvolution
with successive 2×2 kernels, but the up-projections notably
outperformed it. Qualitatively, since our method consists in
four successive up-sampling steps (2x resolution per block),
it can preserve more structure in the output when comparing
to the FC-variant (see Fig. 4).

In all shown experiments the berHu loss outperforms L2.
The difference is higher in relative error which can be ex-
plained by the larger gradients of L1 (berHu) over L2 for
small residuals; the influence on the relative error is higher,
as there pixels in smaller distances are more sensitive to
smaller errors. This effect is also well visible as a stronger
gain in the challenging δ1 measure.

Finally, we measure the timing of a single up-



Figure 5. Depth Prediction on Make3D. Displayed are RGB im-
ages (first row), ground truth depth maps (middle row) and our
predictions (last row). Pixels that correspond to distances > 70m
in the ground truth are masked out

convolutional block for a single image (1.5 ms) and com-
pare to our up-projection (0.14 ms). This exceeds the theo-
retical speed up of 4 and is due to the fact that smaller fil-
ter sizes benefit more from the linearization inside cuDNN.
Furthermore, one of the advantages of our model is the over-
all computation time. Predicting the depth map of a sin-
gle image takes only 55ms with the proposed up-sampling
(78ms with up-convolutions) on our setup. This enables
real-time processing images, for example from a web-cam.
Further speed up can be achieved when several images are
processed in a batch. A batch size of 16 results in 14ms per
image with up-projection and 28ms for up-convolutions.

Comparison with related methods. In Table 2 we com-
pare the results obtained by the proposed architecture to
those reported by related work. Additionally, in Fig. 4 we
qualitatively compare the accuracy of the estimated depth

Make3D rel rms log10

Karsch et al. [10] 0.355 9.20 0.127
Liu et al. [20] 0.335 9.49 0.137
Liu et al. [19] 0.314 8.60 0.119
Li et al. [16] 0.278 7.19 0.092

ours (L2) 0.223 4.89 0.089
ours (berHu) 0.176 4.46 0.072

Table 3. Comparison with the state of the art. We report our
results with l2 and berHu loss. The shown values of the evaluated
methods are those reported by the authors in their paper

maps using the proposed approach (ResNet-UpProj) with
that of the different variants (AlexNet, VGG, ResNet-FC-
64x48) as well as with the publicly available predictions of
Eigen and Fergus [5]. One can clearly see the improve-
ment in quality from AlexNet to ResNet, however the fully-
connected variant of ResNet, despite its increased accu-
racy, is still limited to coarse predictions. The proposed
fully convolutional model greatly improves edge quality
and structure definition in the predicted depth maps.

Interestingly, our depth predictions exhibit noteworthy
visual quality, even though they are derived by a single
model, trained end-to-end, without any additional post-
processing steps, as for example the CRF inference of [16,
37]. On the other hand, [5] refine their predictions through
a multi-scale architecture that combines the RGB image
and the original prediction to create visually appealing re-
sults. However, they sometimes mis-estimate the global
scale (second and third row) or introduce noise in case of
highly-textured regions in the original image, even though
there is no actual depth border in the ground truth (last row).
Furthermore, we compare to the number of parameters in
[5], which we calculated as 218 million for the three scales,
that is approximately 3.5 times more than our model. In-
stead, the CNN architecture proposed here is designed with
feasibility in mind; the number of parameters should not in-
crease uncontrollably in high-dimensional problems. This
further means a reduction in the number of gradient steps
required as well as the data samples needed for training.
Our single network generalizes better and successfully tack-
les the problem of coarseness that has been encountered by
previous CNN approaches on depth estimation.

4.3. Make3D Dataset

In addition, we evaluated our model on Make3D data
set [30] of outdoor scenes. It consists of 400 training and
134 testing images, gathered using a custom 3D scanner.
As the dataset acquisition dates to several years ago, the
ground truth depth map resolution is restricted to 305× 55,
unlike the original RGB images of 1704×2272 pixels. Fol-
lowing [20], we resize all images to 345 × 460 and further
reduce the resolution of the RGB inputs to the network by



Figure 6. 3D SLAM Comparison of the 3D reconstructions obtained on NYU Depth dataset between the ground-truth depth (left-most)
and the depth predicted, respectively (left to right), by AlexNet, VGG and our architecture.

half because of the large architecture and hardware limita-
tions. We train on an augmented data set of around 15k
samples using the best performing model (ResNet-UpProj)
with a batch size of 16 images for 30 epochs. Starting learn-
ing rate is 0.01 when using the berHu loss, but it needs more
careful adjustment starting at 0.005 when optimizing with
L2. Momentum is 0.9. Please note that due to the limita-
tions that come with the dataset, considering the low res-
olution ground truth and long range inaccuracies (e.g. sky
pixels mapped at 80m), we train against ground truth depth
maps by masking out pixels of distances over 70m.

In order to compare our results to state-of-the-art, we up-
sample the predicted depth maps back to 345 × 460 using
bilinear interpolation. Table 3 reports the errors compared
to previous work based on (C1) criterion, computed in re-
gions of depth less than 70m as suggested by [20] and as
implied by our training. As an aside, [20] pre-process the
images with a per-pixel sky classification to also exclude
them from training. Our method significantly outperforms
all previous works when trained with either L2 or berHu
loss functions. In this challenging dataset, the advantage of
berHu loss is more eminent. Also similarly to NYU, berHu
improves the relative error more than the rms because of the
weighting of close depth values. Qualitative results from
this dataset are shown in Fig. 5.

4.4. Application to SLAM

To complement the previous results, we demonstrate
the usefulness of depth prediction within a SLAM appli-
cation, with the goal of reconstructing the geometry of a
3D environment. In particular, we deploy a SLAM frame-
work where frame-to-frame tracking is obtained via Gauss-
Newton optimization on the pixelwise intensity differences
computed on consecutive frame pairs as proposed in [12],
while fusion of depth measurements between the current
frame and the global model is carried out via point-based
fusion [11]. We wish to point out that, to the best of our
knowledge, this is the first demonstration of a SLAM recon-
struction based on depth predictions from single images.

A qualitative comparison between the SLAM recon-
structions obtained using the depth values estimated with
the proposed ResNet-UpProj architecture against that ob-

tained using the ground truth depth values on part of a se-
quence of the NYU Depth dataset is shown in Fig. 6. The
figure also includes a comparison with the depth predic-
tions obtained using AlexNet and VGG architectures. As
it can be seen, the improved accuracy of the depth predic-
tions, together with the good edge-preserving qualities of
our up-sampling method, is not only noticeable in the qual-
itative results of Fig. 4, but also yields a much more accurate
SLAM reconstruction compared to the other architectures.
We wish to point out that, although we do not believe its ac-
curacy could be yet compared to that achieved by methods
exploiting temporal consistency for depth estimation such
as SfM and monocular SLAM, our method does not explic-
itly rely on visual features to estimate depths, and thus holds
the potential to be applied also on scenes characterized by
low-textured surfaces such as walls, floors and other struc-
tures typically present in indoor environments. Although
clearly outside the scope of this paper, we find these aspects
relevant enough to merit future analysis.

5. Conclusion
In this work we present a novel approach to the prob-

lem of depth estimation from a single image. Unlike typ-
ical CNN approaches that require a multi-step process in
order to refine their originally coarse depth predictions,
our method consists in a powerful, single-scale CNN ar-
chitecture that follows residual learning. The proposed
network is fully convolutional, comprising up-projection
layers that allow for training much deeper configurations,
while greatly reducing the number of parameters to be
learned and the number of training samples required. More-
over, we illustrate a faster and more efficient approach to
up-convolutional layers. A thorough evaluation of the dif-
ferent architectural components has been carried out not
only by optimizing with the typical l2 loss, but also with
the berHu loss function, showing that it is better suited for
the underlying value distributions of the ground truth depth
maps. All in all, the model emerging from our contributions
is not only simpler than existing methods, can be trained
with less data in less time, but also achieves higher quality
results that lead our method to state-of-the-art in two bench-
mark datasets for depth estimation.
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