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Abstract. In this paper, we address the problem of 3D human body pose
estimation from depth images acquired by a stereo camera. Compared to
the Kinect sensor, stereo cameras work outdoors having a much higher
operational range, but produce noisier data. In order to deal with such
data, we propose a framework for 3D human pose estimation that relies
on random forests. The first contribution is a novel grid-based shape de-
scriptor robust to noisy stereo data that can be used by any classifier. The
second contribution is a two step classification procedure, first classifying
the body orientation, then proceeding with determining the full 3D pose
within this orientation cluster. To validate our method, we introduce a
dataset recorded with a stereo camera synchronized with an optical motion
capture system that provides ground truth human body poses.
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1 Introduction

Human body pose estimation in depth images has seen tremendous progress
in the last few years. The introduction of Kinect and other similar devices has
resulted in a number of new algorithms addressing the problem of 3D human
body pose estimation [1–4].

Although these Kinect-like sensors work in real-time and usually provide
depth images of a good quality with a small amount of noise and depth errors
as depicted in Fig.1, they also have the disadvantages of only working indoors
and at a very limited depth range. For these reasons, human pose estimation
using Kinect has extensively been used for generic indoor scenarios. Many other
applications however, especially automotive driver assistance, imply the use of
outdoor-suitable sensors as e.g. stereo cameras. Since stereo camera systems are
becoming standard in modern cars, there is a need for 3D human pose estimation
from stereo data. For that reason, we propose a new algorithm using a stereo
camera which provides real time depth images at a range of up to 50 meters,
which is about 5 times higher than indoor sensors. As can be seen in Fig.1, real-
time stereo algorithms integrated in vehicles generally produce noisy images,
where some regions are erroneously fused together (red circles) and the bound-
aries of the objects can be effected by a high number of artifacts (green and blue
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circles). These reconstruction artifacts introduced by stereo reconstruction affect
the results of state-of-the-art methods, like the one of Grishick et al. [2], which
we reimplemented and applied to these data. This is because of the two main
reasons. Firstly, it is very difficult to perform 360 degree pose estimation using
a single forest as there is a high confusion between front and back. Secondly
the feature vector proposed in [1] seems to perform poorly on the stereo data.
Therefore we present a new method for human pose estimation, adapting ran-
dom forest classification and regression methodology into a two step pipeline to
reliably estimate 3D human body pose. The first step consists in classifying the
shape of a person into a cluster which represents its orientation with respect to
the camera. In the second step, the skeleton pose of the person is estimated using
a regression random forest trained only on the poses of the detected orientation.
In order to make this pipeline operational we introduce a novel grid-based fea-
ture. This feature overcomes several disadvantages that appear when using the
depth comparison feature introduced by Shotton et al. [1] on the stereo data as
shown in the result section.

To verify and validate our method, we introduce a dataset which is recorded
with a stereo camera synchronized with the ART marker based system for human
motion capture 3. The orientation classification is also evaluated on the publicly
available pedestrian stereo data set introduced in [5].

2 Related Work

Many algorithms for human pose estimation from depth images have emerged in
the last years. Shotton et al. [1] propose to use a classification random forest to
classify each pixel of a foreground mask to a given body part, then infer the joint
locations from the predicted body parts. Girshick et al. [2] extended this work by
learning a regression model to directly predict the joint locations. This approach
considerably improved the performance of the previous algorithm especially for
occluded joints. Both works rely on a large synthetic training dataset in order
to achieve good results and target good quality depth images.

In [3], Taylor et al. train a regression random forest to create a mapping
from each pixel of a segmented foreground depth image to a human body model.
Taking into account the forest predictions, physical constraints and visibility
constraints, they use an energy minimization function to predict the pose of the
model and the attached skeleton. This approach improves prediction accuracy
compared to previous works and is able to predict poses in the 360 degree range,
but still relies on the tree structures trained using the classification approach of
[1].

Sun et al. [6] introduce a conditional regression forest learning a global latent
variable during the forest training step that incorporates dependency relation-
ships of the output variables, e.g. torso orientation or height.

A simple depth comparison feature is common to all these methods. Each
dimension of it consists of the difference in depth computed at two random offsets
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from the reference pixel at which the feature is computed. As the foreground
masks in stereo data contain many erroneous boundaries, the feature cannot
be consistently extracted for the same pose. The proposed grid-based feature is
robust to these errors because it consists of cells where depth and occupancy
distribution are averaged over the whole cell.

Plänkers and Fua [7] use an articulated soft object model to describe the
human body and track it in a system of calibrated video cameras, making use
of stereo and silhouette data. Urtasun and Fua [8] additionally introduce a tem-
poral motion models based on Principal Component Analysis. Bernier et al. [9]
propose a 3D body tracking algorithm on stereo data. The human body is repre-
sented using a graphical model and tracking is performed using non-parametric
belief propagation to get a frame by frame pose. Unlike the three previously
mentioned works, which require initialization and track the human pose, our
proposed method works on single frames and performs discriminative pose esti-
mation. Up to the best of our knowledge, this problem has not yet been addressed
for the kind of noisy input data as produced by stereo cameras or similar devices.

Keskin et al. [10] use a two-layer random forest for hand pose estimation.
First, the hand is classified based on the shape, then the skeleton is determined
for the given shape cluster using a regression forest. Though similar to [10], we
introduce a novel grid-based feature and a two stage classification method for
human pose estimation in noisy stereo data.

In [11], Enzweiler and Gavrila propose an algorithm for single-frame pedes-
trian detection and orientation estimation based on a monocular camera, where
orientation is divided into 4 directions. In contrast to this, the proposed method
is based on the depth information from the stereo camera and the orientation
clusters are encoding direction as well as different poses within this direction.

3 Method

This section introduces the grid-based feature vector which is used both, for the
classification of human body orientations and the human pose estimation per
determined orientation and describes the two step classification pipeline. The
first step involves determining the human body orientation. While the second
computes the 3D pose of a skeleton choosing from poses of the estimated ori-
entation cluster. Finally, we describe how the classification and pose prediction
step are combined.

3.1 Grid-based Feature

The proposed grid-based feature divides the shape of a person into arbitrary
cells, then averages over depth values and occupancy distributions.

Let Ω ⊂ R2 be a segmented foreground mask in a given image. The construc-
tion of the feature vector consist of 4 consecutive steps. The first step determines
the bounding box around the foreground mask. In the second step, the bounding
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box is divided into an n×m grid of cells ci,j . Note that this division is scale in-
variant, as the bounding box, regardless of its actual size, is divided into the same
number of cells. In the third step, we attribute each pixel of the foreground to its
corresponding cell and determine the median position, xci,j ∈ R and yci,j ∈ R
and median depth zci,j ∈ R in each cell. This cell structure now represents a
very simple encoding of the shape of a person. If a cell is left unoccupied, it is
assigned a very high value. Finally, the pixel-wise grid-based feature is given by:

fpk = {xk−xc1,1 , yk−yc1,1 , zk−zc1,1 , . . . , xk−xcn,m , yk−ycn,m , zk−zcn,m} (1)

for a pixel pk = {xk, yk, zk}. Figure 1 shows the different steps of generating
the feature vector. In this way, the feature vector is able to ignore small errors
of the stereo algorithm especially around borders and systematic errors of the
algorithm are taken into consideration as shown in Fig. 1 (b). The result section
provides analysis of the influence of the feature dimension on the performance
of the classifier.

(a) (b) (c)

Fig. 1: (a,b): Comparison between the data quality acquired with Kinect(a) and
with the stereo camera(b). (c) Different stages of creating the feature vector
here for 5× 7 cells from left to right: the bounding box tightly laid around the
foreground mask, the subdivision of the bounding box into a grid of cells, the
computed median in each cell in red, the feature vector for a randomly chosen
pixel in green and the connection to each cell median in yellow.

3.2 General Theory on Training Random Forests

A random forest is an ensemble of decorrelated binary decision trees. It is trained
on a dataset ∆, consisting of pairs ψi = {fi, li} of feature vectors f and the labels
l , learning the mapping from the features to the labels. Each tree is trained on a
subset of the training data ensuring that the trees are randomized. At each node
of the tree, a decision function gν,τ (f) ≡ ν ∗ f < τ is trained sending samples to
the left child node if this condition is verified else to the right child node, where ν
chooses exactly one feature dimension thus creating axis aligned splits. In order
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to train this decision function, at each node, a subset of all feature dimensions
is randomly chosen and for each feature, n thresholds are generated, separating
the incoming samples ∆ into left and right subsets ∆l and ∆r. For each of these
splits, an information gain is computed:

Iν,τ = −|∆l|
|∆|

H (∆l)−
|∆r|
|∆|

H (∆r) (2)

where H is an entropy function depending on the kind of random forest and
|·| denotes the number of elements in a set. The final decision function gν∗,τ∗

is given by finding argmaxν,τ (Iν,τ ). This process is repeated iteratively until a
leaf node is reached, which is defined by the following criteria: (i) the maximum
depth is reached, (ii) a minimum number of samples is undercut or (iii) the
information gain falls below a certain threshold. In the leaf nodes, all incoming
samples are used to compute a posterior distribution which depends directly on
the kind of forest trained.

3.3 Orientation Classification

The goal of the orientation classification is to assign the current foreground mask
to its corresponding cluster containing all the poses of a specific orientation in
relation to the camera. To achieve this, clusters are created using the motion
capture data acquired for each pose and a classification random forest is trained
to classify each pixel into the correct cluster.
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Fig. 2: (a)30 Orientation clusters obtained with k-means clustering. For such a
large number of clusters, the poses are divided by orientation but also broadly
into arm and leg movements. (b) Orientation classification results for different
sizes of the grid like feature and different number of orientation cluster.

Generation of Orientation Clusters. The clusters are generated in an unsuper-
vised manner, using the motion capture data from the training dataset. For each
pose, the angles between all neighboring joints are computed. Clustering is done
using the k-means approach on these joint angles. In case k-means is run on the
euclidean distances of joint positions in 3D space, the algorithm not only sepa-
rates poses in terms of joint angles but also people of different heights. By using
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only the joint angles and deliberately omitting limb lengths, we get consistent
clusters for different poses with regard to the overall orientation of the person.
K-means relies on initial seeds to create clusters and results can vary depending
on those seeds. In order to achieve a certain level of independence from this, we
run 100 instances of k-means and choose a cluster combination which is most
often reached during this process. The influence of the number of clusters is an-
alyzed in the Sec 4. Although other clustering algorithms, e.g. mean shift [12]
were tested, they didn’t give satisfactory results. Since fixing the bandwidth of
mean shift by hand is not trivial. K-means was the final choice for clustering.

Classification of Orientation Clusters. The classification random forest is trained
using the grid-based feature to classify each pixel to the correct cluster. Shan-
non’s entropy is used for the information gain. Additionally, we use the ran-
dom field based reweighting function described in [13]. This reweighting scheme
takes into account the class distribution of the full training dataset, instead of
reweighting only the samples in the current node, which was shown to yield more
accurate results. The information gain I is rewritten as:

Iν,τ = −
∑

i∈{l,r}

Z (∆i)
∑
c∈C

n (c,∆i) log

(
wcn (c,∆i)

Z (∆i)

)
(3)

where ∆0 is the total training set, n (c,∆i) is the number of occurrences of

class c in the subset ∆i, and wc =
∑

k∈C n(k,∆0)

n(c,∆0)
is the weight obtained by

dividing the total number of samples k in the dataset ∆0 by the number of
occurrences of class c. It is lowest for the most represented class and vice versa.
Z (∆i) =

∑
k∈C wkn (k,∆i) is analogous to the partition function in a random

field and represents the weight of a given subset ∆i. It replaces the weight
|∆l|
|∆| in Equation 2. The detailed derivation of this formula from the standard

Shannon’s entropy is presented in the works of Kontschieder et al. [13] where this
new information gain was first introduced. The leaf nodes store the distribution
of classes of all incoming points as a histogram.

3.4 Pose Estimation per Orientation Cluster

One regression forest is trained for the pose estimation of each cluster. For
each tree, the training set consists of pixels obtained from a bootstrap of the
training images belonging to a given cluster. The ground truth joint positions
are provided by a motion capture system, as will be explained in Sec. 4.1. The
training dataset consists of pairs of pixel-wise features as described in Sec. 3.1 and
labels containing the offset from the given pixel to all joint positions. For a given
pixel pi(xi, yi, zi) and the pose J = {j1, . . . , jN} consisting of N joints, the label
is given by Ψ = {ψ1, . . . , ψN}, with each ψk = (jk,x − xi, jk,y − yi, jk,z − zi).
During training we iteratively search for the optimal split in each node. As shown
in [2], the body joints can be modeled using a multivariate gaussian distribution.
Following this idea, we can model the information gain based on the differential
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entropy of gaussians and assume independence between the different joints. The
entropy function H in the information gain function can thus be reduced to:

H (∆) =
1

2
log
(

(2πe)
3N
∣∣∣Σ(∆)

∣∣∣) (4)

where Σ is the diagonal of the covariance matrix of the joint positions and N
is the number of joints. Once a leaf node criterion is fulfilled, the mean shift is
computed on all incoming points for each joint and the main mode is stored with
its weight, equal to the number of points voting for the main mode .

3.5 Prediction Pipeline

For each image with an unknown pose, the grid-based feature is computed for a
random subset of pixels from the foreground mask. They are then sent through
all trees of the orientation classification forest. The histograms, containing the
distribution over orientation clusters, extracted from all leafs are averaged over
all pixels and trees. We retain the three best orientations for the pose estimation.
In the pose estimation step, all pixels are sent through the forests belonging
to those three best orientation clusters. The final pose aggregation is done by
applying mean shift to the predictions for each joint separately and choosing the
main mode as the prediction outcome.

4 Experiments and Results

4.1 Data Acquisition

In order to be able to test our algorithm, we have created a new dataset, using
a stereo camera and a motion capture system. Since the mocap system does not
work outdoors, the training data was acquired indoors. The training set consists
of sequences depicting 10 people performing various walking and arm movement
motions. During the acquisition the actors were wearing 14 markers which reflect
the infrared light emitted by 8 infrared cameras and are used to provide ground
truth skeleton positions for each frame. The dataset consists of 25000 frames.

4.2 Orientation Classification

Proposed Dataset: In this paragraph, we analyze the orientation classification
part, described in Section 3.3. The evaluation is twofold, first we analyze how
the number of clusters affects the classification outcome, then we evaluate the
influence of the number of cells of the feature vector and compare to the depth
comparison feature. The number of clusters were set to 10 and 30 during the
experiments. For the feature vector, we perform an evaluation progressively in-
creasing the number of cells from 3× 3 to 11× 11 in steps of 2. The maximum
allowed tree depth is set to 20, and each forest consists of 5 trees. All results are
averaged over a cross validation. For each validation, the forests were trained on
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8 people and tested on the remaining 2. Results can be seen in Fig.2 (b). The
best results are achieved for 30 clusters. There are two important observations
regarding the feature vector. Firstly, dividing the feature into too many cells,
especially along the y-axis, decreases the overall performance of the feature. Es-
pecially for side views and poses where all limbs are close to the body, a fine
grid along the y-axis negatively effects the noise reduction properties for which
the feature was designed. Secondly, the feature vector seems to perform best if
the ratio between the number of rows and columns is closer to the height versus
width ratio of the human body.

In order to compare the grid-based feature to the feature used in [1–3], we
trained a random forest sampling 500 feature candidates and 20 thresholds at
each node with a maximum probe offset of 1.29 pixel-meters, identical to those
proposed in [1]. All other parameters were kept identical to the other experi-
ments. The grid-based feature achieved 81.4% and 89.9% for 10 and 30 clusters
respectively compared to 64.6% and 72.3% for the depth comparison feature
used in [1].
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Fig. 3: Evaluation of the grid-based feature vector with regard to the number of
clusters and the number of cells in the grid. (a): The accuracy per joint (b):error
in cm per joint.

Daimler Pedestrian Segmentation Benchmark: In order to show that the ap-
proach also works outdoors, we evaluate the orientation classification on the
publicly available dataset of Flohr and Gavrila [5], consisting of 785 single dis-
parity images of pedestrians at various distances from the camera. This dataset
contains annotated groundtruth for the foreground masks of the pedestrians but
does not contain orientation information. To evaluate our approach, we sepa-
rate the orientation clusters of our approach into 8 directions with regard to the
camera {front, front-left, left, back-left, back, back-right, right and front-right},
choosing for each of the generated clusters the dominant torso orientation. Since
the ground truth pose is not available for this dataset to determine the correct
cluster, we choose visually the closest orientation used for the manually labeled



Human Pose Estimation in Stereo Images 9

clusters. Tests were run for the 30-cluster training setup using the best feature
from the previous experiments, achieving 78% accuracy.

It is noteworthy that most of the disparity images provided by the dataset
are much smaller in size than the training images. In only about half of the
provided images, the height of the foreground mask is higher than 120 pixels,
which is roughly half of the average height of the training images. This shows
that our algorithm and especially the feature work well even if the size of testing
images is a fraction of the size of the training images In Fig. 4, we show some
example images from the dataset with the determined orientation.

Fig. 4: Example images from the dataset of [5]. The ground truth label is denoted
in green and the prediction in red. The yellow number displays the percentage
of foreground pixels voting for the predicted cluster. We show the original image
instead of the depth image, as it is visually more helpful.

4.3 Pose Estimation

The evaluation of the pose estimation is done for cluster sizes of 10 and 30. For
each scenario, we use the best feature from the previous evaluation and apply
the complete prediction pipeline as described in Section 3.5. First the classifica-
tion forest determines the correct orientation cluster, then the regression forests
from the three most probable clusters are used to predict the pose. We consider
a joint to be correctly estimated if it is within a radius of 10 centimeters of the
ground truth joint position. This follows the evaluation criteria established by
several related works [1, 2]. Results are shown in Fig.3 (a). Fig.3 (b) shows the
median error per joint. We explicitly use the median, as an error in the orienta-
tion classification is propagated to the pose estimation producing wrong poses
with per joint errors of up to 1m. By displaying the median error, we can show
that if the correct orientation has been determined, the pose prediction produces
good results for all different orientations. Examples are shown in supplementary
materials video. To compare our grid-based feature to the depth comparison fea-
ture of [1], we train regression forests for each cluster using the same parameters
as have been described for the orientation classification. For a fair comparison
between both features in terms of pose regression, we use the output of the clas-
sification forest trained with the grid-based feature. This way, we do not penalize
errors of the depth comparison feature in the orientation classification step. The
grid-based feature achieved 75.8% and 84.9% for 10 and 30 clusters, compared
to 71.3% and 80.0% for the depth comparison feature.
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The prediction pipeline including feature computation, orientation classifica-
tion and the pose prediction run in real-time at 35 fps on an Intel(R) Core(TM)
i5-2540 CPU.

5 Conclusion

We propose a new algorithm for human pose estimation in stereo images consist-
ing of two stages procedure, where we first classify global orientation and then
predict the pose. We introduced a new grid-based feature vector and proved its
effectiveness compared to the commonly used depth comparison feature of [1].
This feature is also used in our two-stage procedure where first a classification
forest was used for orientation prediction and then a regression forest is used for
pose estimation. In the future, we want to include the color information provided
by the stereo camera and consider temporal information to cope with isolated
wrong predictions.
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