RGB-D Camera-Based Parallel Tracking and Meshing

Sebastian Lieberknecht*
metaio GmbH

metaio GmbH

Andrea Huber®

Slobodan llict Selim Benhimane®
TUM metaio GmbH

ST

BSVAR 2011)

Figure 1: A real-time tracking method based on a sparse 3D map is estimating in real-time a consumer RGB-D camera’s motion with respect to
an unknown environment (left). At the same time, the method is reconstructing the environment as a dense textured mesh (center). The parallel
tracking and meshing opens the way to unprecedented possibilities for several AR applications as the camera motion is accurately estimated
and the augmentations are seamlessly integrated in the surrounding environment thanks to convincing occlusions (right).

ABSTRACT

Compared to standard color cameras, RGB-D cameras are designed
to additionally provide the depth of imaged pixels which in turn
results in a dense colored 3D point cloud representing the envi-
ronment from a certain viewpoint. We present a real-time track-
ing method that performs motion estimation of a consumer RGB-D
camera with respect to an unknown environment while at the same
time reconstructing this environment as a dense textured mesh.

Unlike parallel tracking and mapping performed with a standard
color or grey scale camera, tracking with an RGB-D camera al-
lows a correctly scaled camera motion estimation. Therefore, there
is no need for measuring the environment by any additional tool
or equipping the environment by placing objects in it with known
sizes. The tracking can be directly started and does not require any
preliminary known and/or constrained camera motion.

The colored point clouds obtained from every RGB-D image are
used to create textured meshes representing the environment from
a certain camera view and the real-time estimated camera motion is
used to correctly align these meshes over time in order to combine
them into a dense reconstruction of the environment.

We quantitatively evaluated the proposed method using real im-
age sequences of a challenging scenario and their corresponding
ground truth motion obtained with a mechanical measurement arm.
We also compared it to a commonly used state-of-the-art method
where only the color information is used. We show the superior-
ity of the proposed tracking in terms of accuracy, robustness and
usability. We also demonstrate its usage in several Augmented Re-
ality scenarios where the tracking allows a reliable camera motion
estimation and the meshing increases the realism of the augmenta-
tions by correctly handling their occlusions.

*e-mail:sebastian.lieberknecht @ metaio.com
fe-mail:andrea.huber @metaio.com
*e-mail:slobodan.ilic@cs.tum.edu
Se-mail:selim.benhimane @metaio.com

1 INTRODUCTION

For several vision-based Augmented Reality (AR) applications, de-
termining the relative motion of the camera with respect to an
unknown environment with end-user hardware was made possi-
ble thanks to approaches inspired from Davison’s MonoSLAM [7].
This approach and its successors are performing real-time tracking
of visual features extracted from the captured images. The features
need to be seen in many images for which the camera has performed
a motion that is sufficient enough for estimating the depth and con-
sequently reconstructing the 3D coordinates of the features. This is
generally based on the structure-from-motion principle. In order to
get correctly scaled 3D coordinates of the reconstructed points and
therefore a correctly scaled camera motion, these approaches usu-
ally require an explicit manual measurement of some parts of the
environment or equipping it with known objects. Another possib-
lity to induce scale is to ask the user to perform a constrained cam-
era motion — often the camera needs to move between two known
frames such that its optical center position varies with a metrically
known scaled translation.

We see here some limitations of the existing approaches. First,
before reconstructing a point and adding it to the map, the point
needs to be tracked over multiple frames that have an estimated
camera pose. This delays the participation of a newly visible physi-
cal point in the estimation of the full camera motion. Second, either
the environment needs to be partially measured or pre-equipped or
the user needs to have some experience with the system in order to
correctly perform constrained camera motion that allows a correct
scale estimation. Third, since the existing approaches are mainly
based on visual features (often extracted where some texture gradi-
ent is available), the online map that is obtained from the existing
approaches is generally sparse and could not be used, even after
post-processing and meshing, for occlusion handling or similar AR
tasks that require a meshed version of the environment.

Camera systems that are designed to additionally provide a cor-
rectly scaled depth of an imaged pixel would solve the above prob-
lems. However, for several years, typical depth camera systems had
low resolution, noisy measurements, restricted working area and/or
high cost. Whether they are based on Time-Of-Flight technology

or on standard Digital Fringe Projection, these camera systems did
not have the huge impact that the advent of the Microsoft Kinect has
had in last couple of months. In fact, this end-user low cost and rela-
tively high resolution RGB-D camera is based on RGB camera reg-
istered to a stereo system composed of an infra-red structured light
projector combined with an infra-red camera which allows for pixel
depth computation. Despite the relatively high 640x480 resolu-
tion of the produced depth maps, the Kinect does not provide depth
for each pixel of the color image; furthermore there is both regular
sensor noise and especially quantization noise present which signif-
icantly increases with distance. Originally targeted for indoor use
and intended for gaming devices, the Microsoft Kinect got an even
higher interest from the research community once PrimeSense, the
creator of its reference design, released official drivers for this de-
vice.

1.1 Contributions

In this paper, we investigate how such device allows a huge step
forward in the AR field. In fact, we propose a method based on a
consumer RGB-D camera that estimates the camera motion with re-
spect to an unknown environment and that builds in the same time a
dense meshed and textured version of the surrounding environment.

The tracking output is a correctly scaled camera motion with no
need for measuring the environment or equipping it with known
size objects and with no need for preliminary known and/or con-
strained camera motion. Thanks to the RGB-D camera, the sparse
map used for the tracking is composed of back-projected feature
points that are guaranteed to be on physical surfaces on which the
structured light is projected.

When meshing the environment, for every captured camera
frame, we mesh only the colored 3D points that are imaged for the
first time and then align that mesh with respect to a common coor-
dinate system using the estimated camera motion. In order to deter-
mine whether a 3D point has already been used for the meshing or
not, we render in the background the complete meshed version of
the environment and create masks based on the depth buffer which
tells whether a currently observed 3D point is already represented
in the meshed or should be potentially integrated.

For validating the tracking approach, we recorded a set of se-
quences with an RGB-D camera attached on the end-effector of
a high precision mechanical measurement arm. We compared the
proposed approach with the commonly used state-of-the-art method
PTAM [13] where only the color information is used. The proposed
parallel tracking and meshing system provides the camera motions
for more images, is generally more accurate and precise, requires
less input data and is correctly scaled. Thanks to the tracking per-
formance and the high density of the meshed map, we are able to
use it in several AR scenarios where the tracking allows a reliable
camera motion estimation and the meshing increases the realism of
the augmentations by correctly handling their occlusions.

The paper is structured as follows. We will first position our
contribution with respect to the existing and related state-of-the-art.
Then, we will describe the approach used for the real-time RGB-D
camera motion estimation. We will later explain the meshing of the
surrounding environment. For comparing the proposed approach
with PTAM, we will first explain how the ground truth data used for
the benchmarking was generated, then we will present the results
of the evaluation. We will later illustrate the usage of the proposed
method on different AR scenarios and conclude with summarizing
the different contributions and possible future work.

2 RELATED WORK

Visual real-time tracking with respect to known or unknown scenes
is essential and an incontrovertible component of vision-based AR
applications. There were numerous algorithmic contributions in
the topics in the last few years. But, if Davison ef al.’s seminal

MonoSLAM [6, 7] showed that it is possible to perform Simulta-
neous Localization and Mapping (SLAM) using a single camera on
end-user hardware in real-time, Klein and Murray with PTAM [13]
showed that adapting and updating the algorithms used for estimat-
ing the camera motion in AR according to end-user available com-
putational capabilities allows to get impressive tracking results in
small AR workspaces. In fact, estimating the camera motion by
tracking the environment and in parallel building a feature-based
sparse map was made possible thanks to the generalization of multi-
core processors on desktop computers and laptops.

Many extensions of the above approaches like [8, 9] or [4]
showed that it is possible to scale the SLAM approaches to a larger
environment e.g. by handling multiple local maps. Recently, New-
combe and Davison [16] showed that with a higher computational
power where a single standard hand-held video camera is attached
to a powerful PC and with the usage of the computational power of
the Graphics Processing Unit (GPU), it is possible to get a dense
representation of a desktop scale environment and highly textured
scene while performing the tracking using PTAM. The density of
the online created map was increased with stereo-dense matching
and GPU-based implementations. Sdnchez et al. [17] showed that
the GPU could also be used for effectively replacing the (global)
bundle adjustment component of optimization-based SLAM sys-
tems such as PTAM by an inherently parallelizable refinement step
based on Monte Carlo simulations, thus freeing resources on the
CPU for other tasks.

Also, recently, Castaneda et al. [3] replaced the generally used
standard hand-held video camera with a combination of a Time of
Flight (204 x204) resolution camera and a (640x480) RGB camera
and modified the measurement model and the innovation formulas
of the Extended Kalman filter used by MonoSLAM to improve the
tracking results. This work did not use a powerful PC but instead a
typical expensive depth camera system.

The very recent release of the Xbox 360 Kinect as Microsoft’s
end-user device had a big impact in the consumer gaming hard-
ware. It is a low cost and relatively high resolution RGB-D camera
consisting of a stereo system composed of an infra-red structured
light projector combined with an infra-red camera allowing pixel
depth computation and to which an RGB camera is registered. This
device has directly been used by [12] for surfel-based modeling of
indoor environments. The system proposed by [12] does not run
in real-time and works on recorded videos, it does not perform any
real-time or inter-frame tracking.

In this paper, we propose to use such RGB-D camera in order to
perform parallel tracking and meshing of the environment in real-
time. The tracking method performs motion estimation of the cam-
era with respect to an unknown environment and at the same time
we reconstruct this environment as dense textured mesh online. We
demonstrate the usage of this system in several challenging AR sce-
narios and applications.

3 REAL-TIME CAMERA MOTION ESTIMATION

A typical SLAM system consists of three major parts: Map build-
ing, Inter-frame Tracking and Relocalization. The proposed system
uses a map for tracking that consists of RGB-D keyframes with as-
sociated camera poses and sparse 3D points with descriptors orig-
inating from the keyframes. The keyframes are selected images
which are captured at camera poses that are far from each other in
terms of rotation and translation of the camera.

In the following, we will describe every stage and how they take
the depth image into account.

3.1 Inter-frame tracking

The camera motion estimation is realized with sparse optical flow
on projections of reconstructed points from the map from the last to

Figure 2: The sparse feature point cloud created online during the
real-time tracking of a challenging industrial scene that has multiple
self-occlusions and is mainly composed of metallic, reflective and
poorly textured surfaces. The features from the closest keyframe are
shown in red. The coordinate systems correspond to the keyframe
positions. The poses of the current camera and of the closest
keyframe are highlighted. The dense reconstructed mesh which is
also created online during the real-time tracking is overlaid in order
to better understand the localization of the features.

the current camera image. The updated 2D positions are then used
to estimate the pose from 2D-3D correspondences.

In particular, we use the pyramidal implementation of Lucas-
Kanade optical flow algorithm [15, 2]. Using the optical flow from
the last to the current image is very robust against lighting changes
and sudden motions, however prone to drift as small inaccuracies
accumulate. To mitigate drift, we determine the closest keyframe
in terms of rotation and translation of the camera and reproject fea-
tures of the map into the current image. As the pose may already in-
corporate drift, we update the features’ positions individually again
with Lucas-Kanade.

The neighborhood of the updated position is checked for photo-
consistency using the Sum-of-Squared Differences of a window
around the 2D position of the features. However, we assume that
the tracker did not drift arbitrarily, thus we enforce the displacement
of the 2D feature to be less than a given threshold. This threshold
is used to avoid arbitrary movements of features on near-uniform
surfaces.

The pose is computed using non-linear robust pose estimation,
parameterized with exponential maps. The pose of the last camera
frame serves as initial guess for the estimation when available. To
limit the influence of outliers, we use a non-linear robust pose esti-
mation based on Tukey M-Estimator [18]. The features which were
classified as outliers by the robust pose estimation (final weight
equal to zero) and the features with high reprojecton error are dis-
carded from further tracking.

The Lucas-Kanade tracking is the main computational task of
the tracking component. Due to real-time constraints, we limit the
number of the tracked features to around 300, and all lost features
are replaced by reprojected features from the closest keyframe in
order to maintain the maximum number of tracked features.

3.2 Sparse feature mapping

The system starts with an empty map. When adding keyframes, we
run a scale-invariant feature extractor and descriptor based on the
principle of the method described in [1] on the captured camera im-

Figure 3: Input 3D point cloud captured from one camera viewpoint
(left) and its corresponding textured mesh (right)

ages and make sure that the keyframes contain a sufficient amount
of features (we used 40 in the evaluation) for which there are also
readings from the depth sensor. The 3D points are projected us-
ing the camera intrinsic parameters and the measured depth value.
We chose to define the global coordinate system at the camera pose
when the first keyframe was captured.

When the first keyframe is taken, the inter-frame tracking is
started and the pose is computed using the 2D—-3D correspondences.
At every new frame, the 2D position of the features is updated using
the optical flow tracking algorithm. In case the current translation
or the current rotation is far enough from all existing keyframes,
the current frame is considered as a keyframe candidate. For ev-
ery keyframe candidate, we extract feature points and match their
descriptors against the map. The matches are validated using the
3D distance of their corresponding 3D coordinates transformed into
the common coordinate system using the inter-frame tracking esti-
mated pose. Features which do not survive these tests are discarded
from the keyframe as they would lead to increased mismatching.

To reduce the drift of the tracking, we estimate the keyframe
poses using the matching based on the descriptors. The map
grows by adding new (non-matched) features extracted from new
keyframes. The 2D-3D correspondences of the matched features
are stored to be able to refine the 3D point position of the mapped
feature at a later point in time, e.g. by Kalman Filtering. We cur-
rently do not filter the depth maps from the Kinect but instead we
rely on a pose estimation based on M-Estimators [18] which works
well in the general case where we have a couple of hundreds corre-
spondences.

3.3 Relocalization

In case the tracking is lost, the relocalization is done by extracting
a given maximal number of features from the current camera im-
age and matching them against the map. Severe mismatches are
removed via RANSAC [11] on the reprojection error of the points.
The initial pose is then refined using the non-linear robust pose es-
timation as the one used for the inter-frame tracking. If the pose
estimation is successful, the features of the closest keyframe are
projected into the current camera image and added to the correctly
matched features (as detailed above) and the inter-frame tracking is
restarted.

4 ONLINE ENVIRONMENT MESH CREATION

In this section, we explain the approach we use to reconstruct the
environment as a textured dense mesh. The reconstruction process
is done in parallel to the tracking and consists of different tasks: the
selection of the RGB-D frames for updating the meshed model, the
meshing of the selected point cloud set corresponding to the RGB-
D frame and the alignment of the newly created mesh. In general,
we favoured integration speed of new data over global accuracy as
the system should be used online with no special hardware besides
the RGB-D sensor.

4.1 From RGB-D values to 3D colored point cloud

In comparison to a standard color camera, an RGB-D camera can
additionally provide the depth value of pixels. Once the RGB-D
camera is intrinsically calibrated, we create 3D point clouds using
the depth image as follows. For every a homogeneous 2D image
point p; with a measured depth value z;, we build the corresponding
inhomogeneous 3D point x; as:

-1
x; =z K™ 'p;

where K is the (3 x3) upper triangular matrix of the camera intrinsic
parameters. Given the registered RGB camera image, we associate
a color to every 3D point as shown in Fig. 3. We eventually filter
the 3D points such that we only keep points that are not farther than
a certain distance from the depth sensor (we used two meter for the
Microsoft Kinect). This helps to improve the quality of the meshed
point cloud, as the uncertainty of the depth measurements from the
Kinect increases significantly with the depth.

4.2 Creating local 3D textured meshes

Creating a model from range data in the simplest case consists in the
registration of each new depth map to a model and concatenation of
them. However, essentially keeping all data quickly occupies large
quantities of memory while there may be only limited new infor-
mation at all. A proper integration into a global model is beneficial,
and in general, there are two approaches which are used: Volumet-
ric or implicit modelling on the one hand [5] and surface-based or
explicit modelling on the other hand [19]. While the former can
also deal with more complex shapes, it in general needs an extra
step to generate an explicit representation (e.g. used for visualiza-
tion), is usually tied to a pre-specified volume and computationally
more expensive than explicit modelling.

As the proposed system should run at least near real-time on
standard hardware, the meshing is done using the method of Turk
and Levoy [19] with the adjustment of using a fixed threshold for
the maximal edge length per vertex-pair instead of using a flexible
treshold as proposed by the authors since we work on a fixed range
volume. Turk and Levoy convert the depth map into a mesh by mov-
ing a window over it and analyzing the 3D distances of the vertices
corresponding to the corners of the window. The vertices are linked
if their distance is below a given threshold; in order to preserve de-
tails, the smaller diagonal is preferred to form triangles. In case of
missing data or a depth value bigger than our aforementioned em-
pirical threshold of 2 m, we do not create triangles containing this
vertex. The texturing of the meshes is done by associating the color
of the corresponding pixel in the RGB image to every vertex. De-
spite technically not fully correct, we use ’texturing’ as synonym
for ’vertex-coloring’ througout the paper instead of the usually as-
sociated ’texture mapping’. Figure 3 shows the meshing and textur-
ing results of a 3D point cloud of an object captured from a certain
camera viewpoint.

4.3 Aligning the meshes in a global coordinate system

The meshing of the point cloud described above consists of defin-
ing triangles with the 3D colored point cloud. As we currently join
meshes by concatenating them, the actual joining consists of simply
transforming the 3D points with the inverse of the camera pose as-
sociated to the RGB-D frame. In Figure 4, we show the alignment
of two local meshes that results into a combined mesh in a global
coordinate system.

When performing the real-time tracking, the camera has typi-
cally small inter-frame movements. This means that there is a large
overlap between two meshes created of two consecutive frames.
For example, one can see that there are some overlapping regions
between the two meshes of Figure 4. The overlap needs to be taken
into account since otherwise, i.e. when every arriving RGB-D im-
age would be integrated into the global mesh, the capacity of the

Figure 4: Two local meshes (left and middle) aligned in a global co-
ordinate system (right)

main memory would be exceeded after a couple of minutes because
of the potentially massively redundant data.

We initially tried to only consider frames with associated camera
poses that have a translation and/or rotation further than a given
threshold from the already meshed keyframes. This works well in
many cases. But, choosing the threshold needs a compromise: if
too high, it makes it harder to mesh some unmeshed parts. And if
too low, the overlap between the regions becomes too large.

P ‘

P

Figure 5: Determining the contribution of a potential new keyframe.
The reconstrution is rendered from the current camera viewpoint
(left), creating a binary mask (center) set at rendered pixels. New
geometry from the potential keyframe is only added to the recon-
struction when there either was no geometry at all (right) or in case
the rendered geometry is further than a specified distance away.

Instead of only checking the position and the viewing angle of
the camera, our approach makes sure that only “new” points are
used for the meshing. Therefore, we additionally filter the 3D
points before meshing. As illustrated in Figure 5, a binary mask
and depth buffer is created by rendering the reconstructed scene
from the current camera view point. Unmasked 3D points are di-
rectly considered for updating the mesh, i.e. 3D points for which no
geometry was rendered at their reprojected 2D position. Only re-
lying on the binary mask would prohibit adding meshes of objects
that are first observed in front of already reconstructed geometry,
which e.g. happens when moving camera around a fixed object in
an attempt to scan its geometry.

To also add close objects, we additionally check for masked pix-
els whether the depth stored in the rendered depth buffer is greater
than the value of the depth map by at least some threshold. Finally,
in order to close small gaps which especially occur on the bound-
aries of registered depth maps, as can also be observed by close
inspection of Figure 5, we additionally erode the binary mask such
that new geometry may also be added on the boundaries despite
already existing geometry closer than the threshold.

Even though we avoid the creation of (massively) redundant
meshes, still the decision of which frame should be integrated into
the global reconstruction is of importance. One option is to process
the frames continuously. The advantage of this method would be
that the 3D model is created fluently and fast since the updates are
small. Another possibility is, as discussed earlier, to decide on the
basis of the current camera pose if a frame should be processed or
not. This possiblity is very fast to evaluate. Since the meshing is
done in a separate thread, we finally chose to process every incom-
ing camera image, but only add those local meshes that contributed
at least a certain number of triangles to the global mesh as this vi-
sually provided the best result.

(a) Hardware setup used for evaluation.

(b) Online reconstruction by PTAM [13]

(c) Online reconstruction of proposed method

Figure 6: Ground Truth data generation setup and and reconstructions of the environment from similar viewpoints using PTAM [13] based on

RGB images and the proposed method based on RGB-D images.

Rotational Error

Trajectory

PTAM 15

— proposed

norm of rot:
RN
\
}/

0 50 100 50 200 250 300 0 50 100
image

200 250 300

100

Figure 7: The proposed method and PTAM are evaluated against the mechanical ground truth (GT), the results of the first sequence are shown
by error plots of the rotation (left) and translation (center) as well as a trajectory of the camera centers (right). PTAM is given frame 0+15 for
initialization which provided the best results for this sequence. Despite a good rotation estimation from PTAM, the proposed method estimated
the translation with significantly higher accuracy and thus estimates the camera trajectory much closer to the GT trajectory.

5 GROUND TRUTH-BASED EVALUATION OF THE TRACKING

We evaluated the accuracy and precision of the camera motion es-
timation and the inherent scale of the proposed method using real
data. This was done using the ground truth motion of a high pre-
cision mechanical measurement arm similar to [14]. We recorded
four sequences of a challenging industrial object, shown in Fig-
ure 6. For comparison, we also evaluated PTAM [13] on the same
sequences. In the following, first the generation of the ground truth
sequences is presented, followed by the quantitative and qualitative
evaluation.

5.1 Creation of the Ground Truth data

When using synthetic data, besides the unavoidable planning of the
general scene and motion of the (virtual) camera, decisions have
to be taken on how to degrade the virtual data to make it resemble
more the data which will inevitably be used as input of the system at
hand. However, modeling the imperfections of real-world cameras
is a task on its own, especially when it comes to modelling the
sensor noise or the camera colors or lens.

In order to side-step this issue, we opted for creating ground
truth (GT) sequences using images from a real sensor. For this,
we used a mechanical measurement arm from Faro[10] which has
seven axes and provides the pose of the tip of its end effector rel-
ative to the base with an accuracy better than 0.013 mm within its
working volume of 1.2 m from its base. Onto the end effector, we
rigidly attached the Microsoft Kinect as can be seen in Figure 6(a).
We pointed the mounted camera towards an industrial object and
moved it around the object. To avoid frame dropping, we pre-
allocated memory for both the VGA depth and color images and

later saved them uncompressed on the hard-drive. The poses from
the measurement arm were available at 250 Hz and also buffered in
the main memory before saving them on the hard-drive at once.

For capturing the images, we used the official drivers and the
OpenNI framework from PrimeSense. The depth and color images
are captured using a rolling shutter, they are updated at 30 Hz in-
dependently, without hardware synchronization. We chose to push
new color and depth images into the system whenever both images
were updated, we assign a timestamp at the time when we have ac-
cess to both image buffers. The poses of the measurement arm are
also timestamped as soon as we are able to read them.

The last task remaining is to synchronize the poses of the
FaroArm to the images. In contrast to our previous work [14], we
chose not to alter the environment by introducing accurately po-
sitioned fiducials for this task. Instead, we directly align the esti-
mated camera trajectories of the evaluated method to the trajectory
of the measurement arm. We obtain an initial estimation of the scale
and Euclidean transformation by assuming accurate timestamps and
creating 3D-3D correspondences of the camera centers to the tips
of the end effector using the method of Umeyama [20]. The poses
of the measurement arm were interpolated on the SE(3) manifold
to match the timestamps of the images.

Umeyama’s method was designed to align point clouds, it is op-
timal when the assumption holds that the correspondences contain
exclusively errors belonging to a normal distribution — but as we are
using it to align trajectories where one should be evaluated to the
other, and additionally we also have to still synchronize the mea-
surements, we use the result only as first step in the alignment pro-
cess.

In a second step, we take both the possibility of outliers better
into account and additionally also search for the offset of the times-
tamps. We use a Nelder-Mead simplex to minimize the distance of
corresponding 3D points, parameterized by the 6-DOF Euclidean
transformation (using exponential maps for the rotation), the scale
of the trajectory and the offset of the timestamps. Noise and outliers
are handled by re-weighting the error with the Tukey M-Estimator
function.

Thus, the GT can be generated for every sequence individually.
We observed that the offset of the timestamp was for all sequences
in the order of +50 microseconds after alignment and thus seemed
to have no substantial influence in the optimization. Therefore it
can be justified that we used the GT sequences aligned to one test
run also to evaluate other test runs of the same sequences in order
to be able to directly compare the results.

5.2 Quantitative evaluation of the tracking

We then used the GT sequences to evaluate the accuracy and pre-
cision of the estimated camera motion of the proposed method and
compared it with results from PTAM [13]. Our method is always
initialized on the first frame of the sequence and is able to track the
full sequences. To initialize PTAM it is necessary to carefully move
the camera a certain distance to establish an initial stereo configu-
ration. The baseline of these frames affect the scale of the map that
PTAM builds (and the scale of the trajectory that PTAM estimate).
When evaluating PTAM, for all sequences, we used the first frame
and varied the second image of the initial stereo setup from frame 1
to frame 50. For some image pairs, the initialization of PTAM did
not succeed.

In contrast, thanks to the usage of metric depth maps, the pro-
posed method estimated an identical scene scale for all four se-
quences as can be seen in Figure 8. As it needs only a single
frame for the initialization, we tested how choosing this frame from
the first 50 frames of each sequence would affect the scale factor
needed for metric alignment of the trajectory. It turned out that the
scale factor value is relatively stable around 1 and with a low vari-
ance.

Table 9 presents the results of the evaluation of the estimated
camera pose all sequences for the proposed method as well as for
several PTAM initializations. The evaluation shows that PTAM’s
accuracy and precision depends on which image pairs are used for
the initialization. There was no clear rule which frame the user
should use in order to always get the best rotation and translation
estimation. With some image pairs, it was even not able to initial-
ize despite a large baseline between the frames. This is one of the
disadvantage of the method. We show in Figure 7 the detailed re-
sults for the first sequence. Using the proposed method initialized
on frame 0 and the best result that PTAM could achieve on this
sequence (using frame 0 and frame 15), despite a good rotation es-
timation from PTAM, we are still getting much better translation
estimation and our estimation of the camera trajectory with the pro-
posed method is much closer to the GT trajectory.

5.3 Quantitative evaluation of the reconstruction

As initially stated, we do not post-process the range images ob-
tained from the Kinect other than neglecting samples further than
2m and currently enlarge the reconstruction by adding new trian-
gles to the mesh which otherwise stays unchanged. We evaluated
the quality of the reconstruction process by comparing the mesh of
the industrial object to known ground truth geometry.

The reconstruction was obtained from the first sequence, using
every 4th depthmap pixel in each direction and a maximal allowed
edge length of 50 mm. An update to the model was done only when
the new depth image provided more than 2000 new triangles, the fi-
nal model of the object contained around 14k vertices and 19k faces
after removing the background. The recovered model was aligned

Analysis of the scale of PTAM

v PTAMseq01 (mu=309.5196, sigma=249.3305)

* PTAMseq02 (mu=791.6681, sigma=562.8403)
>+ PTAMseq03 (mu= 787.4735, sigma=809.5780)
2500+~ PTAMseq04 (mu=249.3054, sigma=161.5668)

3000

2000

1500 13

1000 *

factor for metric alignment

500} N ' . RS Aty

g
¥

el Lo
:
;

i i ; :
FALE . Shais SRR

gy
¥ L
o *x

0

L L
0 10 20 30 40 50
(second) image used for initialization

Analysis of the scale of the proposed method

v proposed method seq01 (mu=1.0389, sigma=0.0170)
+ proposed method seq02 (mu=1.0035, sigma=0.0158)|]
>+ proposed method seq03 (mu=1.0128, sigma=0.0164)

~ proposed method seq04 (mu=1.0484, sigma=0.0104)

YTy F A + » . %
Y YR ey T Ly T Ry

¥ PUNE & el ORI e S S5l SNE SRS .

- re e EL T e e kel

B

factor for metric alignment
—
o
T
e
o
&
H
S
Y
i

0.6

0 10 20 30 40 50
image used for initialization

Figure 8: Comparison of the scale needed for robustly aligning the
trajectories to the metric GT. Note that the scale of PTAM varies
strongly depending on the image pair chosen for initialization (we
used frame 0 and a variable second frame (x-axis of the plot)). We
do not display the image pairs for which the initialization of PTAM was
not successful. In contrast, our method is able to initialize from every
frame successfully and the estimated scale is stable around 1 for all
tested sequences independently of the image used for the initializa-
tion.

manually to the known geometry, then we computed the discrep-
ancy based on the point-to-plane/face distances of the reconstructed
vertices to the known faces, visualized in figure 10. The median er-
ror was 9 mm, lower and upper quartiles 3 mm and 17 mm respec-
tively. In the absence of any filtering mechanisms these should be
regarded as upper bounds for Kinect-based reconstruction, although
the level of error is already acceptable in typical AR maintenance
scenarios for mid-sized objects as the one used in the experiments.

6 APPLICATION ON DIFFERENT AR SCENARIOS

We demonstrate the proposed method on different AR scenes and
scenarios. It has been tested on scenes similar to the one illus-
trated in the supplementary material and in Figure 11. The initial
map of the scene is built from the first image and extended after-
wards. The tracking handles moderate and fast camera motion.
The runtime of the tracking part of the system highly depends on
the convergence of inter-frame feature tracking both from the last
camera frame as well as from the closest keyframe to the current
camera frame. On the desktop computer used for testing (Intel i7

rotation [deg] translation [mm] images tracked
n o u o

seq01 proposed 245 1.30 10.71 5.50 300/300
PTAM 05 7.04 3.72 94.55 4235 282/300

PTAM 10 2.53 1.25 15.95 8.73 291/300

PTAM 15 1.37 0.85 17.77 9.97 286/300

PTAM 20 3.75 2.01 2836 17.18 281/300

PTAM 25 1.85 1.02 26.69 11.44 276/300

seq02 proposed 4.03 2.00 6.85 2.82 300/300
PTAMO5 | 1553 10.50 44.02 4631 120/300

PTAM 10 3.05 2.56 39.62 41.50 175/300

PTAM 15 - - - - 0/300

PTAM 20 1.88 0.83 11.18 6.58 281/300

PTAM 25 | 13.78 506 | 16295 78.85 243/300

seq03 proposed 5.76 3.36 21.49 8.93 300/300
PTAM 05 717 5.28 38.60 1599 58/300

PTAM 10 | 1936 12.09 18.69 8.05 69/300

PTAM 15 6.59 3.24 17.31 8.11 225/300

PTAM 20 6.86 3.33 18.08 9.52 212/300

PTAM 25 7.95 3.84 18.77 8.45 276/300

seq04 proposed 2.62 1.47 13.18 6.37 300/300
PTAM 05 - - - - 0/300

PTAM 10 | 13.62 9.43 97.83 58.16 142/300

PTAM 15 2.05 1.19 3550 31.09 162/300

PTAM 20 2.45 1.22 1736 13.55 150/300

PTAM 25 2.43 1.02 18.81 12.73 276/300

Figure 9: Mean and variance of the error in rotation and translation
of the proposed method and PTAM with different initializations. We
used frames 0+5 for PTAM 05, 0+10 for PTAM 10 etc. The best re-
sults per sequence are highlighted in bold.

2.8 GHz CPU), the inter-frame feature tracking takes around 23 ms
on average for 200 features. During fast motion, many features can
be lost due to motion blur and the time per frame may reach 50-
70 ms. The relocalization consists of matching the feature descrip-
tors extracted from the current image to those of the map. This is
currently done exhaustively, i.e. the runtime scales with the prod-
uct of the number of features in the map and camera image. For
the sequence, the relocalization together with reprojection from the
closest keyframe takes between 25 ms and 230 ms for a map with
around 15000 mapped features from 63 keyframes.

6.1 AR-based virtual furniture trial

This scenario is meant to help the typical user who needs to virtu-
ally try a new furniture (e.g. a closet) in the room before buying
it. The user would not only check the color and the model of the
furniture but also its size. This requires a correctly scaled camera
pose estimation. Thanks to the proposed approach, the furniture can
now be placed at the desired position with the correct scale, without
modifying the environment. Furthermore, due to the reconstruction
of the environment the user gets a more realistic impression of the
possible future look. Figure 12 shows a correctly scaled shelf and
chair augmented both without and with occlusion from real objects.
We can clearly see the advantage of the proposed real-time parallel
tracking and meshing of the environment. To further assist the user,
one could use the dense reconstruction also to restrict the move-
ment of the virtual furniture such that e.g. it cannot be accidentally
pushed “through” a wall or in case there are moving parts like doors
or drawers, it could be automatically checked whether they can be
operated using their full designed range of motion.

6.2 Visual discrepancy check

Discrepancy check is of great use in an industrial application like
prototyping. It is often required to visually compare a prototype
with a produced model. Using AR allows to reduce the costs of
construction since there is no need for manual as-is analysis by a
construction engineer.

(1) difference

Figure 10: Evaluation of the reconstruction against the known geom-
etry, using the industrial object of figure 6. The median error was
9mm, 1st and 3rd quartiles were at 3mm and 17 mm respectively.

Figure 12: AR-based virtual furniture trial: correctly handling the oc-
clusion thanks to the proposed parallel tracking and meshing of the
environment makes the AR visualization much more realistic. While
the camera moves, the camera motion is estimated and the environ-
ment model is updated (see supplementary material video).

Figure 13: Live meshing allows to quickly create a textured meshed
model of an object for visual discrepancy check (see supplementary
material video).

Figure 11: Evaluation using a live camera stream. From left: Tracking a desktop scenario with moderate and fast camera motion. The map
reconstructed online consists of 63 keyframes and 14775 reconstructed features.

Figure 14: Maintenance instructions can be better understood when
their occlusion are handled correctly as done for the lower of the two
wrenches (see supplementary material video).

The presented example assumes a high precision of the track-
ing for which currently a mechanical measurement system like
FaroArm is used best. However, for coarser discrepancy checks
like e.g. the repositioned part shown in Figure 13, the dense mesh
created online by the proposed method is sufficient. Once the cur-
rent desired geometry is registered to the currently observed state,
its potential differences can be easily highlighted (e.g. marked red
as in Figure 13). Even simpler and also working in case there is no
depth information of the current state of an object, one can use a
virtual clipping plane to perform a visual discrepancy check.

6.3 Maintenance scenario

AR maintenance can be used to guide e.g. a technician during a
repair or unmount an industrial machine as virtual replacement for
the repair manual. For this task, the single steps could be displayed
e.g. as illustrated in Figure 14, which shows the specific screws
that should be loosened next. The realism of the augmentation can
be again improved by using the meshed reconstruction of the en-
vironment as occlusion model. As a next step, one could think of
combining this scenario with the discrepancy check, e.g. only pro-
ceeding to the next step of a repair manual when the correct execu-
tion of the current step is validated using the current depth images
of the RGB-D camera.

7 CONCLUSION

We presented a real-time method based on a consumer RGB-D
camera that estimates the camera motion with respect to an un-
known environment while at the same time reconstructing a dense
textured mesh of it. The system is initialized using a single frame,
the reconstruction does not need constrained camera motion and es-
pecially pure rotational movement of the camera is handled trans-
parently.

The scale of the reconstructed model is fixed and, in case of the
specific Microsoft Kinect used in our experiments, seems to be at
most 5-6% off from metric scale when using the proposed system
for tracking as shown in the evaluation. We adopted the meshing
algorithm of Turk and Levoy [19] for live incremental meshing the
environment and showed AR scenarios that directly benefit from
this mesh. We created ground truth sequences using a high pre-
cision mechanical measurement arm and evaluated the proposed
RGB-D tracking and PTAM [13]. We obtain in general more ac-
curate and precise results while tracking a higher number of im-
ages. The proposed method works already very well and makes
it possible to get very satisfactory results despite the efficiency of
the computations involved. The results could be further improved
thanks to the following suggestions.

As from the current evaluation it is not clear whether the rather
small offset from metric scale is coming directly from the device or
the usage of the data by proposed method, a part of the future work
may consist in an in-depth analysis of only the sensor readings.

Currently, the proposed system determines the 3D position of a
feature used for tracking or a vertex used for meshing based on the
aligned keyframe that first observed it. There is no refinement done
afterwards, i.e. when a wrong measurement enters the mesh/map,
it stays and possibly affects all subsequent integrations. In future
work, refinement steps of the mesh could be integrated; there is a
whole body of literature on this topic, including the early works of
Turk and Levoy [19] and Curless and Levoy [5]. RGB-D images
can be aligned also using a modified Iterative Closest Point (ICP)
algorithm as e.g. proposed by Henry et al. [12] who also then used
these alignments to create a graph-based mapping approach which
later can be optimized to further improve the consistency of the
map, for instance after a loop closure event. An ICP could also be
used to align new keyframes inside the tracking component only,
which should further increase the precision of the pose estimation.
To keep the integration speed of new data on a high level, the new
refinement strategies ideally should be run in the background while
new RGB-D images arrive and are tenatively integrated.

In the current system, we do not distinguish between features
used for relocalization and features used for tracking. We rely on
sparse optical flow for inter-frame tracking and do not use an ex-
plicit 3D motion model. The speed of the tracking is primarily de-

pending on the convergence properties of the optical flow, which on
the one hand allows more flexible camera motions, but on the other
hand is computationally more expensive than template matching
with a 3D motion model. As the amount of features tracked seems
to also have the biggest influence on the precision of the pose, one
direction of future work consists in analyzing how tracking more
features based on template matching instead of optical flow could
affect the accuracy and speed of the system.

Another very promising direction of future work is centered
around the idea to use also the camera’s current depth map when
not taking keyframes for mapping or meshing. This could poten-
tially mitigate the effects of noise and especially the errors coming
from the non-uniform discretization of the depth which occur when
using the Microsoft Kinect.

ACKNOWLEDGEMENTS

This work was supported in part by BMBF grant Avilus / 01
IMO08001 P.

REFERENCES

[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. SURF: Speeded up
robust features. Computer Vision and Image Understanding, 110:346—
359, 2008.

[2] J.-Y. Bouguet. Pyramidal implementation of the lucas-kanade feature
tracker. OpenCV Documentation, 1999.

[3] V. Castaneda, D. Mateus, and N. Navab. SLAM combining ToF and
high-resolution cameras. In IEEE Workshop on Motion and Video
Computing, 2011.

[4] R.Castle, G. Klein, and D. Murray. Video-rate localization in multiple
maps for wearable augmented reality. In IEEE Int. Symp. on Wearable
Computers, 2008.

[5] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. In SIGGRAPH, 1996.

[6] A. Davison, W. Mayol, and D. Murray. Real-time localisation and
mapping with wearable active vision. In ISMAR, 2003.

[7]1 A.J.Davison. Real-time simultaneous localisation and mapping with
a single camera. In /CCV, 2003.

[8] E.Eade and T. Drummond. Scalable monocular slam. In CVPR, 2006.

[9] E.Eade and T. Drummond. Unified loop closing and recovery for real
time monocular slam. In BMVC, 2008.

[10] FARO Europe GmbH & Co. KG. http://faro.com/.

[11] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381-395,
1981.

[12] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D Map-
ping: Using depth cameras for dense 3d modeling of indoor environ-
ments. In Int. Symposium on Experimental Robotics, 2010.

[13] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In ISMAR, 2007.

[14] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab. Benchmark-
ing template-based tracking algorithms. International Journal of Vir-
tual Reality, Special Issue on Augmented Reality, 15:99-108, 2011.

[15] B. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision (ijcai). In Proceedings of the 7th
International Joint Conference on Artificial Intelligence, 1981.

[16] R. A. Newcombe and A. J. Davison. Live dense reconstruction with a
single moving camera. In CVPR, 2010.

[17] J. R. Sanchez, H. Alvarez, and D. Borro. Towards real time 3d track-
ing and reconstruction on a GPU using monte carlo simulations. In
ISMAR, 2010.

[18] C. V. Stewart. Robust parameter estimation in computer vision. SIAM
Review, 41(3):513-537, 1999.

[19] G. Turk and M. Levoy. Zippered polygon meshes from range images.
In Computer Graphics Proceedings, Annual Conference Series, 1994.

[20] S. Umeyama. Least-squares estimation of transformation parameters
between two point patterns. PAMI, 13:376-380, 1991.

