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Abstract. In this paper, we address the problem of simultaneous track-
ing and reconstruction of non-planar templates in real-time. Classical
approaches to template tracking assume planarity and do not attempt
to recover the shape of an object. Structure from motion approaches use
feature points to recover camera pose and reconstruct the scene from
those features, but do not produce dense 3D surface models. Finally, de-
formable surface tracking approaches assume a static camera and impose
strong deformation priors to recover dense 3D shapes.
The proposed method simultaneously recovers the camera motion and
deforms the template such that an approximation of the underlying 3D
structure is recovered. Spatial smoothing is not explicitly imposed, thus
templates of smooth and non-smooth objects can be equally handled.
The problem is formalized as an energy minimization based on image
intensity differences. Quantitative and qualitative evaluation on both
real and synthetic data is presented, we compare the proposed approach
to related methods and demonstrate that the recovered camera pose is
close to the ground truth even in presence of strong blur and low texture.

1 Introduction

Template tracking is one of the fundamental problems in computer vision and
a multitude of impressive techniques have been proposed in the literature [12,
1, 4, 9]. They mainly concentrate on planar templates and estimate camera mo-
tion by energy minimization. The applications of template tracking are wide
and include, but are not limited to, vision-based control, human-computer in-
terfaces, augmented reality, robotics, surveillance, medical imaging and visual
reconstruction. In many applications, the planarity assumption is good enough,
but in general that is not the case. For that reason Silveira and Malis [17] and
Bartoli and Zisserman [2] considered computing 2D warpings of the reference
templates while tracking them. The real depth and camera motion are then
obtained by decomposing the estimated warpings.

Motivated by the fact that the world is not planar and driven by the emerging
needs of simultaneous recovery of the structures and motion of the camera, we
address the problem of simultaneous tracking and reconstruction of a non-planar
template in real time. The model of the template is represented as a triangular
mesh. We start with a planar shape and simultaneously recover camera motion
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and deform the shape such that the underlying 3D structure is approximately
recovered. As we use all pixels of the template, the object does not necessarily
have to be well textured and contain many feature points. This is different from
classical Structure from Motion (SfM) and Simultaneous Localization and Map-
ping (SLAM) techniques that primarily rely on sparse feature points, such as
e.g.Klein and Murray’s PTAM [10] of which Newcombe and Davidson [13] use
the camera poses and sparse feature map to create a dense reconstruction. They
perform very well, but depend on the amount of the observed features and tend
to be sensitive to the amount of blur.

Unlike methods which rely on prior deformation models [16, 15] and assume
fixed camera position, we solve for camera motion and do not impose any con-
straints on the model deformation, therefore we can equally reconstruct and
track templates that are smooth or have creases. However, since the problem is
ill-posed, we have made certain assumptions: we use templates of a predefined
size, assume that in its initial/reference position the entire template is visible
and is not self-occluded, and finally we restrict mesh vertices to only move along
the camera rays, thus having one degree of freedom per vertex.

We evaluated the performance of our method on both synthetic and real
video sequences. Further, we performed quantitative analysis and compared the
method to ground truth measurements and to standard planar template tracking
methods and PTAM. Our experiments indicate that, even with the approximate
shape we recover, the tracking precision increased and turned out to be much
more stable than tracking of planar templates and deals better with blur and
low-textured surfaces than PTAM.

In the remainder of the paper, we first discuss related works, then describe
our method in detail, finally present experimental results and conclude.

2 Related Work

Template tracking has always been assuming the planarity of the object of inter-
est to be tracked. Since Lucas-Kanade [12], the real-time constraint was enforced
and in recent works [1, 3] it became standard. Improvements in convergence speed
and robustness in the calibrated camera setting were especially achieved by the
method of Benhimane and Malis [4]. For those reasons, we in part relied on their
method.

Other researchers [14, 7, 17] also proposed to find deformations of an object
in a sequence of acquired images. These methods generally consist of estimation
of the parameters of the warping function that registers the reference image,
in which the object is mainly planar, to the input image where the object is
deformed. Pilet et al. [14] and Gay-Bellile et al. [7] relied on feature points.
While the former can deal with a huge amount of outliers, the latter is rela-
tively sensitive to them. Datta et al. [5] use affine warps and integrated the idea
of articulated points as hard constraints into the minimization, i.e. they force
patches to move according to their connectivity. Hilsmann et al. [8] re-texture
the surface of a deforming object realistically by estimating both the changes
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in geometry and photometry, they also explicitly model external occlusions to
further improve the quality of the augmentation. Silveira and Malis [17] use 2D
warps and present a generic framework for template tracking which can undergo
deformations. In all of these cases, the warping is done in image space and there-
fore does not provide a 3D shape, but instead 2D warpings of the images as in
deformable registration. To recover the 3D shape, the recovered 2D warpings are
decomposed into a rigid motion and according depths.

On a separate track, deformable surface tracking from monocular videos has
been developed. Because of the inherent ambiguity, deformation models have
been introduced to constrain deformations of particular objects like e.g. paper
and clothes [16, 15, 19]. These approaches generally output the 3D surface meshes.
However, they do not provide the relative camera/object motion in the image
sequence, require heavily textured objects and generally do not work in real-time.

Simultaneous recovery of the camera motion and the 3D shape is also related
to SfM [18] and SLAM [6] techniques. Both techniques strictly rely on image
features and incremental reconstruction of an observed scene, while neither of
them operates on the dense pixel level. The system proposed by Newcombe and
Davidson [13] indeed produces a dense reconstruction using a movable camera;
it relies on PTAM [10] to precisely recover the motion of the camera, they also
use its sparse feature map to initialize a dense optical flow method [20].

Most of the previously mentioned methods are using feature points and/or
define constraints on the possible model deformations. Relying on features usu-
ally implies that the observed object has to be well textured. Instead of using
a set of extracted feature points in the image, we use all available pixels of the
template which in turn enables tracking of low textured templates. We simulta-
neously recover the camera motion and the approximate shape of the non-planar
template. Our method exhibits fast convergence, is robust under blur, works in
real-time and recovers quite precise camera pose given the on-line reconstruction
of the approximate template’s shape.

3 Method

The task of the algorithm is to estimate updates of the mesh M and the camera
pose T given a novel image I of the object and relying of estimates on mesh
and pose, denoted as M̂ and T̂ obtained in the previous frame. We assume that,
ignoring occlusion and drastic lighting changes, the reference image I∗ can be
constructed from I by back-warping each face f given the true pose and the
recovered mesh. Given that we only know their approximations T̂ and M̂ , we
produce an estimated image Î∗ by applying a homography G to each face of
the mesh. This is illustrated in Figure 1(a). As the mesh is defined piece-wise
planar, warping a single face f is conducted by the homography:

G(T,n∗f ) = K(R + tn∗>f )K−1Gf . (1)

Here, K denotes the known 3 × 3 camera intrinsics, n∗f ∈ R3 is the normal of
face f scaled by the inverse of the distance d∗f of the face to the camera center c∗
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(a) Overview of the method
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z∗ = 0c∗

(b) Parameterization of z∗i

Fig. 1. (a) The mesh is overlaid onto the object, with highlighted movable vertices.

Out of the camera image I the estimate of the reference image Î∗ is unwarped. The
error y(x) = Î∗−I∗ is subject to iterative minimization. (b) The vertices of the mesh
are free to move along their respective projection ray, i.e. (u∗

i , v
∗
i ) are fixed but z∗i may

change.

in the reference frame; the camera pose T is decomposed to get R ∈ SO(3) and
t ∈ R3. Finally, the homography Gf is used to apply a 2D translation of the face
to its specified position within I∗. We assume that the updates T(x),n∗f (x) of

the estimates T̂, n̂∗f are reasonably small. They are parameterized in terms of the
camera pose and the mesh deformation x = (ωx, ωy, ωz, νx, νy, νz, ψ1, ψ2, . . . , ψn)

where the first six parameters represent the update of the pose T̂ of the camera,
represented by the Lie algebra of SE(3). The remainder of x represents the
update of the inverse depths ψi = 1/z∗i of the movable vertices.

Deformations of the mesh M∗ are modeled by moving vertices along their
respective rays emanating from the camera center c∗ in the reference view, see
Figure 1(b). Every vertex v∗i is defined via its 2D coordinates v∗i = (u∗i , v

∗
i , 1)>

in I∗ and its depth z∗i w.r.t. the camera center c∗. The normal n∗f of a face f is
computed from its vertices {v∗i ,v∗j ,v∗k} and inverse depths:

n∗f (x) =
n∗

d∗
= K>

[
v∗i v

∗
j v
∗
k

]−>
[ψi ψj ψk]

>
. (2)

This formula was developed by combining the inverted pinhole projection a =
(x, y, z)> = zK−1(u, v, 1)> with the plane equation n>a = d. Note that this
parameterization of n∗f (x) is linear w.r.t. the inverse of the depths.

For the sake of simplicity, we consider only a single face consisting of m pixels
and define the m× 1 error vector y(x) as concatenation of the error measures

yi(x) = Î∗ − I∗ = I (qi)− I∗(p∗i ) (3)

= I
(
d
(
G
(
T̂T(x),n∗f (x̂ + x)

)
p∗i

))
− I∗(p∗i ) (4)

where qi are pixel coordinates in the input image obtained by back-warping
to the reference image and d((u, v, w)>) = (u/w, v/w, 1)> represent normalized
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homogeneous coordinates. The current estimates of the depths is stored in x̂,
thus the update n∗f (x̂ + x) used in Equation (4) is equivalent to the update
1
ẑ∗ ←

1
ẑ∗ + ψ. To increase numerical stability, we add a regularization term to

the cost function via a function r(x) : R6+n → R6+n for n movable vertices in
the mesh, discussed in section 3.1. The cost function can be written as

φ(x) =
1

2

(
||y(x)||2 + λ ||r(x)||2

)
(5)

where the scalar λ is used to balance the squared norms of y(x) and r(x). The
update x is computed by linearizing the quadratic cost function and therefore
solving the linear system(

J>y Jy + λJ>r Jr

)
x = −

(
J>y y(0) + λJ>r r(0)

)
(6)

where Jy and Jr are Jacobians of the data and the regularization terms. This
system is solved iteratively for x using e.g. its pseudo-inverse or Cholesky decom-
position. The Jacobian Jy can be written as the product Jy = JÎ∗JdJG where
JÎ∗ is the gradient of the estimated reference image, Jd and JG are the Jaco-
bians of the projection and the homography. In the spirit of [4], this first order
linearization can be approximated to second order as Jy = 1

2

(
JÎ∗ + JI∗

)
JdJG

by including the gradient of the reference image JI∗ . As shown in the evalua-
tion, this in general increases the convergence frequency of the Gauss-Newton
optimization with low additional costs. The convergence area is increased by
employing multiple levels of an image pyramid.

3.1 Regularization

In case the camera is close to the reference camera, the matrix J>y Jy becomes
increasingly ill-conditioned, i.e. tiny changes in y(0) may provoke huge changes
in x. This is because the projection rays of the current camera are approximately
aligned with those of the reference camera (depicted in Figure 1(b)). In this
degenerate configuration, arbitrary movements of the vertices, respectively their
inverse depth ψi, result in almost identical unwarped reference images Î∗.

However, this configuration can be easily mitigated by adding a regularization
term to the cost function that restrains the vertices in that case. We define r(x)

as r(x) = (01×6, r1(x), r2(x), . . . , rn(x))
>

which currently only operates on the
n movable vertices. We compute ∀i ∈ 1, 2, . . . , n:

ri(x) =
(

1 + λse
−λr||̂t||2

)( 1

ψ̂i + ψi
− µi

)
. (7)

The first part of the regularization term is a weighting factor that penalizes the
degenerate configuration just discussed. The scalars λs and λr determine the
scale and range of the penalty concerning the baseline, empirically λs = λr = 10
gave good results. The second part of Equation (7) is responsible for damping the
deformations and moving them towards their most likely true value. It penalizes
changes of the depths with respect to a reference depth µi of the vertex.
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 frame 7 frame 2 frame 1 - template

(a) Convergence of shape

Convergence frame 1-2

1st order
approx. 2nd order

Convergence frame 2-3

Iteration

1st order
approx. 2nd order

(b) 1st vs. 2nd order

Fig. 2. Evaluation on synthetic data. (a) Sequence of synthetic pyramid, 16 faces and
12 moving vertices were used. Note that the shape quickly converges towards true
shape from the template image (frame 1) to frame 2. (b) The proposed second order
approximation of Jy converges 2-4 iterations earlier in case of slight deformations.

A näıve way of determining µi may consist in computing it as running av-
erage, e.g. updated after every image as µi ← 0.9µi + 0.1/ψ̂i. This method is
simple yet effective in case of a continuously moving camera. However, when the
camera becomes stationary, µi will converge towards the value optimal for only
this local configuration and information from distant successful registrations will
be lost over time.

An improved version of determining µi tries to preserve previous knowledge
about the camera motion. For this, we spatially sample height estimates of the
proposed method on a hemisphere around each vertex using the geometry of the
camera ray of the vertex in I∗ and the current camera ray in I. The samples
are weighted using the angle between the rays, small angles are down-weighted
as they represent (near-) aligned camera rays and thus lead to the degenerate
configuration just discussed. Further we include into the weight the normalized
cross-correlation of the adjacent faces of the vertex in both I∗ and Î∗ to miti-
gate the influence of severely incorrect estimations of the camera pose or vertex
heights. Typically, the value of µi changes rapidly in the beginning as the shape
transforms from the initial estimate towards a more likely shape, but after that
becomes relatively stable given sufficient camera movements.

4 Evaluation

The proposed method was quantitatively evaluated both on synthetic and real
video sequences for which ground truth of the camera pose was available; in case
of the synthetic sequence also the estimate of the shape was evaluated. Further,
we evaluated the method qualitatively on smooth objects and on objects with
creases, using a moving camera. Equally we tested our method on a smoothly
deforming object with a fixed camera. Comparison against PTAM [10] was con-
ducted in presence of several levels of blur. Videos of the evaluations can be
found in the supplementary material.
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proposed avg 0.07
ESM avg 0.16
DP avg 0.30

proposed avg   4.44
ESM avg   9.11
DP avg 15.12

ESM DP proposed method

Fig. 3. Evaluation on real data. Comparison of ESM [3], DP [4] and proposed method.
Poses were compared to ground truth from a mechanical measurement device.

4.1 Quantitative evaluation

Synthetic sequence A synthetic pyramid was created first seen from the top,
then moving towards the lower left corner of the image while rotating. We used
a mesh of 16 faces and 13 vertices from which only the central vertex was fixed.
No regularization was employed as neither noise nor degenerate configurations
are present and only a maximum of five iterations per frame on pyramid level
0, i.e. on the original resolution, were allowed. The method shows low errors in
both pose and shape of the object. The synthetic evaluation is illustrated in
Figure 2 and in the supplementary material. When comparing the first order
linearization of Jy with the presented approximated second order linearization,
we observed that they have similar convergence rate when there is strong motion
in the depths like in frames 1-2 in Figure 2(b) . However, when the estimation
of the structure is changing just slightly like in frames 2-3 shown on the bottom
in Figure 2(b), 2 to 4 iterations may be saved and our results match those of
Benhimane and Malis [4] in terms of convergence.

Real sequence To perform a quantitative evaluation with real camera images, we
have created a sequence using a real camera mounted on a mechanical measure-
ment device that provided a ground truth pose of the camera computed similarly
to Lieberknecht et al. [11]. We made a sequence for tracking low textured tar-
get, a computer mouse on a mouse pad. Similar to the synthetic sequence, this
sequence starts with an almost fronto-planar view such that we can create a
reasonable reference image from it by rectifying the first image given the ground
truth pose. The sequence was used to evaluate our method, ESM [3] and the
calibrated multi-planar tracking method [4] referred to as DP. The algorithms
were given identical parameters, i.e. 2 pyramid levels and 5 iterations per level.
Poses were computed from the 2D–3D correspondences of the corners of the
templates. As can be seen in Figure 3, our method outperforms planar methods
in terms of accuracy on the pose of the camera. Furthermore, we evaluated the
robustness of the proposed method with respect to blur introduced by consecu-
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r 
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level of blur

0 1 2 3 4

proposed
full 4.44, 1.62 4.32, 1.49 4.17, 1.43 4.04, 1.39 3.39, 1.38

cropped 4.44, 1.62 4.31, 1.48 4.17, 1.43 4.03, 1.39 3.39, 1.38

PTAM
full 2.49, 0.70 1.70, 0.58 2.00, 0.73 1.70, 0.60 1.61, 0.62

cropped 2.95, 1.44 4.59, 1.98

Fig. 4. Quantitative evaluation against blur. A (5×5) mean filter was applied consec-
utively 0–4 times to evaluate the robustness of the method to blur. Left: Frame of
the blurred image sequences given to PTAM (left) and proposed method (right). In
case of PTAM the plane indicates the ground plane PTAM fits to available features
after initialization. In our case we show the deformed 3D mesh model. Right: Error in
translation for cropped images and blur levels 0 and 1, below a table displaying the
mean error and standard deviation of the methods.

tively applying a (5×5) mean filter. This kind of blur can be found in real data
when the object is out-of-focus given a fixed-focus camera. We observed that
the accuracy of the method did increase slightly as the blur increased. The same
sequences were given to PTAM. As poses of PTAM are defined in an rather
arbitrary coordinate system, we aligned them by minimizing the sum-of-squared
distance to the ground truth, solving for a 6-DOF transformation and 1-DOF
scale. In order to make fair comparisons, we focused only on the area belonging
to the object and cut the markers out. To avoid synthetic stable features, like
those on the edges of the cut, we slightly randomized the borders of the mask.
PTAM could not successfully initialize starting from the second level of blur,
as depicted in Figure 4, since there were very few features on the lowest image
pyramid level to be tracked. However the accuracy of PTAM is superior when
using the full image as shown in Figure 4. The proposed method is giving the
same results both for full and cropped image.

4.2 Qualitative evaluation

To analyze how the method works in case of a smooth object and in case of
object with creases, we evaluated it by tracking a cup and a truncated pyramid.
The method was able to track both objects well and approximated the shapes
reasonably. As noted in [5], best results are obtained when the structure of the
mesh is able to express the structure of the underlying object. Furthermore,
we evaluated the robustness of the method when tracking deformed objects.
Although this violates the rigidity assumption, the method copes well with slight
deformations as shown in Figure 5. In the cup sequence, after estimating the
shape we manually disabled the estimation of the depths and used the method
only for tracking the pose. We show that the pose is well estimated even under
severe occlusion of up to 50% of the mesh. On a 2.5 GHz dual core notebook,
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(a) Evaluation for rigid objects.

(b) Evaluation for a deforming object.

Fig. 5. Qualitative evaluation of recovered shapes. The first frame of the sequence
(shown left-most) is used as template. (a) Shape recovery of the rigid objects from
moving camera where also the camera motion is estimated. (b) Recovering shape of
the deforming object where the camera is not moving. Although the method was not
designed for such situations, we still managed to apply it to recover moderate object
deformations.

the speed is typically 10–30 ms per frame when estimating the camera pose and
around 40–60 ms when additionally estimating the deformations. The timings
were obtained using pyramid levels 3 and 2, at most 5 iterations per level and a
mesh of approximately 200× 200 pixels on level 0. Most of the time is spent in
the direct computation of J>y Jy.

4.3 Discussion and future work

During the evaluation, we observed that the main source of error originated from
fast translational camera motion as this violates our assumption of small motion
considerably. However, we believe that this could be mitigated by using active
search, e.g. by employing a motion model. To further increase robustness, we
plan to investigate in a regularization term that penalizes deformation caused
by errors in camera tracking. In addition, we plan to add the possibility of
dynamically extending the deformed template as camera moves around.

5 Conclusion
We presented a real-time method for simultaneous tracking and reconstruction
of non-planar templates. While we remove the planarity constraint inherent to
classical template tracking, we still benefit from all available pixels of the tem-
plate when building our objective function. We do not impose any constraints
on the model deformation, therefore we can equally reconstruct and track tem-
plates that are smooth or have creases. The tracking precision of our method is
very good compared to the ground truth. This proves that even with only an
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approximate shape of the template recovered on-line, the tracking is more stable
compared to planar template tracking methods. Furthermore, and in contrast
to SfM and SLAM methods, the proposed algorithm still works well for low
textured objects and in presence of strong blur.
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