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Abstract—This paper describes a framework for establishing a
reference airway tree segmentation, which was used to quaitd-
tively evaluate fifteen different airway tree extraction algorithms
in a standardized manner. Because of the sheer difficulty irnlved
in manually constructing a complete reference standard fron
scratch, we propose to construct the reference using resslfrom
all algorithms that are to be evaluated. We start by subdividng
each segmented airway tree into its individual branch segnmés.
Each branch segment is then visually scored by trained obseers
to determine whether or not it is a correctly segmented part 6the
airway tree. Finally, the reference airway trees are constucted
by taking the union of all correctly extracted branch segmeirts.
Fifteen airway tree extraction algorithms from different r esearch
groups are evaluated on a diverse set of twenty chest compuate
tomography (CT) scans of subjects ranging from healthy vol-
unteers to patients with severe pathologies, scanned at tifent
sites, with different CT scanner brands, models, and scanng
protocols. Three performance measures covering differerdspects
of segmentation quality were computed for all participating
algorithms. Results from the evaluation showed that no sing
algorithm could extract more than an average of 74% of the
total length of all branches in the reference standard, ind¢ating
substantial differences between the algorithms. A fusioncheme
that obtained superior results is presented, demonstratig that
there is complementary information provided by the different
algorithms and there is still room for further improvements in
airway segmentation algorithms.

Index Terms—Pulmonary airways, computed tomography, seg-
mentation, evaluation.

I. INTRODUCTION

HE segmentation of airway trees in chest volumetric

computed tomography (CT) scans plays an important role
in the analysis of lung diseases. One application of airway
tree segmentation is in the measurement of airway lumen and
wall dimensions, which have been shown to correlate well
with the presence of chronic obstructive pulmonary disease
(COPD) [1], [2]. As the lungs are subdivided anatomically
based on the airway tree, airway tree segmentation is also a
useful input for other segmentation tasks such as segnmmntat
of lobes [3], [4] and pulmonary segments [5], [6]. Airway
segmentation is also a prerequisite for virtual bronchpgco
which has increasingly been used to facilitate planning and
guidance of bronchoscopic interventions [7], [8].

Several automated methods have been proposed to segment
the airway tree from CT images. Evaluation of these methods
has been problematic. Manual segmentation of airways is
a difficult and very time consuming task due to the com-
plexity of the 3D structure of the airway tree. In addition,



JOURNAL OF BTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

low contrast in the peripheral branches may make manwabranch is said to be correct as long as there is no significant
detection, inevitably performed in 2D views, unreliableodf! leakage outside the airway walls.
methods have been evaluated qualitatively based on visualhis paper is based on the results of a comparative study
inspection or were compared gquantitatively to more badicat was organized at the 2nd International Workshop on
techniques such as region growing [9]-[16]. Some authdPsimonary Image Analysis which was held in conjunction
performed manual evaluation without constructing a groundth the 12th International Conference on Medical Image
truth segmentation. Tschirren et al. assessed the detaatie Computing and Computer Assisted Intervention (MICCAI
of their algorithm by manually assigning anatomical labe2009). Invitations were sent out to several mailing listsl an
to detected branches [11], while Fetita et al. compared ttwe authors of published papers on airway tree segmentation.
number of automatically detected branches to the numbfrotal of 22 teams registered to download the data, and 15
of bronchial sections detected manually [17]. Other awgthoteams [14], [25]-[38] submitted their results. This paper i
compared their results to segmentations obtained inteehgt based on the results of these 15 algorithms and as such fresen
e.g., by region growing with manually selected threshold,[ a thorough, though not exhaustive, comparison of currently
[15], or by manually removing “leaks” from the results ofavailable algorithms. Ten teams [14], [25], [26], [28], [30
their proposed methods [18]-[20]. Graham et al. [8] obtaing32], [33], [35]-[37] submitted to the fully automated catey
a ground truth for three airway trees from thin slice CBnd five teams [27], [29], [31], [34], [38] submitted to the
scans (1112 branches in total) using an interactive live-wisemi-automated category. All results were used to establis
segmentation method for evaluation purposes. A drawbacktbé reference standard.
such interactively obtained segmentations is that they beay = The evaluation results of the fifteen algorithms are the same
biased to the algorithms used in their construction andhars t as those reported in [39] and on the EXACT’09 welfsite
less suitable for comparing different methods. Although nthis work, we thoroughly investigate algorithm performanc
very common, in some cases, a ground truth was construckydestimating the number of branches missed in our reference
fully manually for evaluation. In [21]-[23], a single referce standard and by including local sensitivity analysis uphe t
image is manually segmented, while Aykac et al. manualsegmental level, and we study the improvements that can
segment eight scans (471 branches in total) with 3 mbe obtained by combining the results produced by different
slices [24]. Because of the time required for manual aniostat algorithms in a fusion framework.
in these studies, evaluation was restricted to a small numbe
of cases and inter-observer agreement was not studied. Il DATA

The aim of this paper is to develop a framework to establishA total of 75 chest CT scans were contributed by eight
a reference airway tree segmentation that can be used to-evélifferent institutions. The scans were acquired with salver
ate different airway tree extraction algorithms in a stadized  different CT scanner brands and models, using a variety of
manner. We believe that such standardized comparisonS6RNNing protocols and reconstruction parameters. The con
different algorithms is critical for future developmens the ditions of the scanned subjects varied widely, ranging from
weaknesses of the different algorithms can be identified aRg@althy volunteers to patients showing severe abnormesiiti
possibly improved upon. Because of the sheer difficulty fifie airways or lung parenchyma. From the contributed scans,
manually establishing a complete reference standard fro¥§ selected forty scans for this study; a training set and a
scratch, we propose to construct the reference from thdtsestesting set of twenty scans each. All files were completely
of the algorithms being evaluated. Segmented airway tnees @nonymized. An equal number of scans of similar quality,
first subdivided into their individual branches. Thesevidlial acquired at the same institutions and with similar protscol
branches are then visually scored by trained observers &¥gfe included in both the training and testing sets, with no
correctly segmented branches are retained, while indtyrecscans of the same subject included in both sets. We did not
segmented branches are rejected. Airway segmentations [sfesure that scans with similar anomalies were includedeén th
duced by different algorithms on the same image will overldfRining and testing sets. However, as the scans from btgh se
to a certain extent. Therefore, the branch inspection pcavere from the same trial or clinical studies, it is likely tha
can be accelerated by automatically accepting branchés #@ scans from both sets were similar in terms of anomalies
overlap with previously accepted branches. Finally, thie reas well.
erence standard is computed as the union of all accepted he images in the training set were named CASEO1 through
branches. CASE20, and the images in the testing set were named

We use forty scans from eight different institutions. ScarflgASE21 through CASE40. Table | presents acquisition pa-
were obtained under various acquisition conditions andh wifameters, a visual scoring of noise level, and a brief repbrt
different scanners, at full inspiration or full expiratioand @anomalies provided by a chest radiologist for the twenty tes
with a variety of pathological abnormalities. The first twen Cases.
scans are designated as a training set, and can be usedto trai

. . S I11. A IRWAY BRANCH SCORING
and optimize algorithms. The remaining twenty scans ard use _ | . . _ )
as a testing set to evaluate the different algorithms. This section describes how each airway branch segment is

The evaluation is designed to only take into consideratigyaluated. We first describe how an airway tree segmentation

the depth of the airway trees extracted by an algorithm. We dosee http:/iwww.lungworkshop.org/2009/
not take the exact airway shape and dimensions into accountsee http://image.diku.dk/exact/
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TABLE |
ACQUISITION PARAMETERS OF THE20 TEST CASES SLICE THICKNESS(T) IS GIVEN IN MM . TUBE VOLTAGE (TV) IS GIVEN IN KV P. AVERAGE TUBE
CURRENT(TC) IS GIVEN IN MA. THE LEVEL OF INSPIRATION(LI) INDICATES WHETHER THE SCAN IS ACQUIRED AT FULL INSPIRATIONI) OR FULL
EXPIRATION (E) WITH BREATH-HOLD. CONTRAST(C) INDICATES WHETHER INTRAVENOUS CONTRAST WAS USED DURING ACQISITION (“Y” FOR YES
AND “N” FOR NO). PERCEIVED RECONSTRUCTIONR) INDICATES WHETHER THE SCAN WAS RECONSTRUCTED USING A SORS),MIDDLE (M) OR HARD
(H) RECONSTRUCTION KERNEL BASED ON VISUAL INSPECTION THE NOISE LEVEL (N) OF THE SCAN IS SCORED BY VISUAL INSPECTION AS HIGKH),
MIDDLE (M) OR LOW (L). * INDICATES THAT A SCAN IS FROM THE SAME SUBJECT AS THE PRECEDIBISCAN.

T Scanner Kernel TV TC | LI | C| R | N | Anomalies
CASE21 0.6 Siemens Sensation 64| B50f 120 | 2000 E [ N | H | H | None
CASE22 0.6 Siemens Sensation 64| B50f 120 | 200.0 | | N | H H | None
CASE23 0.75 Siemens Sensation 64| B50f 120 | 200.0 | | N | H | M| None
CASE24 1 Toshiba Aquilion FC12 120 10.0 | | N | M | H | Small lung nodule
CASE25 1 Toshiba Aquilion FC10 120 | 150.0 | | N | M | M | Small lung nodule
CASE26 1 Toshiba Aquilion FC12 120 10.0 | | N | M | H | Intrafissural fluid
CASE2T 1 Toshiba Aquilion FC10 120 | 150.0 | | N | M | M | Lympheadenopathy, bronchial wall thickening, air-
way collapse, septal thickening, intrafissural fluid
CASE28 1.25 | Siemens Volume Zoom| B30f 120 | 348.0 | | Y | M L | None
CASE29 1.25 Siemens Volume Zoom| B50f 120 | 348.0| | Y | M L | None
CASE30 1 Philips Mx8000 IDT 16 D 140 | 120.0 | | N | M | M | Diffuse ground glass
CASE31 1 Philips Mx8000 IDT 16 D 140 | 120.0 | | N | M L | Diffuse emphysema
CASE32 1 Philips Mx8000 IDT 16 D 140 | 120.0 | | N | M L | Pleural plagues, mucus plug right lower lobe, few
nodules
CASE33 1 Siemens Sensation 16| B60f 120 | 103.6 | | N | H | H | Mild bronchiectasis, mucus plugging, tree-in-bud
pattern/small infiltrates
CASE34 1 Siemens Sensation 16| B60f 120 | 321.0 | | N | H | M | Mild bronchiectasis, mucus plugging, tree-in-bud
pattern/small infiltrates
CASE35 0.625 GE LightSpeed 16 Standard| 120 | 4115 | | N | M M None
CASE36 1 Philips Brilliance 16P C 120 | 206.0 | | N | S | L | Bronchiectasis, bronchial wall thickening, mucus
plugs, infiltrates
CASE37 1 Philips Brilliance 16P B 140 64.0 | | N | M| M | None
CASE38& 1 Philips Brilliance 16P C 120 510 E | N | M | H | Airtrapping
CASE39 1 Siemens Sensation 16| B70f 100 | 336.7 | | Y | H | H | Extensive bronchiectasis, many infiltrates and atelec-
tasis, tree-in-bud, mucus plugging, central airway
distortion
CASE40 1 Siemens Sensation 16| B70s 120 90.6 | | N | H L | Extensive areas with ground glass
is subdivided into its individual branch segments. Next, we .
explain how a branch segment is presented to a human J
observer for visual assessment. The different labels used f
. . . Centroid of
scoring are then detailed. The rules to determine whether a
branch segment requires visual assessment or can be atcepte e
automatically are then introduced. Finally, we end this-sub N\ N\ “A 2\
section by describing how the human observers were trained.
@ (b) () (d)
A. Subdividing an airway tree into branches Fig. 1.  lllustration of how an airway tree is subdivided intulividual

. o . branches. (a) A seed point is placed at the root of a tree tatmia front
To enable evaluation of individual branches, an airwgyopagation process. (b) The centroid of the propagatingtfis stored as

tree is first subdivided into its branches by a wave fromgenterline during propagation. (c) The propagation issédpwhen the front
propagation algorithm that detects bifurcations, as dasdr_ o % a Burcalon, and new seec: s obtaned forteidus <pit
in [40]. The key concept is that a wave front, propagating
through a tree structure, remains connected until it entewan
a bifurcation, and side branches can thus be detected o@ain the centerlines. Figure 1 illustrates the stepsleeb
disconnected components in the wave front. in the airway tree subdivision.

The front is propagated using the fast marching algo-
rithm [41], [42], with a speed function that is equal to one
inside and zero outside the segmented structure, thusrignitB- Display
the front to only propagate within the segmented structure.Visual assessment of each branch is conducted by displaying
The number of disconnected components is monitored byfixed number of slices through the branch at different posi-
applying connected component analysis to the “trial” pointions and orientations. Two different views are used to iobta
in the front each time the front has moved a distance equhe slices: a reformatted view that straightens the ceneedf
to the average distance between two voxels. If the froatbranch segment, and a reoriented view that rotates thetbran
contains multiple disconnected components, the propamatsegment such that its main axis coincides with the x-axis.
proceeds by starting from the individual detected comptmen Eight slices are extracted from the reformatted view. A
and growing into the child branches. The process ends fter schematic view of the slices are shown in Figure 2(b). The
complete segmentation has been evaluated. During the fréirgt four slices (A1, A2, A3 and A4) are taken perpendicular
propagation, the centroid of the front is stored at everp ste to the centerline, distributed evenly from the start to the ef
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| | “unknown” label is used when the observers are unable to
/] determine whether a branch is an airway or not.
/] The scoring of each branch is performed in two phases.
/ /7] In phase one, two observers are assigned to score a branch.
v If both observers assigned the same label, the scoring is
/ complete. Otherwise, the scoring proceeds to phase twaegwhe
three new observers are assigned to re-score the branéfis In t
(@) phase, the final score assigned to the branch is the label that
constitutes the majority vote among the three new observers
" " AS S ° * In the case where there is no majority, the branch is scored as
“unknown”.

To reduce the number of branches that observers needed
. o 2 s to score and thus speed up the scoring process, branches
% a that are very similar to previously scored branches thaewer

P

P3 c2 « » : H
- labeled as “correct” are accepted automatically. Comparis
with previously scored branches is achieved through the use
(b) (c) of an intermediate reference, which is the union of all bresc

Fig. 2. Schematics showing the (a) original airway, (b) refatted and (c) UP till now that have “correct” as their final label. We use the
reoriented views. The arrow is the main orientation of thievay and the cut following two criteria:
planes are shown in blue.

1) Centerline overlap: Every point in the centerline is
within a 26-neighborhood to a “correct” voxel in the

the centerline. The remaining four slices (P1, P2, P3, and P4  intermediate reference result.
are taken along the centerline, at cut planes that are aagled 2) \olume overlap: At least 80% of the voxels of the branch
0°, 45, 90° and 135. are scored as “correct” in the intermediate reference

For the reoriented view, nine slices are extracted, cdngist result. Our experiments in a pilot study showed that

of three slices from each of the axial, sagittal, and coronal  this threshold of 80% was able to avoid automatically

planes. Figure 2(c) presents a schematic view of the slices. 2CCepting wrong branch segments while not being overly

For the slices in the sagittal (S1, S2 and S3) and coronal (C1, Sensitive to small variations.

C2, and C3) planes, the slices are placed at 15%, 50%, @r@nches that fulfill both criteria are automatically sabwees

85% of the branch width measured along the axis normal ‘toorrect” and are exempt from the manual scoring process.

the plane. On the axial plane (X1, X2 and X3), the slices areOnce all branches from the results of all participating team

placed at 5%, 50%, and 95% of the branch length. are scored, we compute the final reference segmentation for
The segmentation is shown as a colored overlay on thesaiven image by taking the union of all voxels labeled as

slices. The user can toggle between the different views afabrrect” in that image. For the remaining voxels, the vexel

toggle the overlay on and off for better assessment of thiwat are labeled as “unknown” in the scoring process will be

underlying structure. Figure 3 shows examples of the twgnored during the evaluation, while the rest are treated as

views for a correctly segmented branch and a branch whéverong”.

the segmentation has leaked outside of the branch. Theugario

slice display parameters for the two views were determined

based on a trial study, in which we found the best trade d# Training of human observers

between the accuracy of the human observer’s scores and theen observers took part in the visual scoring. They received
time required to score a single airway branch segment. 3 study protocol with scoring instructions, explanatiohthe
software and the different views, and several screensfithe o
two views for examples of correct, wrong, and partly wrong
segmented branches. Hands-on instruction sessions were se
The process of scoring the individual branches of all submilip to further instruct the observers on the evaluation sftw
ted segmentations was distributed among ten trained odrsenand scoring procedure. During these sessions, the observer
through a web-based system. The observers were all medse@dred at least two complete airway tree segmentations (wit
students who were familiar with CT and chest anatomy. the automated branch acceptance option disabled) under the
Using the slice display described in Section I1I-B, obsesvesupervision of an experienced observer. The first four ob-
were asked to assign to each branch one of the following fasgrvers were trained this way by the first author. The other si
labels: “correct”, “partly wrong”, “wrong” or “unknown”. A observers were trained by one or more of their colleaguek, an
branch is scored as “correct” if it does not have leakageadeitstheir agreement with the scores by the experienced observer
the airway wall. “Partly wrong” is assigned to a branch ifvas computed. When their disagreement with the experienced
part of the branch lies well within the airway lumen and thebservers exceeded 10%, an extra session (needed for only 2
remaining part of it lies outside the airway wall. A branclout of 10 observers) was held where the errors and correct
is “wrong” if it does not contain airway lumen at all. Thescores were pointed out.

C. Scoring of branches by trained observers
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Fig. 3. Example of the reformatted (top panel) and reorerftmttom panel) views for (a) a correctly extracted brangot éb) a branch with leaks. The
alpha numeric characters in the individual images refehéodifferent cut planes as shown in Figure 2.

IV. ALGORITHMS FOR AIRWAY EXTRACTION plying region growing iteratively within cylindrical vohaes of

Ten fully automated algorithms and five semi-automatdfjterest: A simplified skeleton constructed based on théirsga
algorithms (indicated by) are evaluated in this study. Fullypomt a_nd end points of a brar?ch segment Is usgd to estimate
automated algorithms require no manual initializationre- thg helghts,. radii and orientations Of. the cyIm_drllcaI ynhs
action and use the same settings for all scans processed. ngnterests n the next |t_erat|on. A. nelghbo_r affinity t_eu:h:e
automated algorithms require user initialization or iat#ion, I used to ay0|d Ieak_s_ln th_e region growing alg_onthm. The
which varied from placing a single seed point or selection ﬁ?ethOd requires specific tuning of the parameter involvireg t

certain parameters, to extensive interaction by manuetna eight of the cylindrical volume of interest for certain eas

or removing complete branches. All evaluated algorithnes a§egmentat|on of an image requires less than 8 seconds for

briefly described below and an indication of the require'al]OSt cases on a 2.4 GHz PC.

processing time per case is provided. All operations are4) Adaptive region growing and local image enhancement:
performed in 3D, unless otherwise stated. Feuerstein et al. [28] proposed a tracing scheme that uses

1) Morphology based segmentatiolving et al. [25] use cub_ical volumes constructed based on the orientation and
gray scale morphological filtering and reconstruction teede fadius of detected branches. The volumes are locally erldanc
potential airway regions. The airways are then segmented $3ng & sharpening filter based on a Laplacian of Gaussian
a closed space dilation with leakage detection on the markggnel- A region growing process is iterated within eachhef t
region. The method takes an average of 71 minutes per imfgg@mal volumes until a sgltable threshold is found, deteed
on a 2.83 GHz personal computer (PC). by the numper of furcqtlng branches. The method takes on

2) Morphological aggregative:Fetita et al. [26] detect aVerage S minutes per image on a 2.66 GHz PC.
airway candidates using the flood size-drain leveling mosph 5) Voxel classification and vessel orientation similaritys
logical operator. The airway tree is reconstructed by sdvegt al. [14] perform region growing on the output of a voxel
propagation schemes applied iteratively to encourageggap classifier that is trained to differentiate between airwayg a
tion within airways and avoid leakage to the lung parenchym@on-airway voxels. An additional criterion in the regiorogr
Scans are pre-filtered using filter parameters derived fiwn tng allows inclusion of lower probability airway candidati
training set, which are dependent on the scanner model, flaeir orientation is sufficiently similar to that of a nearipod
construction kernel, and dosage. The process takes ongaveigssel, exploiting the fact that airways and arteries rualfed
5 minutes per image. to each other. The framework takes approximately 90 minutes

3*) Adaptive cylinder constrained region growinBinho et Per image on a 2.66 GHz PC.
al. [27] proposed a method to automatically detect theistart  6*) Two-pass region growing and morphological gradient:
point of the trachea and to segment airway branches by &abijahska [29] proposed a two step segmentation approach
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The first step consists of obtaining an initial segmentakipn Weinheimer et al. [35] proposed an adaptive region growing
performing region growing on an image where the intensiti@pproach that monitors the volume of the segmented region,
are normalized. The initial segmentation is then used agsseand increases the threshold if no leakage is detected. The
for a second region growing process that is performed awcceptance criteria in the region growing process are based
the morphological gradient of the original image. The mdthan fuzzy logic rules and on rays cast from the voxel in the
requires manual selection of a threshold related to thensbc@xial, coronal, and sagittal plane. Histogram analysissisdu
region growing in some cases. Computation time is less thempreprocess the CT scan and to dynamically adapt the fuzzy
10 minutes for a typical chest CT on a 1.66 GHz PC. logic rules based criteria to different images. An averagé o

7) Tube detection and linkingBauer et al. [30] proposed minutes is required to segment a case on a 2.83 GHz PC.

a method to reconstruct the airway tree from detected airway13) Gradient vector flow:Bauer(a) et al. [36] proposed
branches. Therefore, they utilize a tube de_tect|on filteth i a method utilizing properties of the Gradient Vector Flow
ridge traversal procedure to extract centerlines of dalokilar GVF) [43] vector field. A measure of tube-likeness is com-
struc_tures in the CT imaget The_ airway tree _iS reconstructégted for every voxel based on the vector field obtained
starting from the trachea by iteratively connecting theseilar ¢, e GyF, Subsequently, the airway tree centerlines are

structures. fDuhring _this process, prr]ior Iénowlnge abolut tl% tracted by applying hysteresis thresholding on the tube-
strdu_ctur(_a 0 tde glrway tre(_a, su;: a r?ncd Ing angi AfiReness map. The final segmentation is obtained by follgwin
radius, Is used. Segmentation of a single dataset takes ) gradient flow path in the inverse direction and adding the

average 3 minutes using a graphics processing unit (GP\%)S(eIs along the path until maximum gradient magnitude is

bas*ed |mplementatlon of the .tube d-etect|0n.f|lter. reached. Using a GPU based implementation of the GVF, the
8") Maximal cpntrast adapuye region growinylendoza et. method requires 6 minutes to process a dataset.
al. [31] use region growing with maximal-contrast stopping
criteria. Local non-linear normalization using a sigmdida 14) Multi-threshold region growingvan Rikxoort et al. [37]
transfer function and denoising via an in-slice bidimenalo Proposed a wavefront propagation approached that is based o
median filter are introduced to improve robustness. Ti@here constricted region growing, where geometric cherac
method requires the user to manually initialize severatisedstics of a branch such as furcation and radius are obtained
in the trachea region so that the statistical nature of aisie from the propagating front. A series of rules, such as radius
values can be characterized for each case. Segmentation 8f@wth, furcating angles, etc., are used to detect and pteve
single case requires on average 2 minutes on a 2 GHz pdeaks. The method also features a multi-threshold approach
9) Centricity-based region growingwiemker et al. [32] where the threshold used is increased as long as no leaks are
proposed a voxel-wise centricity measure in combinaticth widetected. Segmentation of an image takes around 10 seconds
prioritized region growing. The centricity measure quiiesi On a single-core PC.

how central a given voxel is to the surrounding airway walls 15*) Automated region growing with manual branch adding
by measuring the lengths of rays cast isotropically in 8nd leak trimming:Tschirren et al. [38] proposed an inter-
dimensions. A ray terminates if the intensity differencéthw active segmentation tool. An initial airway tree segmeatat
respect to the starting point, of a point along a ray is highgptained with a region growing method that uses an optimal
than a certain threshold. A region growing process is us@teshold selected based on the volume of the extractediregi

to obtain the actual segmentation, where it proceeds uihtil &he tree is subdivided in branches by skeletonization. Eee u
connected voxels below a certain intensity threshold andab cgn manually select leaks to remove and add new branches
a certain minimum centricity value are extracted. The rueti by placing seed points. The new branches are formed using
of the method for an image is 19 seconds on average on @egion growing and connected to the initial segmentatidngus
GHz PC. the Dijkstra algorithm. An average of 59 minutes of human

10) Adaptive region growing within local cylindrical vol-jnteraction time is required to segment a single image.
umes of interest.Lee et al. [33] proposed another local T hether the diff laorith id |
adaptive region growing method. To avoid leaks, the region 0 assess whether the different algorithms provide comple-

growing is performed within local volumes of interest annentary information and whether resuilts can be improved by

requires that at least half of the neighbors oflecandidaxelvoComblnlng algorithms, we evaluate additional segmenistio

are below a certain threshold. The threshold is incrementtéﬁ1t combine segmentation results from several algorittins

until leaks are detected. Segmentation of an image takes %gxel ba}sed fusion scheme is usgd for this purpose, in which
than 30 seconds on a 3 GHz PC. a voxel is labeled as part of the airway tree if it is marked as

11*) Template matchingBorn et al. [34] proposed 2D airways by at leasty algorithms.

template matching technique and a set of fuzzy rules to tletecWe use sequential forward selection (SFS) to select which
and prevent leakage. Airway tree segmentation is obtainaldorithms to include in the fusion schemes. The SFS proce-
through an iterative procedure that iterates between 3@megdure starts with the algorithm that produced the maximuul tot
growing, 2D wave propagation and 2D template matchingee length, and at each subsequent iteration adds thethigor
Their method requires the user to set a seed point in thedaackhat gives the largest increase in the total tree lengthimdxda
manually. The method takes around 25 seconds per imagebgnthe combined segmentations. In addition, we investijate
a 2.4 GHz PC. fusion schemes including only the fully automatic algarit)

12) Adaptive region growing with histogram correctionas well as algorithm selection based on computation time.
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TABLE Il
V. EVALUATION METRICS CONFUSION MATRIX OF OBSERVER SCORESNHERE THE COLUMNS
|n order to Compare the reSUltS Of the different algorithmslNDICATE THE SCORES ASSIGNED BY THE OBSERVERS AND THE ROWS
. . . . INDICATE THE FINAL SCORES USED TO CONSTRUCT THE REFERENCE
in a standardized manner, centerlines are first computed for

all segmentation results and for the reference, using the Observer
algorithms described in Section 1V. To determine the length Correct Partly wrong Wrong _ Unknown
fab hi . tati te the lenath= Correct 23,666 1,626 364 a7
of a branch in a given segmentation, we compu 9ths  partly wong | 1,885 6.319 685 30
of the centerline of that branch after projection to the refe T Wrong 2,723 1,843 13,135 476
ence segmentation centerline. In this way, a bias due to, for Unknown 768 657 764 87
example, high tortuosity in the supplied centerline, isided. TABLE Il
Branches are counted as “detected” by the segmentatiolfreSu  Te NUMBER OF SCORES# FROM ALL OBSERVERS AND AVERAGE
of an algorithm if they are at leagt/i = 1 mm long. AGREEMENT ACROSS OBSERVERS FOR BRANCHES OF DIFFERENT SIZES
Three performance measures are computed for each seg- MEASURED IN NUMBER OF VOXELS
mented airway tree: Size # Mean agreement(%)
1) Branches detected: The percentage of branches that are 20% 202400 3235? ;;-gg
X > < : :
detected correctly_wnh respect to the tqtal number of 2400 & <600 4264 86.78
branches present in the referendg.;, defined as >600 & <800 | 2,249 85.83
>800 & <1000 | 1,269 87.46
Niseg % 100% >1000 & <1200 783 87.71
e 0 >1200 & <1400 486 87.13
>1400 1,218 92.02

whereN,., is the number of branches detected correctly
by the segmentation.

2) Tree length detected: The fraction of tree length that igere relabeled as “correct”. We therefore counted the nemai
detected correctly relative to the total tree length in theg “partly wrong” voxels as “wrong”, while all “unknown”

referenceL,.r, defined as voxels were ignored in the evaluation.
Lieg Table Il presents the confusion matrix of the 55,075 individ
Tres x 100% ual scores given by the observers (in both phases of thengcori

process) in comparison to the final scores for each branah. Th
where L., is the total length of all branches detecte@yerage percentage of assigned scores that were in agreemen
by the segmentation. with the final scores was 80.31%, with a standard deviation
3) False positive rate: The fraction of the segmented voxej 10.68%. In this computation, observers are counted as in
that is not marked as “correct” in the reference, definegyreement irrespective of their original score if the firaire
as N, is “unknown”. The majority of disagreement is between the
NN, x 100% labels ”partly_wrc_mg" and "correct” or "wrong”; ir_1 5.6% of
¢ w cases, there is disagreement whether a branch is “correct” o
where N, and N,, are the number of voxels in the«yrong”. Table Il presents the average agreement betwieen t
segmented airway that overlap with the “correct” andcores from the observers and the final scores for branches of
“‘wrong” regions in the reference respectively. Note thafifferent sizes, where the size is given in terms of number of
“unknown” regions in the reference are not included iggyels.
the calculation of the false positive rate.

The trachea is excluded from all measures. Further, for m " Completeness of the established reference

sure 3, the left and right main bronchi are excluded as well. ] ) ) )
The reference standard in this work is based on visual

assessment of the correctness of airway branches produced
by any of the participating algorithms. Therefore it doe$ no
A. Observer agreement include airways that were missed by all algorithms, and thus
A total of 40,772 branches were evaluated. Among thegbe two sensitivity measures reported in this study, brasch
52.16% were accepted automatically, 33.16% were assignededected and tree length detected, have been overestinmated
final score at phase 1, and 14.67% were assigned a final saander to provide a rough estimate of the number of missing
at phase 2. Of the branches, 82.59% were scored as “correbtgnches in the reference standard, an additional observer
10.77% were scored as “wrong”, 5.51% were scored as “parfijudy was conducted. A trained human observer inspected 200
wrong” and 1.13% were scored as “unknown”. random axial slices from the 20 test scans. For these slices,
The final reference segmentation contained 81.02% voxéhe lung masks and the overlay with the reference airway
labeled as correct, 11.16% as “partly wrong”, 7.12% asegmentation could be toggled on and off, and inspection
“wrong”, and 0.70% as “unknown”, where the trachea anid 3D with coronal and sagittal views was available. The
the left and right main bronchi were excluded when computirabserver clicked every point that he deemed could represent
the percentages. We found that most voxels inside the airneaynissed airway branch, inspected the three orthogonabkview
lumen that were originally part of a “partly wrong” branchand scrolled through the axial slices and decided if this was
were detected correctly by one of the other algorithms aimtleed a missed branch. If the branch bifurcated and child

VI. RESULTS
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Fig. 4. Average tree length versus average false positteeofall algorithms, 40
with the algorithms in the semi-automated category in rét flision scheme .
(Ty = 2) combining all 15 algorithms is indicated with The blue line 35¢ i
indicates the fusion results of including different numhmr algorithms, — 30 i o o
starting from 2 to all 15 algorithms. 5 |
% 251 !
[o]
branches were visible in the same slice, these child branche = 20} o
. n w 1
were indicated as well. g 151 . i
The reference standard contained on average 247.9 branches8 |o o | ° © i
per scan. The observer added on average 0.56 airways per & 1or Lo 2 too
. a H 1 i
slice. From the reference standard, we computed that each 50 1 D | ° g o A o
; s via ; ; i T ° T 1
of the terminal branches is visible in 9.6 sllc_es on average. e D L gt Q 208 & I:l [m =
The test scans contained on average 431 slices. From these T 2 3 4 56 7 8 9 10111213 14 15 %
numbers we can compute that on average 25.1 branches were Team number
missed per scan (0.56 431 / 9.6), and this is around 10% (b)
of all branches in the reference. Fig. 5. Box plots of (a) tree length and (b) false positive mitthe algorithms.

The fusion scheme combining all 15 algorithms is indicateth w.
C. Comparison of algorithms

Table IV(A) presents the three evaluation measures fpackage (VIDA Diagnostics, Coralville, lowa, USA). Fig-
the 15 algorithms. The evaluation measures for the fusiafe 9a shows a surface rendering of the manually labeled
scheme with SFS procedure are given in Table IV(B). Figurerdference airway tree, with the different anatomical label
gives an overview of the average performance of the diftereshown using different colors. For each labeled branch in the
algorithms using a scatter plot of tree length detectedugergeference, we determine whether an algorithm detects the
false positive rate. Figure 5 shows box plots of tree lengtranch by comparing branch centerlines. Figure 9b presents
and false positive rate for the different algorithms. Bortpl a diagram showing the sensitivity of the algorithms to the
in Figure 6 give the number of correctly detected branchefferent anatomical labeled branches, which is defined as
and the volume of the “wrong” voxels, or leakage volumehe number of algorithms that detected (part of) a branch
per case. by the total number of algorithms. A scatter plot of the

In the box plots, the red line indicates the median, and th@erage sensitivity for the lobar and segmental branches fo
lower and upper edge of the box indicate the 25th and 75tke individual algorithms is given in Figure 10.
percentile respectively. The lines below and above the box,

“whiskers”, represent the largest and smallest valuesdh&at E. Combination of algorithms
within 1.5 times the interquartile range, while the red open
circles show all outliers outside this range.

Surface renderings of two cases are given in Figure 7 a
Figure 8, with correct and wrong regions indicated in gre
and red respectively.

Figure 13 shows a bar plot of the percentage of branches
detected versus the number of algorithms that detected, them
E'l\aeraged across all test cases. Figure 12 shows the sugface r
e(ﬂarings of the reference segmentations of the test set,thgth
branches color coded according to the number of algorithms
o ) that detected them. More than 30% of the branches were on
D. Local sensitivity analysis average extracted by three algorithms or less. A fusionraehe
We evaluated the detection rate of different anatomicdlat combines results from all participating algorithms, a
branches for all algorithms. Anatomical branch labels weproposed in Section VI-E, was able to extract more complete
assigned manually in the reference airway trees down to thieway trees than any of the individual algorithms, as can be
segmental bronchi using the Pulmonary Workstation softwaseen in Table IV and Figure 4. The results from the fusion
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(A) Evaluation measures averaged across the 20 test caseiofalgorithm.

* indicates teams in the semi-automated category.

TABLE IV

(B) Evaluation measures, averaged across the test casté fifsion scheme
using different number of algorithms witl#',
selected by SFS, are indicated in the brackets beside theerunh algorithms

= 2. The actual algorithms,

used.
Branches| Tree length| False positive "
detected (%)| detected ?%) rapte (%) number of Branch Tree length | False positive
(D) Trving et a 35 364 157 algorithms || detected (%)| detected (%) rate (%)
(2) Fetitaet al. 62.8 55.9 196 2(&2 56.2 49.0 0.22
N i 3 (+15) 67.1 60.6 0.29
(3*) Pinhoet al. 32.1 26.9 3.63 2 (+13 729 66.6 033
(4) Feuersteiret al. 76.5 733 155 ¢ (+1 4) 29 coe 933
(5) Lo et al. 59.8 54.0 o1 3 (+7 ) s 04 049
(6%) Fabijanska 36.7 313 092§ (+5) o9 re 98
(7) Baueret al. 57.9 55.2 244 [ (+1)2 509 o9 900
(8*) Mendozaet al. 30.9 26.9 1.75 9 (+1 ) 83.1 77.8 0'86
(9) Wiemkeret al. 56.0 471 158 10( +Z, o e 082
(10) Leeet al. 324 281 o111 (+1)1 8as 784 108
(11*) Born et al. 41.7 345 041 (+6 ) 53 780 108
(12) Weinheimeret al. 53.8 46.6 247 12 (+8) 9% 788 e
(13) Bauer(akt al. 63.0 58.4 144 13 (+12) 2 788 e
(14) van Rikxoortet al. 67.2 57.0 727 1 (+3 ) 52 788 110
(15%) Tschirrenet al. 63.1 58.9 1.19 (*+3) : : :
Fusion of 15 algorithms
Ty =2) 84.3 78.8 1.22
350F 3 X ’ ;
300t y 3
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Fig. 6. Box plots of (a) branch count and (b) leakage volumih wthe ‘ :
maximum leakage volume clipped at 4000 fraf the 20 test cases computed
across the 15 participating algorithms.
(13) (14) (15) *

Fig. 7. Surface renderings of results for case 23, with coraed wrong

regions shown in green and red respectively.
scheme have the highest average tree length with a regatlveP

low average false positive rate. The blue line in Figure 4asho

the improvement in performance of the fusion scheme with an

increasing number of algorithms included in the selection. Table IV and Figure 4. It was observed that although further
A T of two was used for the final fusion scheme shown imcreasingT; reduces the false positive rate, the tree length
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Fig. 8. Surface renderings of results for case 36, with coraed wrong (b)

regions shown in green and red respectively. _ ) . )
Fig. 9. (a) An example of a reference airway segmentatiorh wlite

manually assigned anatomical labels, where the differebrs indicate
different anatomical labels. (b) Branch detection serisitifor different
labeled branches averaged over all cases.

92
detected and branches detected were greatly reduced as well 9. 15.14 |
For example, witll’y = 3, the resulting false positive rate, tree = 7 9 4
length detected and branches detected were 0.14%, 66.4% and < 88 ) 1 137
74% respectively. False positive rate was observed to drop t % a6l |
0% atT; = 7, with 44.3% of tree length detected and 53.1% z 'S 3
of branches detected. L 1
é 8ol 11:92 |
The results of the fusion scheme in Table IV(B) consist of = .10
algorithms from both the automated and the semi-automated 80r 1
category. To investigate the usage of the fusion scheme in a -8 ‘ ‘ ‘ '6
more practical setting, we performed additional experitien CE a7 97.5 98 98.5

. . . Fal iti te (%
using the sequence from SFS from Table IV(B) with semi- slse positive rate (%)

automated algorithms excluded. We also investigate thee®sff rig 10, scatter plot of the sensitivity, averaged over aias, of the lobar
of incrementally fusing from the least to the most computand segmental branches for the 15 algorithms.

tionally intensive algorithms, based on the reported ayera

execution time required per case, in the following sequence

algorithm 14, 9, 10, 7, 12, 4, 2, 13, 1 and 5. Figure 11 shows a VII. DISCUSSIONS

?ra_ph of tree Ien_gth_ detectgd against false pos_ltlve r_atee)f A. Performance of different algorithms

usion scheme with increasing number of algorithms inctlyde
for the sequence obtained from SFS and based on the reportefifteen algorithms for airway extraction have been com-
execution time. pared in this study. Performance varies widely, as is most
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Fig. 11. Tree length detected and false positive rate fonareasing number CASE25 CASE26 CASE27 CASE28

of fully automated algorithms included in the fusion schemi¢h sequence
based on SFS and on execution time from fastest to slowest.

= |

obvious from the renderings in Figures 7 and 8. There is

a clear tradeoff between sensitivity and specificity in the

airway tree extracted by the different algorithms. Thishigwn

in Figure 4 and Figure 5, where it is observed that more

complete trees are often accompanied by more false pasitive =~ CASE29 CASE30 CASE31 CASE32

The most conservative algorithm, algorithm 10, obtains the

smallest average false positive rate (0.1%) and is also gmon

the algorithms with the lowest average tree length (32.434).

the other hand, algorithm 4 is the most explorative algarjth :

yielding the highest average tree length (76.5%), but at the

expense of the highest average false positive rate (15.6%).
In general, semi-automatic algorithms perform no better

than fully automatic algorithms. This is probably due to the =~ CASE33 CASE34 CASE35 CASE36

fact that manual interactions for semi-automatic algongh

are limited to selecting initial seed points for the trachea

(algorithm 8 and 11) or tuning parameters manually (alfarit

3 and 6) for a few test cases. The only algorithm with extensiv

interaction is algorithm 15, where branches could be added

or removed by users until they were satisfied with the final

segmentation result. Despite the interaction time of omaxye CASE37 CASE38 CASE39 CASEA0

one hour per case, the overall results for the performance

metrics used in this study are close to those of algorithm 13, 1 15

which is fully automatic. Fig. 12. Surface renderings of the referenténdicates that the case is from
Because of the use of different types of CPUs and, ihe same subject as the preceding case. The branches areodéul from

some cases, GPUs during execution, it is not possible rﬁg (detected by a single algorithm) to green (detected lbySahlgorithms).

directly compare the execution time of the different altjoris.

However, we do observe a wide range of execution time, from

less than thirty seconds to more than one hour. Most exetut®lgorithms were used.

times are between two to five minutes per case. Experiments on the inclusion of the results from different
Interestingly, no algorithm comes close to detecting thdgorithms using the SFS procedure show that the tree length

entire reference airway tree, as observed from Figure 4. Tekethe fused results converges quite rapidly, as displayed i

highest branches detected and tree length detected for ebigire 4 and Table IV(B). This indicates that reasonably

case ranges from 64.6% to 94.3% and 62.6% to 90.4@god results can be obtained by fusing only a subset of the

respectively, with an average branches detected and tigthle algorithms. In fact, Table IV(B) shows that with a smaller

detected of less than 77% and 74%, respectively. Fusinggsesiumber of algorithms (e.g. using up to 9 algorithms) in the

from the participating algorithms improves the overallufes fusion procedure, one can obtain a lower false positive aate

substantially, reaching an average number of branchestddte almost the same sensitivity.

of 84.3% and an average tree length detected of 78.8%, withiThe performance of the fusion scheme degraded slightly,

an average false positive rate of only 1.22%, when all fifteea a tree length detected of 74.3% and a false positive
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resource, a reference standard that is available to thargse
community for algorithm evaluation.

A limitation of our reference standard is that it, by the
nature of the way in which it was constructed, does not
contain all visible airway branches in the data set. Evengho
. one of the algorithms (Algorithm 15) employed extensive
user interaction of up to three hours per scan, there are
visible airways that have not been indicated by any of the
15 algorithms. We therefore conducted an additional study,
described in Section VI-B, from which we concluded that
about 10% more visible branches are presented in the data.
12 3 45 6 7 8 9 10111213 14 15 Although it has to be realized that this is an estimate only,

Number of methods . .

based on the opinion of a single human observer who has to
Fig. 13. Bar plot shows the percentage of branches detestethe number make subjective judgements about the visibility of very Bma
of algorithms that detected them, averaged across all ésstsc Figure shows airways, we can conclude that the reported sensitivitiemfr
18.3% of the branches were detected by all 15 methods, wBilE4 of the th | ' ith in thi tudv h iti bi If in th
branches were only detected by one algorithm. € algorihms In this study _ave a posiuve IaS.. m_ _e

future new results were submitted and processed in a similar

manner, by having human observers assess the correctness of

rate of 1.01%, when only fully automated algorithms werBew branches, it is possible that this percentage of missed
included, with an approximate cumulative execution time @irways would decrease somewhat.

184 minutes. Despite the drop in performance, the treelengt A point of concern on the credibility of the reference
detected is still higher than that of any of the individua$tandard would be the relatively low overall agreement be-
algorithms. As expected, performance of the fusion scherfyéeen the scores from the observers and the final scores,
using the sequence from SFS converges more rapidly thahich averaged to 80.31% across observers. This low overall
simply ordering the algorithms based on their executioretimagreement is mainly caused by the small branch segments,
Using the the sequence from SFS, the fusion scheme reacdi®swhich it is often difficult to discern whether they are

a tree length detected of more than 70%, or 71.3% to bgle airway branches or not. The observers in our study
exact, with only six algorithms. Although the sequence cede have especially low agreement (of less than 85%) with the
according to execution time requires eight algorithms ie tffinal scores for branch segments smaller than 400 voxels, as
fusion scheme to reach a tree length detected of 70.9%slown in Table Ill. Although the scores of these small branch
does have lower cumulative computation time (approxiryatefegments of less than 400 voxels constitute 81.35% of the
23 minutes per case) as compared to the sequence from SFgrall scores assigned by the observers, they only coofsist
(approximately 109 minutes per case). 20.75% in terms of volume.

As the results from the fusion scheme are derived from theAnother limitation of our approach is that we take the
same segmentations that were used to construct the regereijon of “correct” voxels as the reference airway tree and
standard, performance of the combined algorithm may B8 a result the correct part of voxels in branches labeled as
slightly lower on unseen data. However, the fact that theltes “partly wrong” will be treated as wrong and be penalized
from the fusion scheme are better than those of individuduring the evaluation. However, as segmented airway trees
algorithms indicates that the different extraction algoris from different algorithms of the same scan are used, most
are complementary to each other and their combination ca@hthe voxels that are previously marked as “partly wrong”
be expected to improve results. Such a property is not unig#l eventually be assigned different labels, as they ayerl
and has been noted in other comparative studies [44], [45]with either “correct” or “wrong” regions of branches from

Figure 9b shows that the algorithms have fairly high sefther algorithms. Although there are still correct voxelthm
sitivity in detecting the segmental bronchi, ranging from@ “partly wrong” regions being discarded, the impact on the
(LB1) to 0.99 (LB6), indicating that each of the segmentdvaluation results is minimal as it concerns only a small
bronchi is at least detected by 10 different algorithms draction of the original 5.51% of “partly wrong” voxels.
average.

15-

C. Case analysis

B. Reference standard The dataset used in this study is designed to evaluate
This work has presented a novel way to construct a referemerformance of airway extraction algorithms over a widegean
standard for a structure that is hard to segment manualiydifferent variations and anomalies. It is not a suitatdtadet
in this case the airway tree, from multiple machine mader the study of effects of specific factors, such as dose,
segmentations. The key concept is to break the machine mauspiration level, pathology etc., have on the performaoice
segmentation into parts, which is a natural operation fovay  airway extraction algorithms, due to the small number oésas
trees as they consist of branches, and have human expessd and the fact that each case had multiple confounding
accept or reject the parts. Overall, this procedure, thoufdctors that may be influencing the results. Nevertheless, w
time-consuming, worked well and has resulted in a unigqurvestigated the effects of the different factors basedtmn t
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small amount of paired scans and groups of scans with simitart as it only had a single case), although no difference was
characteristics in our dataset. found on the branches detected 0.52), we did find a slight

To study the effect of the different doses, we separatédference in the false positive rates £ 0.0549).
the scans into three groups based on their tube voltage anddditionally, we also performed unpaired Student’s tgest
tube current: a low dose group (cases 24, 26 and 38, wih group of scans without obvious abnormalities (cases21, 2
a mean branches detected of 51.9% and mean false posifige28, 29, 35 and 37) and a group of scans showing bronchiec-
rate of 1.30%), an intermediate dose group (cases 21-23, #sis (cases 33, 34, 36 and 39). Mean branches detected and
27, 30-33, 37, 39 and 40, with a mean branches detectednuéan false positive rate were 53.8% and 2.75% for the healthy
51.5% and mean false positive rate of 3.54%) and a diagnogjioup, and 48.1% and 2.63% for the bronchiectasis group.
dose group (cases 28, 29, and 34-36, with a mean brancWés did not find a significant difference in branches detected
detected of 52.6% and mean false positive rate of 1.96%p). = 0.08) and false positive ratep(= 0.89) between both
Using unbalanced one-way Analysis of Variance (ANOVA)groups.
no significant differencep( = 0.92) in branches detected
were found between the three groups. However, we did find
significant difference in false positive rate £ 0.02) between rb Future of EXACT
the groups, where significant difference were detecteddmstw ~ All training and test data are publicly available at the
the intermediate and low dose groyp= 0.02), and between EXACT'09 websité. This website also provides detailed
intermediate and diagnostic dose grogp=¢ 0.03), but not descriptions for each algorithms, the performance metdcs
between the low and diagnostic dose gropp=(0.37). For the each scan and each algorithm, and surface renderings for
two pairs of low dose and intermediate dose scans (casest?a results from each algorithm for all test cases. We also
and 25, and 26 and 27), branch counts were significantly lowgiovide the opportunity to have new results evaluated again
(p < 0.01 from paired Student’s t-tests) for the low dose scarige current reference standard. The downside of this is that
(mean branch count of 73.4 and mean leakage volume of 328@ne correctly segmented branches from newly submitted
mm?) than the intermediate dose scans (mean branch counglgorithms may be classified as incorrect if they are missing
92.9 and mean leakage volume of 376.8 thnwhile there from the current reference standard. To solve this, we hope t
was no significant difference in leakage volume=( 0.54). organize a future round of human observer evaluation where

From the available paired inspiration and expiration scatfse reference tree will be updated with additional branches
(cases 21 and 22, and 37 and 38), not only did the segmépiind by the newly submitted results and previously suleditt
tations of the inspiration scans have more correct branchegsults will be re-evaluated.
they also had more leakage than their expiration countexpar
Inspiration scans exhibited an average branch count of 145 VIIl. CONCLUSION

branches and leakage volume of 942 foompared to 76

branches and 115 mhifior expiration scans. A paired Student’s _A framework has be_en pre_sented to establish a refe_rence
t-tests showed that these difference were significant (.01 airway tree segmentation. This was used to evaluate airway

for branch count angh = 0.02 for leakage volume). It should extraction algorithms in a standardized manner. This is the

be noted however, that scan 38 was acquired with a lowdFt Study that performed quantitative evaluation of a darg
dose and a different reconstruction kernel, which couIdehaUumber of different airway tree extraction algorithms (&ato
affected the results as well of fifteen algorithms), which were applied to a single datase
The image pair case 28 and case 29 consists of scans ﬁ_{(gwfenty chest CT_ scans from \_/arious institutes) and evatuat
the same subject reconstructed with a soft and a hard kerdg@ common, fair, and meaningful way. 'I_'r_]r_ee performa_n_c_e
respectively. Significantly more branches & 0.01) were measures were used to evaluate the sensitivity and spscifici
extracted from the scan constructed using the hard keriitél, V\Pf the different algorlthms. Results showed that no albanit
an average of 106 branches compared to 80 branches from 3§ capable of extracting more than an average of 74% (range
soft kernel reconstructed scan. The average leakage vcitume62'6% to 90.4%) of the total length of all branches in the
the hard kernel scan was higher, 418 foompared to 236 reference, with an average false positives of 2.81% (range
mn?. but the difference was not ,significarp:{: 0.30) 0.11% to 15.56%). It was shown that better results can be
The different noise levels from Table I, low (mean branch&Ptained by a simple fusion schgme that retgin; regions _that
detected of 51.2% and mean false positive rate of 2.65°f3)’,e marked by two or more algorithms, resulting in extragtin
middle (mean branches detected of 52.3% and mean fafihaverage 78.84% of the total length of all branches in the
positive rate of 2.32%) and high (mean branches detecE}erence, with an average false positive rate of only 1.22%

of 52.1% and mean false positive rate of 3.56%), did not
seem to have much effect on either the branches detected or ACKNOWLEDGMENT

false positive rate, with a-value 0.90 and 0.30 respectively 1nis work was funded in part by the Danish Council for

via u_n_balal_wced one-way ANOVA. For the scans that We@trategic Research (NABIIT), the Netherlands Organizatio
classified visually as middle (mean branches detected 6863.¢,. scientific Research (NWO), and by grants HL080285 and

and mean false positive rate of 2.43%) and hard (Megf) 479406 from the U.S. National Institutes of Health.
branches detected of 51.5% and mean false positive rate of

3.80%) reconstruction (the soft reconstruction group vedis | 3See http://image.diku.dk/exact/
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