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Abstract

In this paper, we address the problem of human body
pose estimation from depth data. Previous works based on
random forests relied either on a classification strategy to
infer the different body parts or on a regression approach
to predict directly the joint positions. To permit the infer-
ence of very generic poses, those approaches did not con-
sider additional information during the learning phase, e.g.
the performed activity. In the present work, we introduce a
novel approach to integrate additional information at train-
ing time that actually improves the pose prediction during
the testing. Our main contribution is a multi-task forest that
aims at solving a joint regression-classification task: each
foreground pixel from a depth image is associated to its rel-
ative displacements to the 3D joint positions as well as the
activity class. Integrating activity information in the objec-
tive function during forest training permits a better parti-
tioning of the 3D pose space that leads to a better mod-
elling of the posterior. Thereby, our approach provides an
improved pose prediction, and as a by-product, can give
an estimate of the performed activity. We performed ex-
periments on a dataset performed by 10 people associated
with the ground truth body poses from a motion capture sys-
tem. To demonstrate the benefits of our approach, poses are
divided into 10 different activities for the training phase.
Results on this dataset show that our multi-task forest pro-
vides improved human pose estimation compared to a pure
regression forest approach.

1. Introduction
Estimation of the 3D generic human body pose is a

widely studied problem in the Computer Vision commu-
nity. Earlier works attempt to solve it using monocular cam-

era images [1, 12, 25]. However, it is known that, due to
the projection ambiguity, this is a heavily under-constrained
problem. For this reason, body pose estimation has also
been constrained by particular activities that have been
learned beforehand. However, this was mainly used for gen-
erative articulated human body tracking [5, 21, 26, 27] and
not for the discriminative estimation of the 3D body pose
independently in every frame.

Recently, with the advent of depth sensors like the
Kinect and ToF cameras, novel approaches to human body
tracking and pose estimation from depth data have been
introduced. These approaches are classified as genera-
tive [2, 4, 16, 18], discriminative [8, 10, 17, 22] or a com-
bination of both [9, 19, 23]. Lately, researchers from Mi-
crosoft proposed an approach based on decision forests [22]
that classifies depth pixels belonging to the different body
parts. As the forest output does not provide any global infor-
mation on the body pose, this approach suffers from limita-
tions in the case of occlusions. Girshick et al. [10] extended
this approach and used regression forests to learn the func-
tion that maps each depth pixel to its offsets from all body
joints. This allowed a better prediction of the joint loca-
tion and handling of self-occlusions. While these methods
aim to estimate the generic 3D human body pose, the ap-
proach of [21] simultaneously returns the body pose and
the activity class. This method combines manifold learning
of human activities and particle filtering for human body
tracking and activity recognition.

In this paper, we address a similar objective but in a dis-
criminative setting where we want to improve the estima-
tion of the 3D body pose by integrating activity information
at training time. Inspired by the human body pose estima-
tion approach based on regression forests [10] and the man-
ifold learning approach of [21], we propose to jointly learn
generic human body poses and human activity in multi-task
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forests by associating each foreground pixel in a depth im-
age with its offsets from all body joints as well as the cur-
rent activity class. The main contribution is the integra-
tion of the activity information available at training time by
formulating the problem as a joint regression-classification
task, i.e. regression of the 3D human body pose and clas-
sification of the performed activity. Similar to [11], we
propose a multi-task forest to tackle jointly this regression-
classification task. As we would like to infer any type of
poses, including those that do not belong to the set of activ-
ities seen during training, we assume independence between
joint offsets and activities. While it seems that this makes
the search space even larger, the integration of the activity
information encourages a faster clustering of training sam-
ples into leaves that are consistent in terms of both poses
and activities. This allows to model both pose and activity
probability distributions in the leaves and to employ differ-
ent prediction strategies. This paper addresses the following
scenarios: (i) predicting the pose while ignoring the activity
and (ii) predicting jointly both the pose and the activity.

Our approach is evaluated on a dataset containing 10
people performing 10 activities such as golf, football or
boxing. The results show that the multi-task forests percep-
tibly improve the body pose estimation for test sequences
that exhibit motions from activities used during the pose
learning phase.

1.1. Related Work

Recovering 3D human body pose from images and
videos has been extensively studied [5, 14]. However, many
interesting developments have emerged in the last years and
dramatically advanced the field of human motion capture.
Here, we concentrate only on works that consider monocu-
lar color or depth cameras. Using color monocular cameras
is particularly challenging because of the depth ambigui-
ties. Many approaches that address this problem [1, 12, 25]
are discriminative and learn a mapping from visual obser-
vations to articulated body configurations. Agarwal and
Triggs [1] use shape context descriptors to describe 2D sil-
houettes and Relevance Vector Machine regression to learn
the mapping from silhouettes to 3D human poses. Urtasun
and Darrell [25] use Gaussian Process (GP) models which
offer a general framework for probabilistic regression and
have been shown to generalize well for small training data
sets. Kanaujia et al. [12] employ semi-supervised learning
of hierarchical image descriptions in order to better tolerate
deformation, misalignment and clutter in the training and
test sets.

Approaches for 3D human body pose estimation based
on discriminative models have inspired recent methods that
use depth sensors like Kinect and Time-of-Flight (ToF)
cameras [9, 10, 17, 22]. Plagemann et al. [17] propose
an approach for body part detection in ToF camera data

based on interest points computed using geodesic extrema
and boosted classifiers. Ganapathi et al. [9] rely on this
body part detection approach and couple it with a generative
skeleton-based method for real-time human body tracking.
Shotton et al. [22] use decision forests to learn the mapping
from depth pixel locations to body part labels. However,
their approach does not provide 3D body poses directly,
which have to be inferred from the classification output. Er-
rors in the classification caused by self-occlusions result in
wrongly estimated poses. Inspired by Implicit Shape Mod-
els of [3] and [8, 15] that learn offsets from every pixel in the
image to the locations of body joints, Girshick et al. [10] use
regression forests to directly estimate 3D positions of the
body joints from Kinect depth images. Their approach is
more robust than the previous body part classification strat-
egy [22]. In [24], Taylor et al. introduce a new approach
using regression forests to map each pixel to its most likely
correspondance on a human body manifold. Afterwards, an
energy function is optimized on this model in order to best
fit the observations. In the context of hand pose estimation,
Keskin et al. proposed in [13] a two layers strategy where
they first cluster their observations based on the 2D hand
shape and then train an “expert” regressor for pose estima-
tion within each cluster.

Unlike the methods discussed above that estimate
generic 3D human body poses from images without hav-
ing information about prior activities, there are many ap-
proaches that strongly rely on activity priors in order to
track human poses in images [5, 26, 27] and depth data [7,
20]. All propose the integration of an activity prior in or-
der to improve human body tracking. The methods rely
on manifold learning in order to learn particular activities
and then exploit the resulting low-dimensional motion mod-
els to constrain the human body pose estimation problem.
However, since these are generative tracking methods, they
do not generalize well to poses that lie far from the mani-
fold and body poses are not estimated directly from every
single image independently.

Up to our knowledge, human pose estimation has not yet
been addressed with a multi-task forest that integrates re-
gression from individual depth image pixels to body joint
locations simultaneously with activity classification. In the
context of multiple objects segmentation [11], Glocker et
al. integrated continuous spatial information in addition to
the discrete object class labels within a joint regression-
classification forest model. By applying this model to multi-
ple organs segmentation, they could demonstrate improved
class predictions. We propose to tackle the pose estimation
problem in a similar way by learning both activity priors and
a probabilistic mapping from depth pixels to joint locations.



Figure 1. The points of the
foreground mask M are
represented in blue and the
joint locations ji in cyan.
Offsets ψi from a pixel (in
red) to all joint locations are
depicted by yellow vectors.

2. Method
This section presents the novel multi-task forest model

which permits to efficiently integrate additional informa-
tion in the form of an activity prior to improve 3D body
pose estimation. Taking advantage from the mixed output
provided by the model, different pose estimation strategies
are introduced depending on whether or not activity infor-
mation should be considered at test time.

2.1. Problem Statement

For a 2D depth image, let D be an intensity function
D : Ω→ R where Ω ⊂ R2 is the image domain. The actor,
whose pose should be estimated is given by a foreground
regionM ⊂ Ω. A 3D body pose is defined as a set of 3D
locations ji ∈ R3 for N body joints, written as a vector
J =

[
j>1 , · · · , j>N

]>
. Let J ⊂ R3N denote the space of all

possible 3D body poses. For a given depth image D, the
goal is to estimate the 3D pose J ∈ J .

Following a probabilistic regression approach, each pixel
x = (x, y)> ∈ M predicts the relative offsets Ψ =[
ψ>1 , · · · , ψ>N

]>
pointing from its corresponding 3D loca-

tion X of the pixel to the 3D location of all joints in the
body pose J. Each entry of the offsets vector Ψ is defined
as ψi = (ji −X) as illustrated by Fig. 1. The contribution
of each pixel x to the full body pose prediction is estimated
using maximum a posteriori:

Ψ̂ = argmax
Ψ∈Λ

P (Ψ|x,D). (1)

The space Λ ⊂ R3N spanned by all offsets to 3D joint lo-
cations is very large. Thus, the search for a good estimate
of the 3D pose is challenging. While “common” poses may
be well predicted, poses that are under-represented with re-
spect to a training set may be “averaged out” in the model-
ing of such a posterior distribution. Nevertheless, these less
common poses are often characteristic for a certain type of
activity. Thus, integrating activity information permits to
better model the posterior, and thereby can provide better
pose prediction.

Considering a set of K activities A = {ak}Kk=1, our
main contribution is to integrate activity information by re-
formulating the stated problem as the joint estimation of

pose and activity:

(Ψ̂, â) = argmax
Ψ∈Λ,a∈A

P (Ψ,a|x,D). (2)

In contrast to [11], we assume conditional independence be-
tween the continuous and discrete variables, i.e. joint offsets
and activities, to permit inference of generic poses. We can
thus rewrite this joint distribution as:

P (Ψ,a|x,D) = P (Ψ|x,D)P (a|x,D). (3)

To approximate this distribution, we propose a multi-task
forest framework which integrates both P (Ψ|x,D) and
P (a|x,D) within the same model.

The first step is to introduce a new objective function
within the tree training which integrates both pose and ac-
tivity information. The second step is to model both terms
P (Ψ|x,D) and P (a|x,D) in the leaves which permits the
computation of the joint probability distributions using Eq.
3. The versatility of this model is the adaption of the previ-
ously mentioned different prediction scenarios.

In the following sections, we shortly present the feature
descriptor which characterizes the context of a pixel x given
the depth image D as earlier proposed in [22]. We then
describe the training and testing phases of the multi-task
forest model.

2.2. Feature Descriptor

Our approach adopts the feature descriptor proposed by
Shotton et al. [22], each dimension consisting of a simple
depth comparison at predefined offsets from the considered
pixel. Before feature extraction, we identify the image re-
gion M ⊂ Ω that corresponds to the person in the fore-
ground. For this purpose, we subtract a previously acquired
static background image D̃ of the scene from the depth im-
age D. For a given pixel x ∈ M and offsets θ = (u,v),
the depth feature f ∈ F is defined as

f (x, θ) = D

(
x +

u

D (x)

)
−D

(
x +

v

D (x)

)
(4)

where F denotes the space spanned by these features and
D(x) returns the depth information at pixel x. The offsets
are divided by the depth at the given pixel to achieve depth-
invariance. Moreover, it measures the depth at the same
distance in world coordinates regardless of the distance be-
tween the person and the camera.

2.3. Multi-task Forest

In this section, we describe our novel forest model
that aims at learning the joint probability distribution
P (Ψ,a|x,D). With an ensemble of decorrelated trees, this
model permits to: (1) efficiently partition the feature space
F described in the previous section and (2) estimate this



joint distribution in each part of this space. Since Ψ ∈ Λ
and a ∈ A are a multivariate continuous and a categorical
random variable, respectively, the proposed forest model re-
lies on a hybrid regression-classification strategy. To this
end, we use an objective function which aims to create
leaves that are consistent not only in terms of joint offsets,
but also in terms of activity. Let T = {Tt}Tt=1 denote a
multi-task forest consisting of T trees Tt. In the next sec-
tion, we describe how each tree is trained and how the pose
and activity estimation is inferred from the trees.

2.3.1 Forest Training

Let us consider a training set built from a bootstrap of
pixels extracted in different depth images, described by
their feature vectors and associated to their joint offsets
and activity labels. Each training instance is given by
X (i) = (f (i),Ψ(i),a(i)), for i ∈ {1, . . . , Ntrain}, where
Ntrain is the number of training samples. Note that Ntrain =
Npix · Nimages. Nimages is the number of images and Npix is
the number of pixels bootstrapped from the foreground in
each image. In the forest model, each tree Tt aims to cre-
ate an independent partition of the high-dimensional feature
space F . A tree is defined as a directed acyclic graph such
that each node consists of a decision function gv,τ :

gv,τ = (f · v ≥ τ) (5)

where v is a vector of dimensionality dim(F) and τ ∈ R
is a threshold. Note that v has a single non-zero entry, i.e.
||v||0 = 1. Depending on the result of this decision func-
tion, an incoming pixel x described by f is sent downward
the tree to the left or the right child node. Here, the role of
the vector v is to select a single feature dimension to per-
form the decision, thus yielding axis-aligned splits in F .

Let ∆ be the set of training instances reaching the cur-
rent node, and let ∆l and ∆r be the subsets sent to the left
and right child nodes. The choice of (v, τ) is optimized fol-
lowing a greedy strategy: a set Γ of candidates is generated
randomly and the best (v∗, τ∗) are selected by maximizing
the information gain:

(v∗, τ∗) = argmax
(v,τ)∈Γ

(H(∆)− wlH(∆l)− wrH(∆r)) ,

(6)
with wl = |∆l|/|∆| and wr = |∆r|/|∆|. Based on Shan-
non’s entropy, we define H as

H = −α ·
∫

Λ

P (Ψ|x,D) log (P (Ψ|x,D)) dΨ

−(1− α) ·
∑
A
P (a|x,D) log (P (a|x,D)),

(7)

α ∈ R being a weight that controls the trade-off between
the first term, which is the body pose regression objective,

and the second term, which is the activity classification ob-
jective. Unlike [11] where the authors assume a fixed de-
pendence between both terms, we allow independence be-
tween both terms and allow both to give different contri-
butions to the information gain, modelled by the weight α.
P (Ψ|x,D) is modelled by a multivariate Gaussian distri-
bution with its mean µ(∆) and covariance Σ(∆) estimated
from the subset ∆:

P (Ψ|x,D) = N (Ψ|µ(∆),Σ(∆)). (8)

The body pose regression objective can then be simplified to
1
2 log ((2πe)3N |Σ(∆)|) after solving the integral. Note that
we do not keep the full covariance matrix of Eq. 8 but only
the diagonal elements to enforce independence between all
the joints in a body pose which is similar to the simplifica-
tion that has been applied in [6, 10]. This ensures that the
positions of different limbs are independent e.g. that an arm
is independent of the position of a leg. The activity posterior
P (a|x,D) is modeled using a histogram where each entry
is estimated as the normalized count of training instances
belonging to a given activity:

P (a|x,D) =
|
{
X (i) ∈ ∆, a(i) = a

}
|

|∆|
(9)

By iteratively splitting the nodes, a tree is grown until: (i) a
maximal depth has been reached; (ii) the number of training
instances falls below a predefined threshold; or, (iii) the in-
formation gain is equal to zero, i.e. no good split candidate
has been found. The training of each tree Tt finally results
in a set of leaves which defines the partition over the feature
space F . Intuitively, this hybrid objective function encour-
ages the creation of clusters in the leaves that are consistent
in terms of both joint offsets and activity.

Now, in each leaf, both distributions P (Ψ|x,D) and
P (a|x,D) are estimated. First P (Ψ|x,D) uses the mean-
shift on the set of points reaching it and retains the points
that contribute to the main mode. The main mode and
the corresponding weight, which is equal to the number
of points voting for it, as well as the histogram modelling
P (a|x,D) are finally stored in the leaf.

2.3.2 Forest Prediction

Let D be a previously unseen depth image and let M ={
x(i)
}Ntest
i=1

be the set of Ntest pixels belonging to the fore-
ground region. For each of these pixels, we extract the
corresponding feature vectors and push them through each
of the T trees of the forest. Once a pixel x(i) reaches a
leaf in tree Tt, we gather the stored joint offset distribu-
tion as well as the activity posterior and confidence per
joint. We use the stored main mode in the leaf as an es-
timate for the joint offset vector Ψ̂

(i)
t for the current pixel,



c
(i)
t = [c

(i)
t,1 · · · c

(i)
t,K ] denotes the confidence for each joint

and â
(i)
t denotes the most probable activity within this leaf.

For better readability, we denote M = {Ψ̂(i)
t }, C = {c(i)

t }
and A = {â(i)

t } as the joint offsets, confidence and activ-
ity posterior contributions from all pixels and trees, respec-
tively, where i = 1, . . . , Ntest and t = 1, . . . , T . In the next
section, we describe how to aggregate these contributions
over all pixels to estimate the body pose.

2.3.3 Pose and Activity Estimation

As our forest model provides rich outputs for each pixel,
we can think of two different aggregation scenarios: (1)
predicting the pose ignoring the activity; and, (2) predict-
ing jointly the pose and the activity. We are given a set of
pixel predictions for joint offsets (M,C) and activities A.
The strategy is to select the best subset of pixel/tree contri-
butions, by choosing the 10% most confident contributions
given by C whose offsets from the pixel are within a prede-
fined distance threshold λ. Now, let us briefly describe our
two different scenarios:

◦ Pose estimation ignoring activity posteriors: In this
case, activity information is only used during the train-
ing phase to provide a better clustering. During the test
phase, we only consider the joint offset predictions and
their respective confidence (M,C). The position of
each joint jk is then inferred by aggregating the most
confident contributions, i.e. by calculating the main
mode using meanshift to further increase robustness to
outliers:

jk = meanshift({ψ̂(i)
t,k + X(i) | Ψ̂(i)

t ∈M ,

‖ψ̂(i)
t,k‖ ≤ λ, c

(i)
t,k ≥ γ}),

(10)

where ψ̂(i)
t,k contains the 3D components from the joint

offset vector Ψ̂
(i)
t that correspond to the k-th joint.

γ ∈ R is a threshold for selecting the most confident
predictions, c

(i)
t,k being the components of c

(i)
t for the

k-th joint.

◦ Joint pose and activity estimation: Considering that
a person may perform one of several activities which
were learned during training, we can use the activity
prior to enhance the pose estimation. First, the current
activity is inferred by aggregating all activity estimates
A and choosing the dominant class which we will de-
note a. Once the activity is identified, all pose contri-
butions from differing activities are eliminated and the
remaining predictions are processed as follows:

jk = meanshift({ψ̂(i)
t,k + X(i) | Ψ̂(i)

t ∈M,

‖ψ̂(i)
t,k‖ ≤ λ, â

(i)
t = a, c

(i)
t,k ≥ γ}).

(11)

3. Experiments and Results

In the following section, we demonstrate experimentally
the benefits of integrating the activity prior into the train-
ing phase of our forest to improve the body pose estima-
tion. We start by describing the datasets we recorded and
continue by providing quantitative results for the prediction
scenarios outlined above. We also compare our results to
our own implementation of the regression forest described
in [10]. We opted for the regression strategy instead of the
classification strategy for training the tree structure, because
creating the ground truth needed for the classification is not
within the scope of this work.

Figure 2. On the left: Setup used for the data acquisition. The red
circles show 4 of the 8 infrared cameras from the motion capture
system, and the green circle the position of the Kinect. On the
right: One testing candidate wearing all 15 markers provided by
the motion capture system.

3.1. Data Acquisition

We recorded a dataset consisting of Kinect depth images
at a resolution of 640 × 480 pixels, synchronized with a
marker-based optical motion capture system1. As seen in
Fig.2 on the left, our system consists of 8 infrared cameras
located around the recording area and provides the 3D lo-
cations of the markers shown in Fig.2 on the right with an
average error of less than 0.5mm. After a preliminary body
calibration for each person, the 3D locations of N = 18
body joints is computed in relation to the recorded marker
positions for each frame. These recordings are used for both
training and ground truth in our evaluations. For a total
of 10 persons, we recorded three sequences for each per-
son containing K = 10 activities: golfing, kicking, boxing,
bowling, archery, kneeling, tennis, touching your head and
moving a horizontal and vertical slider, as in a virtual user
interface. One sequence consists of approximately 2,500
frames, captured at 30 frames per second. An example for
each activity is given in Fig. 3 together with the estimated
body pose.

1http://www.ar-tracking.com/



Figure 3. Depth data of a person performing all 10 activities in the following order: golfing, kicking, boxing, bowling, archery, kneeling,
tennis, touching your head and moving a horizontal and vertical slider. The estimated body pose is shown in green.

3.2. Pose Estimation Accuracy

To evaluate the pose estimation capabilities of our pro-
posed algorithm, we relied on two measures. First, the dis-
tance error edist represents the average metric deviation of
the predicted joint positions from the ground truth, either
per joint or averaged over all joints. Second, the accuracy
eacc represents the percentage of frames in the testing se-
quences where the predicted body pose accurately matches
the ground truth. In this context, we consider a pose to be
predicted accurately if all joint locations in this pose devi-
ate less than 0.1 meters from the corresponding ground truth
locations.

All results presented in the remainder of this paper were
obtained in a series of leave-one-person-out validation ex-
periments. Each of the 10 recorded people was consecu-
tively omitted during training and used to test the result-
ing forest. The number of trees have been set to 3, their
maximum depth to 20, and a bandwidth of 0.06m was cho-
sen for the meanshift. Initially, we investigate the influence
of the weighting parameter α that balances contributions of
the pose and activities when training the forest (see Eq. 7).
Fig. 4 shows the mean accuracy for each considered value
of α, averaged over all 10 testing sets. Note that the same
multi-task forest was trained using the activity prior. The
difference is only in how the tree outputs are combined in
the testing phase. Values are provided for the two voting
scenarios employed in the testing phase: (i) predicting the
pose ignoring the activity and (ii) predicting jointly both
the pose and the activity. The best results were achieved for
α = 0.7 that shows an increase of 3.78% in precision com-
pared to the approach of Girshick et al. [10] which in that
case is denoted by α = 1, as no activity classification is per-
formed, and which is represented by the black dashed line
in Fig. 4. In case of simultaneous pose and activity estima-
tion, the accuracy increases by 5.78%. Note that for values
of α starting at 0.4, the accuracy starts decreasing even be-
low baseline regression approach. Manual inspection of the
trees has shown, that from a given weighting in favor of

the activity classification, the objective function starts per-
forming the classification and the regression on the pose in
a serial manner, instead of simultaneously. Consequently,
the maximum depth criterion is reached in parts of the trees
during the training before the poses are properly clustered
in the leaves. This results in a decrease of overall accuracy.

In Fig. 5, the distance error edist is measured per joint
and the comparison of the multi-task forest trained using
the best α = 0.7 with the results of the pure regression on
the pose is shown. Again, all results were averaged over
all different testing candidates. As anticipated after the ac-
curacy analysis in Fig. 4 an increased precision has been
obtained for the majority of the joints. The largest errors
are observed in the arms, which have the highest variability
and thus are most difficult to predict correctly. Fig.4 shows
the confusion matrix for the activity outputs provided by
the forest. While activities such as golf, football, bowling
or kneeling are in general well recognized, others such as
boxing, archery, touching your head or sliders are more dif-
ficult to estimate, and this because of several reasons. First,
these activities involve short movements, which results in
less frames within the training set; second, they contain sim-
ilar poses which leads to a higher confusion between those
activity classes.

4. Discussion

In our multi-task forest model, we chose to assume in-
dependence between body pose and activity class. While
one could argue that this assumption might be too simplis-
tic, this permits us to end up with a single 3D joint offsets
and a class posterior distribution in each leaf. Modeling
dependence between both would require a 3D joint offsets
distribution per class which would have several disadvan-
tages. First, the classification term in the objective function
encourages the separation between the classes. This makes
the computation of class-specific covariance matrices nu-
merically unstable when only few training instances from
a given class are available. Moreover, marginalization over
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with the activity priors and for the best choice of α = 0.7.

the classes is necessary to predict generic poses encountered
in unknown activities. In contrast, as in our first scenario,
one can ignore the activity information stored in the leaf and
still perform generic 3D pose estimation. Of course, we do
not argue that our approach can estimate poses that have not
been seen during training, but we would like to emphasize
on the importance of performing a good pose clustering dur-
ing the training phase. In these experiments, results suggest
that integrating additional activity information during the
forest training permits to improve the body pose clustering
and thereby, the quality of the predictions.

5. Conclusion and Future Work

In this paper, we introduced a novel discriminative ap-
proach integrating activity information at training time
to improve 3D human pose estimation. To this end,
we proposed to formulate the problem as a regression-
classification task, in which each pixel of a depth image is
associated not only to its offsets to all 3D joint positions but

also to a class of activity. Therefore, we used a multi-task
forest which optimizes a mixed classification-regression ob-
jective function during training. This enabled us to use two
new prediction scenarios, one of which can effectively ame-
liorate the human body pose estimation when the activity is
a priori learned. As a side effect, an estimation of the cur-
rently performed activity is given on a per frame base. Us-
ing a motion capture system, we created a dataset including
10 activities performed by 10 people with its corresponding
ground truth 3D body poses. In our experiments, we could
show the benefits of our approach that permits to improve
human pose estimation compared to a pure regression forest
approach. In future work, we want to analyze the effects of
a larger training dataset on the results of the body pose esti-
mation in terms of integrating more people into the dataset
and by introducing new, more diverse activities.
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vances in vision-based human motion capture and analysis.
Computer Vision and Image Understanding, 104(2-3):90–
126, 2006. 2

[15] J. Müller and M. Arens. Human pose estimation with im-
plicit shape models. In Proceedings of the first ACM interna-
tional workshop on Analysis and retrieval of tracked events
and motion in imagery streams, ARTEMIS ’10, pages 9–14,
New York, NY, USA, 2010. ACM. 2

[16] Y. Pekelny and C. Gotsman. Articulated object reconstruc-
tion and markerless motion capture from depth video. Com-
put. Graph. Forum, 27(2):399–408, 2008. 1

[17] C. Plagemann, V. Ganapathi, D. Koller, and S. Thrun. Real-
time identification and localization of body parts from depth
images. In Proc. of the IEEE Int. Conf. on Robotics & Au-
tomation (ICRA), Anchorage, Alaska, USA, 2010. 1, 2

[18] J. Rodgers, D. Anguelov, H.-C. Pang, and D. Koller. Object
pose detection in range scan data. In CVPR (2), pages 2445–
2452, 2006. 1

[19] G. Rogez, J. Rihan, S. Ramalingam, C. Orrite, and P. Torr.
Randomized trees for human pose detection. In Computer Vi-
sion and Pattern Recognition, 2008. CVPR 2008. IEEE Con-
ference on, pages 1–8. Ieee, 2008. 1

[20] L. Schwarz, D. Mateus, V. Castañeda, and N. Navab. Mani-
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