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Abstract. This paper compares Kanade-Lucas-Tomasi (KLT), speeded
up robust feature (SURF), and scale invariant feature transformation
(SIFT) features applied to bronchoscope tracking. In our study, we first
use KLT, SURF, or SIFT features and epipolar constraints to obtaininter-
frame translation (up to scale) and orientation displacements and Kalman
filtering to recover an estimate for the magnitude of the motion (scale
factor determination), and then multiply inter-frame motion parame-
ters onto the previous pose of the bronchoscope camera to achieve the
predicted pose, which is used to initialize intensity-based image registra-
tion to refine the current pose of the bronchoscope camera. We evaluate
the KLT-, SURF-, and SIFT-based bronchoscope camera motion track-
ing methods on patient datasets. According to experimental results, we
may conclude that SIFT features are more robust than KLT and SURF
features at predicting the bronchoscope motion, and all methods for pre-
dicting the bronchoscope camera motion show a significant performance
boost compared to sole intensity-based image registration without an
additional position sensor.
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1 Introduction

In minimally invasive diagnosis and surgery of lung and bronchus cancer, a physi-
cian usually performs transbronchial needle aspiration (TBNA) to obtain tissue
samples to assess suspicious tumors as well as to treat or remove precancerous
tissue. However, it is difficult to properly navigate the biopsy needle to the region
of interest (ROI) for sampling tissue inside the airway tree, because the TBNA
procedure is usually guided by conventional bronchoscopy, which only provides
2-D information (bronchoscopic video images), and because of the complexity of
the structure of the bronchial tree. Recently, bronchoscopic navigation systems
have been developed to guide the TBNA procedure by fusing pre-operative and



intra-operative information such as 3-D multi-detector computed-tomography
(CT) image data and real-time bronchoscopic video. This helps a physician to
properly localize the biopsy needle during navigated bronchoscopy.

For navigated bronchoscopy the exact pose of the bronchoscope camera must
be tracked inside the airway tree. Unfortunately it is really challenging to accu-
rately track the position and orientation of the bronchoscope camera inside the
patient’s airway tree in real time during bronchoscopic navigation. So far, two
main approaches (or their combination) for bronchoscope tracking have been
proposed in the literature: (a) sensor-based and (b) vision-based tracking. The
former uses an electromagnetic (EM) tracking system (e.g., the superDimen-
sion navigation system [12]) to locate an electromagnetic sensor that is usually
fastened at the bronchoscope tip to directly measure the bronchoscope camera
position and orientation. The latter analyzes the bronchoscopic video images
obtained from the bronchoscope camera to continuously track the bronchoscope
tip on the basis of image registration methods [10, 6]. This is a widely discussed
topic in the field of bronchoscope tracking and also the topic of our paper.

Usually, vision-based methods use image registration techniques to align a
real bronchoscope camera pose to a virtual camera pose generated by placing
a virtual camera inside the 3-D CT data. However, a major drawback is that
image registration techniques heavily depend on characteristic information of
bronchial trees (e.g., bifurcations or folds), so they can fail easily to track the
bronchoscope camera in the case of the shortage of such information [5]. Feature-
based bronchoscope motion estimation is a promising means for dealing with
this problem during bronchoscope tracking [10, 4]. Without any characteristic
information, other texture feature information of real bronchoscopic video frames
can be extracted and used to compensate the performance of image registration.

Basically, a feature-based approach for motion estimation and recovery first
needs to extract features from camera images, which can be utilized to compute
the relative camera motion, for example by epipolar geometry (up to scale).
Currently, two well-known methods for extracting features are the SURF and
SIFT algorithm [2, 8]. Both return distinctive features from keypoints that are
invariant to image scale and rotation. Also, the KLT tracker first detects good
features by calculating the minimum eigenvalue of each 2×2 gradient matrix
and selects features to be tracked using an optimization (e.g. Newton-Raphson)
method for minimizing the difference between two feature windows from two
consecutive images [11].

However, little work can be found that evaluates the effectiveness of these
different feature extraction algorithms that are used for bronchoscope tracking
during bronchoscopic navigation. This study utilizes these feature-based camera
motion tracking methods to improve the performance of image registration-based
bronchoscope tracking. We use the KTL, SURF, and SIFT features to estimate
inter-frame pose displacements (up to scale) on the basis of epipolar constraints
and Kalman filtering to get position estimates before performing image registra-
tion. We compare and evaluate the respective performances of KLT, SURF, and
SIFT features used for bronchoscope tracking.



2 Method

Feature-based camera motion estimation algorithms are widely used in the field
of structure from motion (SFM) or stereo vision. These approaches basically
consist of two main steps: (1) feature extraction and (2) feature tracking. The
first step usually characterizes some points or regions in each video image as in-
terest features that carry motion information among video images. Sequentially,
inter-frame motion parameters (up to scale) can be estimated in the second step
by recognizing corresponding features between consecutive video frames. In our
work, we detect interest features for each real bronchoscopic (RB) video image
using a KLT-, SURF-, or SIFT-based method, respectively. We address the dif-
ficulty of determining the magnitude of motion (here referred to as scale factor)
by Kalman filtering during feature-based motion estimation.

Our proposed bronchoscope tracking method has two major stages: rough
camera motion estimation and intensity-based image registration. Figure 1 dis-
plays a flow-process diagram of our tracking method. First, KLT, SURF, or
SIFT features are respectively detected from the current bronchoscopic video
image and feature correspondences are identified in the previous frame. During
epipolar geometry analysis, inter-frame camera motion up to scale is predicted
on the basis of these feature correspondences. Kalman filtering is then applied to
estimate the uncertain scale factor, or in other words, the magnitude of the rela-
tive motion. Finally, after combining the estimates of epipolar geometry analysis
and Kalman filtering to a full Euclidean transformation matrix that moves the
camera from the previous to the current pose, we can perform image registration
initialized with this matrix.

Specifically, the feature-based bronchoscope camera motion tracking process
is performed by the following five steps:

[Step 1] Feature detection. We extract 2-D feature points by using the KLT,
SURF, or SIFT algorithm [11, 2, 8]. The KLT tracker is sometimes referred to
as corner detector while the other two approaches, which are considered as scale
invariant feature detectors, try to find characteristic blob-like structures in an
image independent of its actual size. The SURF or SIFT detector can be con-
structed using a scale space representation of an original image at different res-
olutions. After detecting feature points, SIFT usually describes each feature
point using a 128-dimensional vector while SURF does so with a 64-dimensional
vector. All these vectors include the local gradient direction and magnitude in-
formation in a certain square neighborhood centered at the feature point. More
details about these feature detection algorithms can be found in the original
publications [11, 2, 8]. We note that the normal SURF algorithm is implemented
by doubling the initial image resolution in our case, and hence we can obtain
good performance, as shown in the work of Bauer et al. [1].

[Step 2] Feature correspondences. After feature point detection from bron-
choscopic video sequences, we must determine feature correspondences that can
be used to find the relative motion relation between two successive RB images.



Fig. 1: Processing flowchart of our motion tracking method.

The KLT method extracts adequate feature points of an RB image and uses nor-
malized cross correlation (NCC) to track (or match) them. However, for SURF
or SIFT feature points, we recognize corresponding 2-D point pairs using the
third matching strategy from the work of Mikolajczyk and Schmid [9]. Addi-
tionally, a simple outlier detection mechanism was performed on the basis of
the standard deviation of the distances between corresponding points to remove
unsuitable point pairs.

[Step 3] Epipolar geometry analysis. Inter-frame motion parameters ∆Q̃(i)

between the (i -1)-th and (i)-th RB image contain a translation unit vector ∆t̃
(i)

and rotation matrix ∆R̃(i) that can be predicted with epipolar geometry analysis
by solving the following equations sequentially:

ET∆t̃
(i)

= 0, (1)

∆R̃(i)ET =
[
∆t̃

(i)
]T
×

(2)

where E is the essential matrix described epipolar constraints [7] that our cor-
responding points must satisfy. It needs to be clarified that the essential matrix

E involves an arbitrary scale factor. Hence the absolute translation vector ∆t̂
(i)

depends on an arbitrary scale factor α̃(i) = |∆t̃
(i)| that depicts the real magni-

tude of the translational motion. An effective method to predict this scale that
is based on Kalman filtering is proposed in the next step.



[Step 4] Kalman filtering-based scale factor estimation. Kalman filtering
is widely developed in the community for target position tracking on the basis of
a state-space model [3]. In our work, Kalman-based motion filtering is employed
to determine the magnitude of the bronchoscope translational motion. Basically,
the scale factor α̂(i) can be determined by

α̂(i) = |∆t̂
(i)| = |̂t(i) − t̂

(i−1)|, (3)

where the camera absolute translation vector t̂
(i−1)

and t̂
(i)

are calculated by
Kalman filtering.

We can now retrieve the absolute translation vector ∆t̃
(i)
∗ between frames

(i − 1) and i from the unit transaltion vector ∆t̃
(i)

(determined in the rough
camera motion estimation stage) with respect to α̂(i)

∆t̃
(i)
∗ = α̂(i) ∆t̃

(i)

|∆t̃
(i)|

. (4)

Next, the estimated motion ∆Q̃
(i)
∗ of the bronchoscope camera between

frames (i− 1) and i can be computed by

∆Q̃
(i)
∗ =

(
∆R̃(i) ∆t̃

(i)
∗

0T 1

)
, (5)

where ∆R̃(i) is calculated by Eq. 2. Finally, the estimate ∆Q̃
(i)
∗ is utilized as

initialization of image registration, as described in the next step.

[Step 5] Intensity-based image registration. Intensity-based registration
commonly defines a similarity measure and maximizes the similarities or mini-

mizes the dissimilarities between an RB image I
(i)
R and a virtual bronchoscopic

(VB) image IV . We here use a modified mean squared error (MoMSE ) [5] simi-
larity measure. Let IV (Q(i)) be a VB image generated from the predicted pose
Q(i) = Q(i−1)∆Q(i) of the current frame using volume rendering techniques,
where Q(i−1) denotes the previous camera pose and ∆Q(i) the inter-frame mo-
tion information between successive frames. By updating ∆Q(i), a series of VB
images IV (Q(i−1)∆Q(i)) is generated and the most similar one corresponding to

the RB image I
(i)
R is searched for. In summary, the intensity-based registration

process optimizing ∆Q(i) can be formulated as

∆Q(i) = arg min
∆Q

MoMSE(I
(i)
R , IV (Q(i−1)∆Q)). (6)

For this optimization, the initialization of ∆Q in Eq. 6 is one of the key
components affecting tracking robustness and accuracy. ∆Q is initialized as an
identity matrix in previous work [5]. However, in our new method, we use our

estimate ∆Q̃
(i)
∗ (see Eq. 5) instead. Since we got this estimate by matching stable

image features, it can overcome certain limitations of sole image registration such
as dependencies on airway folds or bifurcations and hence enhances the tracking
performance.



(a) (b) (c)

Fig. 2: Example of the tracking results from the two stages. (a) shows the real
pose of the bronchoscope camera. (b) displays the predicted pose from rough
camera motion estimation by using feature-based tracking. (c) shows the refined
pose by performing image registration initialized by (b).

3 Experimental Results and Discussion

We evaluated sole intensity-based registration (M1) and our proposed tracking
methods (M2: KLT-based method, M3: SURF-based method, M4: SIFT-based
method) on patient datasets, each consisting of an RB video sequence and a
preinterventional 3-D chest CT. In-vivo patient data was acquired in accordance
with a standard clinical protocol. The acquisition parameters of the CT images
are 512×512 pixels, 72-209 slices, 2.0-5.0 mm slice thickness, and 1.0-2.0 mm
reconstruction pitch. The image sizes of the bronchoscopic video frames are
362×370 and 256×263 pixels. We have done all implementations on a Microsoft
Visual C++ platform and ran it on a conventional PC (CPU: Intel XEON 3.80
GHz×2 processors, 4-GByte memory).

A criterion for determining whether a method is more robust than another
can be described by visual inspection and sum of the number of successfully
tracked frames. If a VB image generated from the estimated camera parameters
is greatly similar to the corresponding RB image, we consider it successfully
tracked.

Table 1 gives quantitative results on the performance of all methods. Com-
pared to M1, M2, and M3, in most cases the tracking performance has been
improved significantly by using the proposed tracking algorithm M4. Figure 4
shows examples of RB images and the corresponding virtual images generated by
volume rendering using the camera pose, calculated by the respective methods.
The virtual images generated from the estimates of M4 are more similar than
those of M1, M2, and M3, which means M4 more accurately predicts the real
pose.

For the KLT method, we detect corner features and select 430 good features
to be tracked from the previous frame [11]. The KLT tracker can usually track
around 200 points per frame in our case. Because of the quality of KLT features,
M2 has worse tracking results than M3 and M4, but is still better than M1. The



Table 1: Comparison of the tracking results for our patient studies, in terms of
the number and percentage of successfully tracked frames and average processing
time (seconds) per frame.

Cases Num. of Number (Percentage) of frames successfully tracked
ID Frames M1 M2 (KLT) M3 (SIFT) M4 (SURF)

Case 1 1200 450 (37.5%) 560 (46.7%) 683 (56.9%) 1120 (93.3%)
Case 2 200 116 (58.0%) 120 (60.0%) 70 (35.0%) 130 (65.0%)
Case 3 800 433 (54.1%) 618 (77.2%) 694 (86.8%) 774 (96.7%)
Case 4 800 437 (54.6%) 340 (42.5%) 605 (75.6%) 780 (97.5%)
Case 5 1000 431 (43.1%) 506 (50.6%) 575 (57.5%) 557 (55.7%)
Case 6 279 279 (100%) 279 (100%) 279 (100%) 279 (100%)
Case 7 400 240 (60.0%) 190 (32.5%) 210 (52.5%) 260 (65.0%)
Case 8 450 246 (54.7%) 217 (48.2%) 10 (2.22%) 10 (2.22%)

Total 5120 2632 (51.4%) 2830 (55.3%) 3126 (61.1%) 3910 (76.4%)

Average Times 0.92 s 0.96 s 0.57 s 1.83 s

(a) (b)

(c) (d)

Fig. 3: Examples of detected feature numbers and computation times of Case 4.
(a) shows the number of detected feature points, (b) gives the matching ratios
calculated between the numbers of matching and detected points when using
SURF and SIFT for each frame. (c) displays the time required for detecting
SURF and SIFT features, and (d) illustrates the time needed to track the bron-
choscope pose of each frame when using M1, M2, M3, and M4. It clearly shows
that for M4 the average processing time with at least 1.5 seconds per frame is
three times higher than that for M3, because it includes SIFT feature detection.



tracking results of M3 are worse than those of M4, although SURF detected
many more features and correspondences (around 587 detected points and 56
matching points per frame, matching ratios: 9.2%, as shown in Figure 3 (a) and
(b)) than that of SIFT (around 103 detected points and 38 matching points per
frame, matching ratios: 35.7%, as shown in Figure 3(a) and (b)). We believe
that the SURF features-based method gives worse estimates to initialize the
registration step than the SIFT features-based method, and hence fails to track
the bronchoscope motion more often. This also demonstrates that the feature
point quality from SURF is not as good as that of SIFT, as the authors already
concluded in the work of Bay et al. [2]. Additionally, we note that all other
approaches (M2-M4) show better tracking results than sole intensity-based image
registration (M1). This can be explained by the usage of image texture features
that depend less on airway folds or bifurcations.

Regarding computational efficiency, according to Table 1, M1 requires ap-
proximately 0.92 seconds to process a frame and the run-time of M2 is about
0.96 seconds per frame while that of M3 comes to 0.57 seconds per frame and M4
computes each frame in around 1.83 seconds. Compared to M1, M3 can improve
the computational efficiency while M4 increases the processing time for each
frame. From the work of Bay et al. [2] we know that SURF is faster than SIFT
at detecting features, since the SURF method uses a fast-Hessian detector on the
basis of an integral image. However, all methods cannot track the bronchoscope
motion in real time (real time means 30 frames per second need to be processed
in our case). This is because feature-based motion recovery methods are time-
consuming in terms of detecting points and finding their correspondences, and
so is the registration stage of bronchoscope tracking. However, we can utilize the
GPU (graphics processing unit) to accelerate our implementations and make it
(almost) real time.

Finally, in our patient study all methods failed to track the motion of the
bronchoscope in some cases. This is because the estimation failed in the intensity-
based registration process, which is usually caused by problematic bronchoscopic
video frames such as RB images, on which bubbles appeared. Additionally, track-
ing failure also resulted from airways deformation, which was caused by patient
movement, breathing, and coughing, and is also one particular challenge in nav-
igated bronchoscopy. Currently, we do not explicitly address the problem of res-
piratory motion in our tracking method. Therefore, our future work will focus on
improving intensity-based image registration for bronchoscope tracking during
bronchoscopic navigation, as well as constructing a breathing motion model to
compensate for respiratory motion.

4 Conclusion

This paper compared KLT, SURF, and SIFT features applied to bronchoscope
tracking. We utilized the KLT-, SURF-, and SIFT-feature-based camera mo-
tion tracking method to improve the performance of image registration-based
bronchoscope tracking without an additional position sensor. Furthermore, from
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Fig. 4: Results of camera motion tracking for the patient assessment. The second
column shows selected frames from a sequence of patient RB images and the first
column their corresponding frame numbers. The other columns show tracking
results for methods M1∼M4, all generated by volume rendering of the airways
from the estimated viewpoints.



experimental results, we may conclude that SIFT features are more robust than
the other two features when applied to predict bronchoscope motion, since the
SIFT-based method successfully tracked 76.4% frames, compared to the KLT-
based and the SURF-based methods with 55.3% and 61.1%, respectively. How-
ever, with about half to a third the processing time of the other methods, the
SURF-based method seems to be a good compromise between tracking accuracy
and computational efficiency.
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