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This paper deals with a novel three-level sensor fusion approach in order to
detect and track cars and pedestrians. The underlying perception system is
composed of a far infrared imaging device, a laser scanner and several radar
sensors, which operate integrated into a BMW sedan. At three different levels
fusion is applied to approach the generation of a robust and accurate descrip-
tion of the area in front of the vehicle. Based on this environment perception
a preventive safety application is outlined, which autonomously brakes in case
of an inevitable accident.

1 Introduction

Statistic evidence of the European Union shows that accidents resulting in fatalities or
serious injuries are caused to the highest percentage by collisions of cars with vulnerable
road users. This fact points to the urgent need for active and passive automotive safety
systems as a significant contribution to the overall road safety.

For this purpose the Preventive and Active Safety Applications project (PReVENT ),
an European automotive industry activity co-funded by the Sixth Framework Programme
of the European Commission (EC), was established. Within the PReVENT subproject
COMPOSE, one conceptual application aims at collision mitigation of cars by means of
autonomous braking in case of inevitable pedestrian accidents or rear-end collisions in
urban areas.

However, an erroneous application of emergency braking caused by false alarms would
greatly impede road safety improvement not lastly due to the major setback such an
incident would represent for driver acceptance. Therefore, an active autonomous interven-
tion in the process of driving requires an outstanding degree of perception performance,
particularly with regard to accuracy, availability and robustness.

Current off-the-shelf single sensor approaches can hardly fulfil these challenging de-
mands. Accordingly, the potential of a multi sensor system in combination with a novel
three-level early fusion approach is researched in this paper.

1.1 Related Work

Takizawa et al. [TYI04] proposes a fusion method for the detection of vehicles. Lidar
data and image features are combined to a fusion vector which is classified by a principle
component analysis. Although detected vehicles are tracked by a kalman filter, fusion is
only utilized at a single level (within the classification process). A sensor fusion archi-
tecture based on bayesian networks is offered by Kawasaki [KK04]. A Bayesian network
describes the fusion system in a causality model, which makes the fusion algorithm easy
to understand. The proposed architecture and algorithm was tested with a perception
system composed of millimeter wave radar plus vision sensor for vehicle tracking.



1.2 Overview

This publication focuses on a novel three-level early fusion approach based on only slightly
pre-processed sensor data. In chapter 2 we briefly give a taxonomy on different sensor
fusion techniques. The envisaged safety application is presented in chapter 3. In the
following chapter 4 the sensor configuration and the resulting sensor data is discussed.
Chapter 5 is dedicated to the novel three-level early fusion approach. After a short
motivation with respect to early fusion 5, section 5.1 gives an overview of the tracking
cycle and explains the three levels of fusion in more detail. Finally, the last section gives
an overview on the system architecture and implementation details of the fusion system.

2 Sensor Fusion Taxonomy

Sensor Fusion comprises a very wide domain and one has to deal with many varieties.
Elmenreich [Elm02] proposes an universal definition:

“Sensor Fusion is the combining of sensory data or data derived from sensory
data such that the resulting information is in some sense better than would
be possible when these sources were used individually.”

There are several ways to categorize sensor fusion approaches like regarding the point
in time when the fusion is performed (see figure 1) or considering the interaction role
between two sensors (see Brooks [BI97]).

2.1 Time based taxonomy

Figure 1: Time based fusion taxonomy.

Raw-data fusion In early or raw-data fusion systems data provided by multiple and
even diverse sensors is combined at an early stage of the data processing chain.
In addition, a joint data interpretation with respect to a common model basis is
performed. Data from one sensor is assessed with regard to the relevance of its
information, always in the context of data provided by other sensors.

Feature fusion Feature fusion combines various features such as edges, corners, seg-
ments or positions. These features are generated by a preprocessing which acts
independently of the other sensors.



Track fusion In track-based or decision fusion approaches several sensor data streams
are processed independently from each other until the level of object data is reached.
Based on these independent results a common decision has to be made. At this point
object-data rather than sensor data is combined.

2.2 Interaction based taxonomy

Complementary fusion If two sensors work independently from each other the fusion
is called complementary. For example, two sensors surveying the environment in
two non overlapping areas work in a complementary fashion.

Cooperative fusion In cooperative fusion systems multiple sensors are working together
in a tight and coupled manner. Take two cameras for 3D reconstruction based on
stereo computer vision algorithms as an example.

Competitive fusion Competition is introduced in a fusion system if sensors are operat-
ing redundant that is to say two or more sensors estimate the same object property.
Strategies have to be introduced in order to solve the conflicts which arise if sensors
disagree about object properties.

3 Collision Mitigation Application

The target application of the demonstration system is collision mitigation by means of
autonomous braking. According to a german accident analysis [Bun01], most of the
accidents with vulnerable road users happen in urban areas on straight, unprotected roads.
Therefore, the collision mitigation application will mainly focus on the prementioned
scenarios.

The basis for the envisaged autonomous braking is a probabilistic situation assessment.
Only if an inevitable collision is detected, the system engages the brakes autonomously.
Subject to the condition that a perfect environment perception would be educible, this
would have high potential to attenuate or even prevent accidents, since machines are
capable of reacting much faster and more efficiently than human drivers,

4 Perception System

The central challenge for many advanced driver assistance systems is an adequate percep-
tion of the vehicle’s environment, a high degree of reliability and last but not least a high
degree of measurement precision. One of the key factors to meet these requirements is a
multi sensor perception system which is explained in the following section.

4.1 Sensor Configuration

BMW has set up an experimental car with the following sensor configuration (see figure
2) to research the potential of multi-sensor perception.

Concentrating on the surveillance of the area in front of the vehicle, these cooperative
sensors, which operate on the basis of distinct physical principles, complement each other
both in effective range and spatial accuracy.
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Figure 2: BMW experimental car equipped with the following sensor configuration: (a)
laser scanner, (b) long range radars, (c) grey-scale camera, (d) far infrared
camera, (e) short range radars.

The usage of a far infrared (FIR) sensor guarantees both perception at bad lighting
conditions and straightforward vehicle and pedestrian detection since they have a charac-
teristic signature regarding their temperature (exhaust system respectively uninsulated
body parts as head and limb). As most pedestrian scenarios covered by the experimental
vehicle are situated in the area to the right side of the road, this sensor is mounted at
the right of the frontal bumper. Long and short range radar sensors are surveying the
environment ahead providing a seamless transition in distance and field of view resolu-
tion. Moreover, a laser scanning (lidar) device is mounted beneath the number plate to
enhance the detection and tracking quality for both pedestrians and vehicles. The visual
grey-scale cameras are currently used for supervising and controlling purposes only.

4.2 Sensor Data

In the following a short survey of the different types of sensor data in combination with
their preprocessing is given.

4.2.1 Radar

The radar sensors provide information about the relative position ~pr and relative velocity
~vr of an object (see figure 3(a) and 3(b)). Accordingly, a radar measurement Mr is defined
as following:

Mr = (~pr, ~vr) (1)

4.2.2 Lidar

The lidar sensor is capable of providing up to 1400 reflection points of the scanned en-
vironment. In order to reduce the cost of computation in the subsequent tracking pro-
cess correlated raw measurements are aggregated to single lines. Several connected lines
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Figure 3: Radar reflection of a vehicle. Green and blue boxes represent short range
radar reflections. Red and magenta triangles are long range radar reflections.
(a) Radar reflections projected into grey-scale image. (b) Radar reflections
within the virtual 3D environment.

l1, l2, . . . , ln are combined to segments (see figure 4(b)). With respect to the nomenclature
of graph theory this segment represents a simple path. A lidar segment measurement Ml

is defined as following:
Ml = (l1, l2, . . . , ln) (2)

(a) (b)

Figure 4: Reflections and segment data of a vehicle generated by a four-layer lidar
sensor. Green, red, yellow and blue boxes represent the lidar echo at different
layers. The red line illustrates the result of the preprocessing (segment data).
(a) Lidar responses projected into grey-scale image. (b) Lidar reflections and
segments within the virtual 3D environment.

4.2.3 Far infrared

Vertical edges (Ê+ and Ê−) with positive respectively negative gradient are extracted from
the far infrared image by a sobel operator (see figure 5). A subsequent coarse pre-classi-
fication step rejects irrelevant edges. Within the early fusion processing (see section 5) a
common three-dimensional sensor data description is necessary. Therefore, a projection
converts image plane edges Ê into their corresponding three-dimensional representation E.
Accordingly, the height H of an image edge Ê is calculated. A far infrared measurement



Mf+, respectively Mf−, is defined as following:

Mf+ = (E+, H+) (3)

Mf− = (E−, H−) (4)

(a) (b)

Figure 5: Edges with positive (red lines), respectively negative (blue lines), gradient
extracted from a far infrared image. (a) Edges of a pedestrian. (b) Edges of
a vehicle.

5 Three-Level Early Fusion System

In contrast to track-based fusion (see section 2) “early fusion” combines data provided by
multiple and even diverse sensors at an early stage of the data processing chain and per-
forms a joint data interpretation with respect to a common model basis (cf. [WLVT06]).
In doing so, signatures of various sub-threshold findings in the data processing chain may
interfere constructively and thereby contribute to an above-threshold result to form a dis-
tinctive, well-recognized object instantiation. Thus, an increase of robustness, reliability
and consistency in the environment perception is expected as the input from an individual
sensor can be processed in view and with the help of the other sensors.

To come up with this early fusion demand we enhanced several of the basic tracking
steps mentioned in the following.

5.1 Levels of Fusion

Generally speaking tracking can be performed by three circular steps namely time predic-
tion, data association (data matching) and measurement update (correction) [FP02]. On
top of this basic pattern we added further steps to cope with early fusion and multi-object
demands(see figure 6).

Fusion is utilized at three different levels (hypotheses generation, classification and
measurement update) of the tracking system (see highlighted steps of figure 6). Firstly,
fusion during the hypotheses generation improves the system response time as the intial
guess can be estimated more precisely. Secondly, the classification of objects is more
robust if features of all available sensors are taken into account. Finally, fusion at the
filtering level provides more precise and high available tracking results as redundant and
complementary sensor data is combined. These extensions as well as the fundamental
structure of the system are discussed in the subsequent sections.
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Figure 6: Overview of the tracking cycle. The cycle starts at the blue circle with the
data acquisition. The emphasized components hypotheses generation, clas-
sification, and measurement update mark the three level of fusion.

Data acquisition: As most of the used sensors are working on different clock rates and
time is crucial in collision mitigation applications, we preserve a high time resolution
by a semi-asynchronous data acquisition. The actual data acquisition is done by
polling every sensor for new data.

Time update: According to every objects’ state (position, orientation, velocity, etc.) at
the previous cycle, these states have to be estimated for the current time. As an
example, this can be performed on the basis of the objects’ underlying dynamic
models.

Predicted measurement generation: In the previous step for every object an updated
representation (state) with regard to the current time is generated. These estimated
states are the basis for the following step, which predicts what each sensor would
measure under the assumption that every objects’ state was correctly estimated.

Data association: The next step within the aforementioned tracking cycle is the data
association that extracts and assigns corresponding pairs of real and predicted mea-
surements. An algorithm from Hopcroft [HK73] for maximum matchings in bipartite
graphs is used for this purpose.

Hypotheses Generation: A priority goal of the hypoth-eses generation is a direct and
complete detection of all so far untracked and possibly relevant objects in the sensors’
ranges. Thereto, a high error of second kind is consciously taken into account.
Usually, a subsequent classification procedure as well as an observation of the objects
over time can select and eliminate irrelevant assumptions. To limit the cost of



computation, the hypotheses generation focuses on salient and unmatched sensor
data.

Figure 7: Example for hypotheses generation and aggregation. The cyan boxes repre-
sent new instantiated hypotheses. An aggregation of a lidar segment Ml and
radar responses Mr instatiate the car hypothesis ahead resulting in an initial
guess for both hypothesis’ dimension and velocity.

Currently, unmatched salient measurements where new assumptions are placed, are
radar responses Mr, lidar segments Ml within certain dimensions and pairs Mf of
vertical edges from the far infrared imaging device. An aggregation step tries to
combine overlapping hypotheses to one hypothesis. The initial state for this new
hypothesis is composed of all measurements from all involved sensors (compare the
illustration 7). Therefore, the oscillating phase caused by the Extended Kalman
Filter may be shortened.

Classification: Classification occurs at three different phases in the data processing
pipeline (see figure 8). According to the particular demands for the recognition,
adequate and adapted classifiers are utilized.
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Figure 8: Classification phases of an object life cycle. (1) coarse pre-classification, (2)
hypotheses classification, (3) object revalidation.

1. Hypotheses are initialized on salient and unmatched sensor data. A first coarse
pre-classification step rejects impractical assumptions by checking if the width
or height of a hypothesis lies below a threshold θd. This simple criterion ensures



a very efficient processing resulting in a high throughput. Furthermore, a
high error of second kind is consciously taken into account since a direct and
complete detection of relevant objects is mandatory.

2. Relevant objects (pedestrians and motorcars) are determined by a recognition
process on active hypotheses. For that reason certain state components of a
hypothesis are taken as feature input for a decision tree. The feature vector is
composed of the hypothesis age ha, velocity ~hv, dimension hw, variance hσ2 and
the existence of adjacent far-infrared image edges. These features are derived
from different sensor measurements.

3. Classified objects and hypotheses are checked for their confidence values in
regular time intervals. This step is performed by an object revalidation process.
Hypotheses and classified objects are removed from the virtual environment, if
they are no longer supported by sensor data over a certain period of time.

Measurement update: A conventional Extended Kalman Filter (EKF) (see [WB95] for
instance) has been chosen since it handles the nonlinearities of this application quite
well. For every assigned pair of real and predicted measurement, which has been
calculated before, a measurement update on the underlying object is performed. In
doing so, the information of several measurements enhance the states by updating
the objects’ state values and furthermore, lowering the estimation error covariances.
Thereby, for each assigned sensor data a measurement update step is conducted
before the next cycle starts with the object’s state prediction in time. With the
notation of [BW95] the equations at time step k of the EKF’s measurement update
can be written as

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 (5)

x̂k = x̂−k + Kk(yk − h(x̂−k )) (6)

Pk = (I −KkHk)P
−
k . (7)

The specific term h(x̂−k ) has already been evaluated during the calculation process
of predicted measurements and thus equation (6) can be written as

x̂k = x̂−k + Kk(yk − y−k ) (8)

for every pair (yk, y
−
k ) of measurement and predicted measurement, matched by

the data association process. As all sensor data is projected into the 3D global
world coordinate system, the entries of the Jacobian Hk can be easily deduced
from the underlying object-model without any further complex and time consuming
calculations.

5.2 Implementation Details

A cyclic top-down architecture has been implemented to facilitate the detection, classifi-
cation and tracking of relevant road users over time. The real world vehicle surroundings
and the sensor configuration are reflected by a virtual environment, which is modeled as a
hierarchical scene-graph structure [BW95], ensuring centralized data access and efficient
spatial dependency processing. Furthermore, a vector-quaternion-scalar (VQS) [RH94]
representation has been chosen in order to achieve coordinate system transformations



between the entities of the scene-graph. The topological object modeling is based on
a winged-edge representation [BGZ02]. Essential tasks, like sensor coordinate transfor-
mation, clipping or occlusion testing can be easily performed and adapted for a specific
sensor, since both the topological and the spatial modeling is widely-used in computer
graphics.

To allow an efficient graph traversal as well as a decoupling of algorithm and data
portions, the so called Visitor Design Pattern [BMRS96] has been used extensively. The
visualization component (see figure 9) was implemented in OpenGL. This renders an
acceleration by a 3D graphics adapter possible and consequently disburdens the central
processing unit.

(a) (b)

Figure 9: Screenshots of our demonstrator iFuse visualizing the virtual automotive en-
vironment. (a) Bird’s eye view with own car (blue), sensor data and detected
objects. (b) Same scene as (a) from an isotropic perspective with far infrared
visualisation and gray-scale camera projection.

6 Conclusion

This paper proposed a novel three-level early fusion approach to detect and track cars
and pedestrians in real-time. Early fusion is applied at three different levels of a common
tracking approach. Firstly, fusion during the hypotheses generation has shown to improve
the system response time as the intial guess can be estimated more precisely. Secondly,
the classification of objects is more robust since features of all available sensors are taken
into account. Finally, fusion at the filtering level provides more precise and high available
tracking results as redundant and complementary sensor data is combined. However, it
has to be considered that due to the high amount of raw sensor data real-time demands
are difficult to preserve.

7 Further Work

The classification quality and the system response time can be further improved by utiliz-
ing more complex classifying algorithms like neuronal networks or suport vector machines.
Further research is needed in order to evaluate the suitability of these algorithms with



respect to multi-sensor demands. In addition, an increased set of object types like trucks,
cyclists or motor-cyclists will improve the granularity of the perception system and could
allow for the conceptual implementation of other applications. Within the hypothesis
generation step, the potential of a Kalman filtered measurement aggregation has to be
evaluated. Object dependent filtering techniques like a particle filter will be applied in
order to achieve a more robust and granular tracking. In addition to these improvements,
an extensive evaluation of the perception system is planned.
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