
Modified Hybrid Bronchoscope Tracking Based
on Sequential Monte Carlo Sampler: Dynamic

Phantom Validation
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Abstract. This paper presents a new hybrid bronchoscope tracking
method that uses an electromagnetic position sensor, a sequential Monte
Carlo sampler, and its evaluation on a dynamic motion phantom. Since
airway deformation resulting from patient movement, respiratory mo-
tion, and coughing can significantly affect the rigid registration between
electromagnetic tracking and computed tomography (CT) coordinate
systems, a standard hybrid tracking approach that initializes intensity-
based image registration with absolute pose data acquired by electromag-
netic tracking fails when the initial camera pose is too far from the actual
pose. We propose a new solution that combines electromagnetic tracking
and a sequential Monte Carlo sampler to address this problem. In our
solution, sequential Monte Carlo sampling is introduced to recursively
approximate the posterior probability distributions of the bronchoscope
camera motion parameters in accordance with the observation model
based on electromagnetic tracking. We constructed a dynamic phantom
that simulates airway deformation to evaluate our proposed solution. Ex-
perimental results demonstrate that the challenging problem of airway
deformation can be robustly modeled and effectively addressed with our
proposed approach compared to a previous hybrid method, even when
the maximum simulated airway deformation reaches 23 mm.

1 Introduction

During minimally invasive diagnosis and surgery of lung and bronchus cancer,
bronchoscopy is a useful tool that enables physicians to perform transbronchial
biopsies (TBB) to obtain samples of suspicious tumors and to treat or remove
precancerous tissue. However, it is still difficult to properly localize the biopsy
needle in the region of interest (ROI) to sample tissue inside the airway tree
because the TBB procedure is usually guided by conventional bronchoscopy,
which only provides 2D information (bronchoscopic video images) and needs to
be performed inside the very complex bronchial tree structure. To deal with such
limitations, navigated bronchoscopy systems have been developed to help the
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bronchoscopist by fusing pre-interventional and intra-interventional information
such as 3D multi-detector CT image data and real-time bronchoscopic video to
provide two fundamental functions: (1) visualization of anatomical structures
beyond the bronchial walls and the anatomical names of the currently displayed
branches; (2) TBB guidance by showing the planned path of the bronchoscope
and localizing the current bronchoscope camera inside the airway tree.

To develop such a bronchoscopic navigation system, the exact pose of the
bronchoscope camera must be tracked inside the airway tree for which many
techniques have been proposed. Image registration-based methods compare the
similarities between real and virtual bronchoscopic images generated from pre-
interventional CT data [1, 2]. However, such an optimization procedure is con-
strained heavily by its initialization and bifurcation or fold information to be
clearly observed on real bronchoscopic images. Sensor-based electromagnetic
tracking (EMT) uses a sensing coil (sensor) attached to the tip of the bron-
choscope and localized by an electromagnetic tracking system, such as the com-
mercially available superDimension navigation system [3]. However, such naviga-
tion systems suffer from the following bottlenecks: (1) sensitivity to localization
problems resulting from patient movement (i.e., airway deformation). An EMT
measurement usually provides the position and orientation of the bronchoscope
camera relative to a fixed, world coordinate system and hence the current mea-
surement under airway deformation does not correspond exactly to the current
bronchoscope camera pose; (2) measurement inaccuracies because of magnetic
field distortion caused by ferrous metals or conductive material within or close
to the working volume. To address airway deformation, Gergel et al. applied
particle filtering to all camera positions and orientations acquired by EMT and
projected them to a previously segmented centerline of the bronchial tree [4], so
they assume a bronchoscope camera that is always moving along the centerline
of the airways; however this is a hard constraint since it is easily violated by a
bronchoscopist in the operating room. Otherwise, the measurement inaccuracies
of EMT are difficult to correct, unless combined with optical tracking [5, 6]. Fur-
thermore, a combination of image- and sensor-based methods for bronchoscope
tracking was originally proposed by Mori et al. [7]. Their hybrid method was im-
proved by Soper et al. [8] who integrated electromagnetic tracking, image-based
tracking, Kalman filtering, and a respiratory motion compensation method using
a surrogate sensor. According to their evaluation of the state-of-the-art methods,
the hybrid method is a promising means for bronchoscope tracking and definitely
outperforms other methods.

In our paper, we modify hybrid bronchoscope tracking using a sequential
Monte Carlo (SMC) sampler to improve tracking performance and to deal with
the disadvantages of EMT and the restrictions of image-based methods. Broncho-
scope tracking based on Bayesian or motion filtering has already been proposed
in [9, 10]. However, [9, 10] only focused on how to improve the initialization of
image registration methods without estimating the rotational part of the bron-
choscope camera motion. Our proposed method incorporates electromagnetic
tracking and a sequential Monte Carlo sampler to directly estimate the posterior
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probability distribution of the current bronchoscope camera motion parameters.
This modified method significantly increases the accuracy and the robustness of
bronchoscope tracking, as shown in our experimental results.

2 SMC Sampler-Based Bronchoscope Tracking

Our modified hybrid bronchoscope tracking method consists of three stages: (1)
during camera and hand-eye calibration, we apply camera calibration to obtain
the intrinsic parameters of the bronchoscope camera and employ hand-eye cali-
bration to perform electromagnetic sensor and camera alignment; (2) the CT-to-
physical space registration step obtains the initial rigid registration between the
EMT and CT coordinate systems. We can use a landmark-based or a landmark-
free method to calculate this transformation; (3) the sequential Monte Carlo
sampler-based camera motion estimation stage estimates the posterior proba-
bility distribution of the current bronchoscope camera motion parameters and
determines the estimated camera pose at the maximal probability to correspond
to the current bronchoscope camera pose.

Since the first two stages of the proposed method closely resemble the work
of Luo et al. [11], we do not describe them here. We focus on modeling and
predicting the bronchoscope camera motion based on a sequential Monte Carlo
sampler and electromagnetic tracking.

Sequential Monte Carlo samplers such as frameworks [12–14] are a generalized
class of algorithms dealing with the state estimation problem for nonlinear/non-
Gaussian dynamic systems that sequentially sample a set of weighted particles
from a sequence of probability distributions defined upon essentially arbitrary
spaces using importance sampling and resampling mechanisms. They have been
used previously for vision on the basis of structure from motion (SFM), for
example, the usage of a general Monte Carlo sampler for SFM in the work of
Forsyth et al. [15] and the investigation of particle filtering for simultaneous
localization and mapping (SLAM) in [16].

Generally, sequential Monte Carlo samplers are quite similar: samples are
determinately drifted and stochastically diffused to approximate the posterior
probability distributions of interest. We use an SMC sampler, which resembles
the approach of Qian et al. in [17], and only sample the 3-D camera motion pa-
rameters; however, Qian et al. sampled the feature correspondences for motion
depth determination. We use sequential importance sampling with resampling
(SIR) at each iteration to estimate the posterior probability distribution of cur-
rent bronchoscope camera motion.

2.1 SMC Sampler

Before camera motion estimation, in this section, we briefly review the sequential
Monte Carlo sampler based on the SIR scheme.

Suppose a set of state vectors Xi = {xi : i = 1, ..., N} and similarly a set of
measurements with their history Yi = {yi : i = 1, ..., N}, where N is the number
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of states or measurements. The sampler using the SIR scheme constructs and
approximates the posterior probability distribution p(xi|Yi) of the current state
vector xi, given all available information, for example, the previous posterior
probability distribution p(xi−1|Yi−1). To estimate p(xi|Yi), the SIR algorithm
first generates a set of random samples X k

i = {xk
i : k = 1, ...,M} with associated

weights Wk
i = {wk

i : k = 1, ...,M} (M is the sample size) at time i based
on the previous posterior probability distribution p(xi−1|Yi−1) and the current
measurement yi. After that, p(xi|Yi) is approximated by these samples with
respect to xk

i and wk
i [13]:

p(xi|Yi) ≈
M∑
k=1

wk
i δ(xi − xk

i ), (1)

where δ(·) is the Dirac delta function. wk
i can be calculated by

wk
i ∝ wk

i−1
p(yi|xk

i )p(xk
i |xk

i−1)

q(xk
i |xk

i−1,yi)
, (2)

where the proposal q(·) is called an importance density function that affects the
degree of sample degeneracy. Usually, it is convenient to choose q(·) as the prior:
q(xk

i |xk
i−1,yi) = p(xk

i |xk
i−1), then wk

i ∝ wk
i−1p(yi|xk

i ) [13].
Basically, a pseudo-code description of an SMC sampler using SIR can be

generalized in Algorithm 1 as follows:

Algorithm 1: SMC Sampler Using SIR Scheme [12]

At i = 0, generate M samples X k
0 = {xk

0 : k = 1, ...,M}:
Set initial importance density q(xk

0 |xk
0 ,y0) = p(xk

0);
for k = 1 to M do

Draw sample {(xk
0 , w

k
0 )} ∼ q(xk

0 |xk
0 ,y0);

Assign the sample with weights wk
0 ;

end

Compute total weights: W0 =
∑M

k=1 w
k
0 , and normalization: wk

0 = W−1
0 wk

0 ;

for i = 1 to N do
Calculate the effective sample size: ESS [17], define a threshold: TSS;
if ESS < TSS then

Resample {(xk
i−1, w

k
i−1)} to obtain {(x̂k

i−1, ŵ
k
i−1)};

else

Set {(x̂k
i−1, ŵ

k
i−1)} = {(xk

i−1, w
k
i−1)};

end
for k = 1 to M do

Draw sample {(xk
i , w

k
i )} ∼ q(xk

i |xk
i−1,yi);

Weight wk
i ∝ ŵk

i−1ω
k
i where incremental importance weight

ωk
i is defined as: ωk

i = p(yi|xk
i );

end

Compute total weights and normalize each weight: wk
i = W−1

i wk
i ;

Output current estimated state vector x̃i =
∑M

k=1 w
k
i x

k
i

end
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2.2 Definitions of Bronchoscopic Camera Motion

We must define the coordinate systems to be used since bronchoscope tracking
seeks a transformation matrix CTTC including translation CT tC and rotation
CTRC from the bronchoscope camera coordinate system to the CT coordinate
system. Fig. 1 outlines the relationships and transformation matrices between
each coordinate system. FTS describes the relationship between the sensor and
magnetic field coordinate systems. WTF is from the magnetic field coordinate
system to the world coordinate system, and CTTW is from the world coordinate
system to the CT coordinate system. We formulate the relationship between the

sensor and world coordinate systems as WT
(i)
S = WTF

FT
(i)
S , where FT

(i)
S is the

i -th sensor output. Additionally, the transformation between the camera and
the sensor (both attached at the bronchoscope tip) is represented by STC .

Fig. 1: Relationship between coordinate systems in our navigated bronchoscopy.

In our study, we use the SMC sampler to predict the posterior probability
distributions for the bronchoscope camera pose parameters. The camera motion
state is described by translation CT tC and rotation CTRC from the bronchoscope
camera coordinate system to the CT coordinate system. For the rotation part,
we use a quaternion but not a rotation matrix CTRC in our implementation.
The quaternion has been demonstrated to be very powerful to characterize the
rotation part since it has such advantages as compactness and the avoidance of
discontinuous jumps compared to other representations (e.g., Euler angles).

A quaternion representation of rotation can be conveniently considered as a
normalized vector with four components:

q = [ q0 qx qy qz ] , q0
2 + qx

2 + qy
2 + qz

2 = 1. (3)

Global motion state xi that corresponds to the current camera frame can be
parameterized by a seven-dimensional vector:

xi =
[

CTq
(i)
C

CT t
(i)
C

]
, (4)
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where i means the camera motion state at time i or denotes the i -th electro-
magnetic tracking result.

According to a sequential Monte Carlo sampler, each random sample (xk
i , w

k
i )

represents a potential pose of the bronchoscope camera and involves an impor-
tant weight defined as the similarities between the real and virtual bronchoscopic
images in our case. A random sample set Ski = {(xk

i , w
k
i ) : k = 1, 2, 3, ... ,M}

is used to approximate the posterior probabilistic density of the current bron-
chocope camera pose at time i.

2.3 SMC Sampler for Camera Motion Estimation

Our proposed hybrid bronchoscope camera motion tracking process is mainly
performed by the following steps described in this section.

After parameterizing the current camera motion state xi involved with the
SMC sampler, bronchoscope tracking continuously estimates the posterior prob-
ability distribution p(xi|Yi) using a set of random samples Ski , where the sample
weights are proportional to p(yi|xk

i ), as defined in Algorithm 1. To obtain
these random samples Ski , the SMC sampler requires the probabilistic model
p(xk

i |xk
i−1) for the state dynamic between the time steps and likelihood function

(or an important density function) q(xk
i |xk

i−1,yi) for the observations (or mea-
surements) shown in Eq. 2. Additionally, to characterize a random sample Ski ,
the weight wk

i also needs to be determined by incremental importance weight
ωk
i that equals p(yi|xk

i ). Therefore, the following steps are implemented for the
SMC sampler to estimate the bronchoscope camera motion.

[Step 1] State Dynamic. During this state transition step, the bronchoscope
motion dynamic at frame i is usually characterized as a second order process
that is described by a second order difference equation [17]

xk
i = Uxk

i−1 + V nk
i , (5)

where the matrix U describes the deterministic drift part of the state dynamic
model and depends on the EMT measurements yi and yi−1 while the matrix
V represents the stochastic diffusion component of the state dynamic model or
describes the uncertainty of inter-frame camera motion defined on the basis of
Eq. 4. We note that nk

i is an independent stochastic variable or a noise term
that is discussed in the following paragraph.

Since we have no prior knowledge of the bronchoscope camera movement, we
utilize a random walk model to characterize p(xk

i |xk
i−1) for the pointwise state

evaluation. As bronchoscopic frames are used as image sources, the changes of the
motion parameters are usually quite small. For example, in our case the frame
rate of the bronchoscope camera is 30 frames per second; however, the typical
moving speed of the camera is around 10 mm per second, so the magnitude
of inter-frame motion changes at 0.33 mm per second. Therefore, we used a
random walk on the basis of normal density with respect to noise vector nk

i :
nk
i ∼ N (µ, σ2) to approximate the state dynamic in accordance with Eq. 5 [18]:
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p(xk
i |xk

i−1) ∝ 1√
2πσ

exp(−(V −1(xk
i − Uxk

i−1)− µ)2/2σ2), (6)

After undergoing a random walk based on normal density, the drifted and
diffused state xk

i has a probabilistic distribution in accordance with Eq. 6.

[Step 2] Observation Model. A good choice of the important density func-
tion q(xk

i |xk
i−1,yi) can alleviate the sample degeneracy problem. In the SIR

algorithm, it is appropriately chosen as prior density p(xk
i |xk

i−1) [13], as men-
tioned above. We follow this choice: q(xk

i |xk
i−1,yi) = p(xk

i |xk
i−1). Therefore, in

our case, the observation density p(yi|xi) can be decided by:

p(yi|xi = xk
i ) ∝ wk

i (

M∑
j=1

wj
i )−1. (7)

We clarify that the observation yi is defined as the EMT measurement and
modeled as yi = Hxi, where H is the observation matrix and is usually defined
as the transformation from the CT to the EMT coordinates.

[Step 3] Determination of Sample Weight. During the two steps described
above, a sample weight wk

i must be computed to assess the sample performance.
In our study, a sample weight wk

i is defined as the similarity between the

current real bronchoscopic image I
(i)
R and the virtual bronchoscopic image IV

generated using estimated virtual camera parameters xk
i based on a volume

rendering technique. Based on the selective image similarity measure [2], after

the division of images I
(i)
R and IV into subblocks and the selection of subblocks,

we use a modified mean squared error (MoMSE ) to calculate the similarity:

MoMSE(I
(i)
R , IV ) =

1

|A(i)|
∑

D∈A(i)

1

|D|
∑
D

(
(I

(i)
R − DI

(i)
R )− (IV − DIV )

)2
, (8)

where |A(i)| is the number of selected subblocks in the list of selected subblocks

A(i), and DI
(i)
R and VD are the respective mean intensities of all subblocks D

of I
(i)
R and IV . The mean intensities of I

(i)
R and IV may be different in an actual

bronchoscopic image because of the different strengths of the light sources. To

reduce this effect, DI
(i)
R and DIV are subtracted from each pixel.

The weight wk
i can be formulated as

wk
i = MoMSE(I

(i)
R , IV (xk

i )). (9)

Finally, in our case, the output of the SMC sampler for the current estimated
motion state can be determined in accordance with wk

i :

x̃i = arg max
wk

i

{(xk
i , w

k
i )}, (10)
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that is, sample x̃i with maximal weight w̃i corresponds to the maximal similarity
between the current bronchoscope camera frame and the generated virtual frame.

Our modified hybrid bronchoscope tracking based on an SMC sampler can
be summarized in Algorithm 2 as follows.

Algorithm 2: SMC Sampler-Based Bronchoscope Tracking

input : Bronchoscopic video images I
(i)
R , CT-based virtual images IV ,

electromagnetic sensor measurements WT
(i)
S

output: A series of estimates CT T̃
(i)
C of the bronchoscope camera poses

Before SMC sampling:
1. Camera and hand-eye calibration to calculate STC ;
2. CT-to-physical space registration for CTTW ;

Start SMC sampling ⇔ 3. Compute CT T̃
(i)
C

Initialization: At i = 0,
Compute CTT

(0)
C = CTTW

WT
(0)
S

STC , observation: CTT
(0)
C ⇔ y0;

Generate M samples X k
0 = {xk

0 : k = 1, ...,M}:
for k = 1 to M do

Draw sample {(xk
0 , w

k
0 )} ∼ p(xk

0), p(xk
0) = 1

M
;

xk
0 = y0;

wk
0 = MoMSE(I

(0)
R , IV (xk

0)), according to Eq. 9;
end

Compute total weights: W0 =
∑M

k=1 w
k
0 , and normalization: wk

0 = W−1
0 wk

0 ;

for i = 1 to N do
Calculate effective sample size: ESS [17], define a threshold: TSS;
if ESS < TSS then

Resample {(xk
i−1, w

k
i−1)} to obtain {(x̂k

i−1, ŵ
k
i−1)};

else

Set {(x̂k
i−1, ŵ

k
i−1)} = {(xk

i−1, w
k
i−1)};

end

Compute CTT
(i)
C = CTTW

WT
(i)
S

STC , observation: CTT
(i)
C ⇔ yi;

for k = 1 to M do

Draw sample {(xk
i , w

k
i )} ∼ p(xk

i |xk
i−1) by:

Drift and diffusion: xk
i−1 =⇒ xk

i according to [Step 1];
Calculate observation densities p(yi|xi) according to [Step 2];

Weight: wk
i = MoMSE(I

(i)
R , IV (xk

i )) according to [Step 3];
end

Compute total weights: Wi =
∑M

k=1 w
k
i ;

Normalization: wk
i = W−1

i wk
i ;

The current estimated state x̃i: x̃i = arg maxwk
i
{(xk

i , w
k
i )};

Return: x̃i ⇐⇒ CT T̃
(i)
C

end

3 Experimental Results

For evaluating the performance of our proposed tracking method, we manu-
factured a dynamic bronchial phantom (Fig. 2) to simulate breathing motion.
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We connected the rubber phantom to a motor using nylon threads. A LEGO
Mindstorm (LEGO, Denmark) was utilized as power source to generate move-
ment. With the controller part (NXT: a programmable robotics kit included in
LEGO Mindstorm), we can manipulate the motor motion including the direc-
tions and the rotational speeds. The phantom simulates respiratory motion when
the thread changes its length. We can adjust the amount of simulated motion,
and its maximum deformation is about 24 mm.

(a) (b)

Fig. 2: Dynamic motion phantom: (a) picture of real phantom and (b) drawing
of phantom movement.

For dynamic phantom validation, we compare four tracking schemes: (a)
Solomon et al. [3], only using EMT, (b) Mori et al. [7], intensity-based image
registration directly initialized by the EMT results, (c) Luo et al [11], the bet-
ter one of two proposed schemes in [11], and (d) our method, as described in
Section 2.3.

Table 1: Comparison of registered results (the unit of maximal motion is mm)

Experi. Maximal Number (percentage) of successfully registered frames

(frames) motion Solomon et al. [3] Mori et al. [7] Luo et al. [11] Our method

A(1285) 6.13 850 (66.1%) 958 (74.6%) 1034 (80.5%) 1224 (95.3%)

B(1326) 11.82 783 (59.0%) 863 (65.1%) 1018 (76.8%) 1244 (93.8%)

C(1573) 18.75 894 (56.8%) 972 (61.8%) 1153 (73.3%) 1431 (91.0%)

D(1468) 23.61 716 (48.8%) 850 (57.9%) 1036 (70.6%) 1300 (88.6%)

Total(5652) 3243 (57.4%) 3643 (64.5%)4241 (75.0%)5199 (92.0%)

Table 1 shows the quantitative results of the evaluation of the methods. Here
we counted the number of frames that were successfully registered by visually
inspecting the similarities between the real and virtual images. The maximum
simulated respiratory motion for different experiments is also shown in Table
1. Our proposed method significantly improved the tracking performance. Fur-
thermore, examples of experiments C and D for successfully registered frames
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are displayed in Fig. 3, which shows examples of real bronchoscopic (RB) im-
ages and corresponding virtual bronchoscopic (VB) images generated from the
camera parameters predicted by each method.

4 Discussion

The objective of this study is to design and improve the performance of hybrid
bronchoscope tracking under airway deformation during bronchoscopic naviga-
tion, in particular, to deal with the limitations of electromagnetic tracking. We
used a sequential Monte Carlo sampler to modify previous hybrid bronchoscope
tracking methods. According to the experimental results, the posterior prob-
ability distributions of the bronchocope camera poses are almost completely
approximated using the sequential Monte Carlo sampler. Hence we improved
our previous proposed hybrid tracking methods [7, 11] in various aspects.

Frame number 0044 0128 0239 0390 0626 0721 0862 0910 1059 1173 1319 1483

RB images

Solomon et al. [3]

Mori et al. [7]

Luo et al. [11]

Our method

(a) Examples of experiment C

Frame number 0085 0202 0279 0302 0453 0687 0729 0869 0986 1078 1185 1332

RB images

Solomon et al. [3]

Mori et al. [7]

Luo et al. [11]

Our method

(b) Examples of experiment D

Fig. 3: Results of bronchoscope tracking for different methods under simulated
breathing motion using our dynamic phantom. The top row shows selected frame
numbers and the second row shows their corresponding phantom RB images. The
other rows display virtual bronchoscopic images generated from tracking results
using the methods of Solomon et al. [3], Mori et al. [7], Luo et al. [11], and our
method. Our proposed method shows the best performance.
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As for the previous hybrid method [7], its tracking robustness and accuracy
usually suffer from the following: (1) dependencies on the initialization of im-
age registration and visible characteristic structures (i.e., folds or bifurcations
of the bronchi) for similarity computation; (2) airway deformation, in particular
respiratory motion. For the registration step (an optimization procedure), the
optimizer is unavoidably trapped in local minima. We have already addressed
these limitations and improved the tracking performance by modifying the ini-
tialization of image registration in our previous work [11]. In this study, our
modified method was more effectively disengaged from these constraints using a
sequential Monte Carlo sampler, compared to our previous methods [7, 11]. We
greatly approximate the posterior densities of the state parameters by collecting
a set of random samples and sequentially predict the camera motion parameters
on the basis of the importance sampling, which provides the ability to main-
tain potential importance modes that either they are confirmed or moved to
be the subsequent observations. This results in our proposed method that can
avoid the optimization registration algorithm which is trapped in local minima in
most cases and particularly has the ability to automatically retrieve the tracking
loss even in case of image artifacts. Hence, our method shows the best tracking
performance in Table 1 and Fig. 3, compared to the previous methods.

However, in our experiments, the modified methods still failed to correctly
register all RB and VB frames when continuously tracking the bronchoscope
for the following reasons: (1) the dynamic error of EMT (because of the ferrous
material contained inside the bronchoscope), as mentioned in Section 1, affected
the observation accuracy; (2) our simulated breathing motion is rather big and
not realistic enough. Currently it is only in the left-right and superior-inferior
directions for the peripheral lung. The trachea does not move. The magnitude of
the motion can be adjusted to 6 ∼ 24 mm. However, for a real patient, respiratory
motion is greatest in the superior-inferior direction (∼ 9 mm), moderate in the
anterior-posterior direction (∼ 5 mm), and lowest in the left-right direction (∼ 1
mm) [19].

Additionally, the average runtime of our proposed method per frame (1.7
seconds) is higher than that of the previous hybrid method (0.5 seconds), because
each random sample must compute its weight based on the similarities between
real and virtual images; this is really time-consuming.

5 Conclusions and Future Work

This paper presented a modified hybrid bronchoscope tracking method that used
an electromagnetic position sensor and a sequential Monte Carlo sampler and
evaluation on a dynamic phantom. We used a sequential Monte Carlo sampler
to approximate the posterior probability distributions of the bronchoscope cam-
era motion parameters. Experimental results demonstrated that the modified
method gives impressive approximations to the bronchoscope camera motion
and successfully registered a total of 5199 (92.0%) bronchoscopic images, increas-
ing the tracking performance by 17.0% compared to the state-of-the-art hybrid
method. We conclude that our method significantly alleviates the sensitivity to
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the localization problems of electromagnetic tracking that usually result from
airway deformation, particularly respiratory motion. Our future work includes
experiments on patient datasets using our proposed method in the operating
room and improvement of its computational efficiency.
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